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Fiber bundle models �FBMs� are useful tools in understanding failure processes in a variety of material
systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult.
Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which
overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues
in idealized FBMs that assume either equal load sharing �ELS� or local load sharing �LLS� among fibers, rules
that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional
bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent
�, and integrated over time. This life consumption function is further embodied in a functional form resulting
in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, �. Thus the failure
rate of a fiber depends on its past load history, except for �=1. We develop asymptotic results validated by
Monte Carlo simulation using a computational algorithm developed in our previous work �Phys. Rev. E 63,
021507 �2001�� that greatly increases the size, N, of treatable bundles �e.g., 106 fibers in 103 realizations�. In
particular, our algorithm is O�N ln N� in contrast with former algorithms which were O�N2� making this
investigation possible. Regimes are found for �� ,�� pairs that yield contrasting behavior for large N. For �

�1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements �groupings of
fibers� derived from critical cluster formation, and the lifetime eventually goes to zero as N→�, unlike ELS,
which yields a finite limiting mean. For 1 /2���1, however, LLS has remarkably similar behavior to ELS
�appearing to be virtually identical for �=1� with an asymptotic Gaussian lifetime distribution and a finite
limiting mean for large N. The coefficient of variation follows a power law in increasing N but, except for �=1,
the value of the negative exponent is clearly less than 1/2 unlike in ELS bundles where the exponent remains
1/2 for 1 /2���1. For sufficiently small values 0���1, a transition occurs, depending on �, whereby LLS
bundle lifetimes become dominated by a few long-lived fibers. Thus the bundle lifetime appears to approxi-
mately follow an extreme-value distribution for the longest lived of a parallel group of independent elements,
which applies exactly to �=0. The lower the value of �, the higher the transition value of �, below which such
extreme-value behavior occurs. No evidence was found for limiting Gaussian behavior for ��1 but with 0
����+1��1, as might be conjectured from quasistatic bundle models where ���+1� mimics the Weibull
exponent for fiber strength.
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I. INTRODUCTION

Over the past two decades fiber bundle models �FBMs�
have received ever increasing attention in the physics com-
munity to explain a wide range of phenomena observed in
the fracture of materials under stress. While they are natural
models for natural and manmade fibrous composites, they
have been increasingly used to explain failure processes in
multiphase crystalline structures, even when grains are not
particularly elongated �1�. FBMs have also been used to
study failure in atomic lattices, for instance graphene sheets
that are the basic structure of carbon nanotubes �2�. Such
models have been used to model electrical failure in resistor
networks �3� and dielectrics �4� with discrete structure. Part
of their attractiveness for studying materials that ostensibly

might seem better modeled using continuum mechanics ap-
proaches, is that stress fields calculated using discrete elastic
lattice models show near singular behavior near the tips of
elongated clusters of failed elements �fibers�, yet also allow
for dispersed element failure in the vicinity of these tips that
has a strong effect on how such clusters might propagate. In
addition models for element failure and load sharing can be
unambiguously described and are treatable within analytical
�5� or Monte Carlo simulation �6� models.

A wide range of phenomena have been of interest, many
motivated by organizing features of percolation theory and
behavior of critical points in phase transitions. Many phe-
nomena, however, are unique to FBMs and unpredictably
may or may not be amenable to mean-field descriptions de-
pending on a small change in a particular model parameter.
Among the many phenomena studied are �i� distributions of
avalanche sizes �representing sudden progressions of failed
fibers that intermittently terminate �7–9��, �ii� size effects
where strength or lifetime may progressively decrease to
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zero or reach a limit as system size increases and the geom-
etry of subcritical failure structures changes radically, �iii�
brittle failure with extreme localization �10� versus quasiduc-
tile behavior with dispersed element failure, the transition
triggered by small changes in certain parameter values, �iv�
the scaling of lifetime distributions with load level, just to
name a few. Much of the pre-1985 FBM work was reviewed
in the forerunner of this paper �6� so we will refer mainly to
more recent work as it relates to the above-mentioned phe-
nomena and results in the paper.

The basic fiber bundle model in this paper �local load
sharing �LLS� together with the Weibull power-law fiber
model� was first studied in its full parametric form by Phoe-
nix and Tierney �11�. The fiber model traces back to Cole-
man �12�. Newman and Phoenix �6� considered a restricted
version of this model where the lifetime of a fiber under
fixed load followed an exponential distribution rather than
the more general Weibull distribution here.

Using the same exponential lifetime version with the
same power-law sensitivity to load level but in some respects
a more general load sharing model, a similar FBM was stud-
ied by Curtin and Scher �13� and Curtin, Pamel and Scher
�14�. These were important works that made some key ob-
servations regarding parameter ranges for which dispersed
�quasiductile� failure processes would occur versus localized
�brittle� failure. They also made important observations in
the latter case regarding system size effects and the time
scales required to first develop a dominant crack �among
many competing cracks�, and then for the crack to continue
to grow to catastrophic size resulting in terminal failure.

We also mention related work by Herrmann and co-
workers �15� who examined how the behavior of a bundle
depends upon the range over which each fiber interacts with
its neighbors and for this purpose they used a power-law load
redistribution varying as the distance of separation raised to a
negative power. Thus low values of the exponent gave ap-
proximately equal load sharing and high values approxi-
mately local load sharing. Both time dependent bundles with
a power law relating fiber time to failure to its load level
�with exponentially distributed lifetime under fixed fiber
load� as well as Weibull fiber strength in a quasistatic bundle
model were studied. They found that both the lifetime ver-
sion and the strength version exhibited a crossover from
mean-field �ductile� to short-range �brittle� behavior and that
the point of transition depends on the system’s disorder in
terms of exponents for strength or lifetime. Also the growth
dynamics of the largest crack were radically different in the
two limiting regimes of load transfer �limiting exponent val-
ues� especially during the first stages of breaking. High val-
ues of the strength or lifetime exponent coupled with high
values of the stress-redistribution exponent promoted very
brittle behavior and the opposite promoted ductile behavior
with distributed damage and no localization.

The fiber element failure model of the present paper is
based on a thermally activated mechanism involving power-
law sensitivity of fiber element lifetime to stress level. The
exponent of the power law is proportional to activation en-
ergy divided by absolute temperature, as shown by Phoenix
and Tierney �11�. However, Ciliberto, and co-workers �16�
have considered other versions in two-dimensional spring

networks with quenched disorder. The rupture of a spring
element is assumed thermally activated and its lifetime fol-
lows an Arrhenius law where its energy barrier is reduced by
the local disorder effect on the stress in the element. In effect
an effective system temperature arises amplified by the spa-
tial disorder �heterogeneity� of the fiber bundle. In a related
work, Yoshioka et al. �17� perform calculations showing that
the presence of such local stress inhomogeneities results in
cracking with an anomalous size effect where the average
lifetime decreases as a power of the system size with the
exponent depending on external load divided temperature to
the power 3/2 in a modified Arrhenius form.

Recently Toussaint and Hansen �18� considered issues of
localization of damage in a tubular quasistatic fuse model,
working with a mean-field approach. Depending on the
quenched disorder distribution of fuse thresholds �with both
power-law lower and upper tails with different exponents�
they showed analytically that the system can �i� either stay in
a percolation regime up to breakdown, or �ii� beginning at
some imposed current, to localize starting from the smallest
scale lattice spacing, or �iii� enter a diffuse localization re-
gime where damage starts to concentrate in bands having
width scaling as the width of the system, but otherwise being
diffuse at smaller scales. Depending on the nature of the
quenched disorder on fuse thresholds, a phase diagram of the
system was obtained separating these regimes and the current
levels for the onset of these possible localizations. Similar to
what we will find in the current work, as the system size
increases, the once critical values for the exponent of the
power-law lower tail of the disorder distribution become
unity above which the system completely localizes. Below
this value �and for larger systems sizes� a second critical
value occurs for this power-law lower tail above which �and
below unity� diffuse localization occurs and below which
fully diffuse percolation like failure occurs. However this
second critical value appears to decrease roughly in inverse
proportion to the logarithm of the system size.

In related work, Pradan and Hansen �19� investigated the
effects on bundle strength of a lower cutoff in the fiber
strength distribution �with an upper cutoff as well, so all fiber
strengths were between the lower and upper cutoffs� under
both equal load sharing and local load sharing. Under both
forms, raising lower strength cut-off level beyond a critical
strength value resulted in instant bundle collapse when the
weakest fiber failed irrespective of the upper cutoff. Under
local load sharing, however, this critical strength value was
lower than under equal load sharing and with increasing sys-
tem size the bundle strength and avalanche statistics were
strongly influenced by the chosen value of the lower cutoff,
with the bundle eventually becoming no stronger than the
lower cutoff. While the fiber strength distributions were time
independent, the results again showed that the extreme tails
of the distributions control the behavior of very large bundles
irrespective of the mean and coefficient of variation �i.e., the
standard deviation divided by the mean� of fiber strength.
This cutoff effect was also studied by Raischel, Kun, and
Herrmann �20� and by Pradhan, Bhattacharyya, and Chakra-
barti �21� with similar observations.

Numerical simulations of lattice models of fracture have
been used �22� to study the crossover between the regime

S. LEIGH PHOENIX AND WILLIAM I. NEWMAN PHYSICAL REVIEW E 80, 066115 �2009�

066115-2



controlled by disordered failure �quasiductile� and the regime
where localization and crack-like stress concentrations
emerge, reflected primarily by continuum fracture mechanics
concepts. Nonetheless, scaling laws emerge involving a frac-
ture process zone, whose scaling properties are revealed only
upon sampling over many configurations of the disorder.
These authors �23� have also contributed a broad review that
ties together various models for the size effect phenomenon
in the failure of materials. These models span extreme-value
statistics, fracture mechanics �including finite boundary ef-
fects�, R-curve behavior resulting from fracture process
zones and fractal effects and fiber bundle models under glo-
bal and local load sharing, including closely related scalar
random fuse models. Also discussed are geometric size ef-
fects from the roughness of crack surfaces �self-affine and
with other exponents�.

In a similar vein, Roux �24� pursued the effects, in equal
load sharing bundles, of having narrow quenched disorder
and a Gaussian distribution of thermal noise driving the frac-
ture stress of the fibers, and also found the failure to be
controlled by an effective temperature translated with respect
to the actual one. In related work Roux and Hild �25� studied
the influence of growing distributed fiber failures with in-
creasing time or load on the effective interaction Green’s
function �decaying as the distance raised to a negative
power� between broken fiber clusters and nearby surviving
fibers in an elastic lattice model. This Green’s function was
found to become more and more long ranged as the tangent
modulus vanished and the reloaded region became narrower
and narrower so that the damage development diverged from
local load sharing behavior to become closer and closer to
the so-called global �or equal� load sharing rule. This was
argued to justify use of a mean-field approach as the peak
stress is approached.

Looking in more detail at subcritical cluster or crack
growth in a load sharing setting treated using fracture me-
chanics ideas but with probabilities for step-by-step growth
or arrest mimicking a fiber bundle setting, Hilde and Roux
�26� calculated the probability a crack will start at one size
and reach some larger size, eventually taking a limit as this
size became infinite. In the model the rate of crack growth
was governed by a power-law exponent playing much the
role of the exponent of the present work governing sensitiv-
ity of fiber lifetime to load level. In essence they found that,
as the exponent was increased, the time taken to grow from
some size to catastrophic size became increasingly domi-
nated by the first few time steps.

Recent contributions by Bazant and co-workers �27� have
provided an insightful context for the roles of fiber bundle
models in capturing the two disparate types of failure, ductile
versus brittle, in a broad range of materials of engineering
importance. They also elucidated the interplay of the critical
size scales over which both types of failure activity can occur
in the same material and how this interplay affects the extent
to which the classical Weibull distribution �whether in its
three parameter or two parameter form� can accurately de-
scribe the strength behavior of a given material system over
structural size scales and failure probability levels spanning
many orders of magnitude. This issue is crucial in justifying
the extrapolation of strength test results on relatively few

laboratory scale samples to much larger structures that have
requirements for extremely low probabilities of failure. This
same issue is important in the current work, which assumes
Weibull behavior at the fiber element level but can yield
dramatically non-Weibull behavior at the large bundle level
depending on the parameter values.

Related work with major technological implications on
development of materials is that of Pugno �2�, who shows
that contrary to widely held notions, ropes and cables con-
structed from hierarchical arrangements of bundles of carbon
nanotubes are unlikely to achieve more than a very small
fraction of the flaw-free strength of a graphene sheet, all
because of the emergence and interaction of defects and
bond failures, whether as imperfections occurring during
growth or the result of thermal activation coupled with the
applied stress.

Observations in all the above works relate in one way or
another to the results in this paper. We will restrict ourselves
to one-dimensional bundles under local load sharing but with
power-law dependence of lifetime to load level in a Weibull
lifetime framework. We systematically investigate mainly the
behavior of lifetime distributions for a broad variety of pa-
rameter ranges for the power-law and Weibull exponents.

Organization of the paper

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of the fiber failure model, the load
sharing rules and the parameter cases considered together
with bundle sizes and replications in the Monte Carlo simu-
lations. Section III considers ductile-like bundle behavior be-
ginning with cases involving very small values of � and
working upward. Section III A mainly discusses observa-
tions from the Monte Carlo simulations, including maps of
how the mean and coefficient of variation in bundle lifetime
depend on values of the parameters � and � and bundle size
N. Section III B gives a theoretical perspective on behavior
observed and how it relates to known results on equal load
sharing bundles under the same fiber lifetime model.

Section IV then considers various cases of ��1 where
brittle-like bundle behavior occurs with weakest-link charac-
ter in terms of a characteristic distribution function for fail-
ure of a link. Section IV A discusses the Monte Carlo results
and scalings that organize the data for increasing bundle size,
and Sec. IV B derives asymptotic results that accurately cap-
ture the weakest-link behavior seen in terms of time to for-
mation of a critical cluster, and time for it to traverse the
bundle as a catastrophic crack. Section V concludes with a
summary of the main results.

II. DESCRIPTION OF THE MODEL FOR FIBER
LIFETIME AND LOCAL LOAD SHARING IN THE

BUNDLE

A. Load sharing models

In our previous paper �6�, we considered the behavior of
the lifetime distribution of a one-dimensional �1D� bundle of
N fibers under an applied load L�0 per fiber, and assumed
two different laws for fiber load sharing, once fibers began to

TIME-DEPENDENT… . II. GENERAL WEIBULL… PHYSICAL REVIEW E 80, 066115 �2009�

066115-3



fail. The first law was called equal load sharing �ELS�
wherein the load on a fiber at its time of failure was redis-
tributed in equal portions onto all of its surviving neighbors
so that the load concentration on each fiber was

Kj =
N

N − j
, j = 1,2,3, . . . , �1�

where N is the number of fibers in the bundle and j is the
number that have failed. The second law was LLS wherein
the load on a fiber at its time of failure was redistributed
equally onto its two closest surviving neighbors, one on each
side. That is, the load concentration factor under LLS is

Kr =
2 + r

2
, r = 1,2,3, . . . , �2�

where r is the number of contiguous failed neighbors, count-
ing on both sides.

B. Fiber lifetime model

In the current study, we consider the behavior of bundles
where individual fibers follow a more general Weibull form
for their lifetime distribution and now have memory of their
past load history. Specifically, we assume that when under a
given, non-negative load history, ��t� , t	0, individual fibers
have independent and identically distributed lifetimes that
have distribution function

F�t;�� · �� = 1 − exp�− � 1

tref
�

0

t ���s�
�ref

��

ds	�	, t 	 0,

�3�

where tref and �ref are a reference time and reference load,
respectively. Thus, under a constant load, individual fibers
now follow a Weibull distribution for lifetime with shape
parameter ��0. Of course, once fibers begin to fail as mem-
bers of a bundle, the loads on their survivors will no longer
all be identical in time and their load histories must be ac-
counted for as failure progresses. Our previous work �6�,
under �=1, is a special case of this framework whereby the
memoryless property holds, and the treatment of different
fiber load histories is greatly simplified.

C. Motivating observations from our previous study [6]

In our previous work under LLS and �=1, the statistics
for the lifetime of a bundle proved highly dependent on the
value of � where 0���1 gave very different lifetime be-
havior from ��1, not only in the form of the lifetime distri-
bution but also in the scaling of the mean and standard de-
viation for lifetime with bundle size, N. For ��1, bundles
showed brittle-like behavior and, although many small clus-
ters of contiguous fiber breaks formed and began to grow
depending on the value of �−1, eventually one cluster would
become dominant and catastrophic, with a growth rate influ-
enced little by small clusters consumed in its path. Such
bundles also showed decreasing lifetime and other subtle
cluster growth characteristics with increasing bundle size, N.
When �=1, the lifetime distribution was found to be asymp-

totically Gaussian, as N increased, and had a size-
independent mean lifetime and a standard deviation of life-
time decreasing as N−1/2. For 0���1, i.e., � only slightly
smaller than unity, Gaussian behavior occurred as well,
though with mean lifetime actually increasing slowly with N
and the standard deviation decreasing more slowly than
N−1/2. However, when 0���1, i.e., in the extreme where �
is close to zero, Gaussian lifetime behavior gave way to a
double-exponential lifetime distribution, which is one of the
limiting distributions in the statistical theory of extremes for
the maximum of an independent and identically distributed
random variable sequence.

Generally in the regime 0���1, increasing numbers of
break clusters would form and grow as time increased, but
these would tend to grow slowly and in sum would consume
fewer neighboring fibers around them �all overloaded� than
would fail at random locations elsewhere due to the applied
load alone, i.e., without any load enhancement from failed
neighbors. Thus, failure resulted from a progressive con-
sumption process of the bundle with the eventual linking of
the many clusters in a “ductile”-like manner, rather than by
the emergence of a dominant crack as occurred for ��1.

A key feature driving these observed behavioral differ-
ences with the value of � was that, when a fiber failed and its
load was redistributed between its two flanking survivors, the
magnitude of � determined whether the sum of failure rates
for all surviving fibers would decrease ���1�, increase ��
�1�, or remain the same ��=1� compared to this failure rate
sum before the fiber failed. Since surviving fibers had no
memory of past load history �i.e., �=1 in the fiber model
described shortly�, their remaining lifetimes at a given point
in time were dependent on the current configuration of failed
and surviving fibers, but not on the past fiber failure times, so
not on their previous load histories. Furthermore, for �=1,
the sum of the failure rates for all surviving fibers was the
same, irrespective of how many fibers had failed up to that
time, and the actual pattern of surviving fibers and associated
load redistribution. Thus the case �=1 could be solved ex-
actly, irrespective of the load sharing rule provided that the
overall load was conserved.

Although the statistics of times between fiber failures be-
come much more complex when ��1, it is still reasonable
to investigate, as we do in this paper, the extent to which the
previously mentioned behavioral characteristics seen for �
=1 also arise for the cases ��1 and ��1. Again, we will
find that the overall failure process can be separated into two
regimes: A ductile-like regime for 0���1 and a brittle-like
regime for 1��. We will investigate these regimes through
Monte Carlo simulation coupled with asymptotic analysis
where possible. For each parameter pair �� ,��, we consider
bundle sizes 8 ,16,32,64,128,256, . . . ,1 048 576 with 1024
replications for each case. Note that these large bundle size
calculations are possible since our algorithm, developed in
Newman and Phoenix �6� is O�N ln N� in contrast with
former algorithms which were O�N2�. Without loss of gen-
erality, we shall take tref=�ref=1 in all Monte Carlo simula-
tions and assume the load on the bundle is ��t�=L�0 where
we take L=1.
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III. DUCTILE-LIKE BEHAVIOR FOR 0���1

A. Monte Carlo results

We consider first the case of small 0���1 and �=0.5,
1.0, and 2.0. Motivated by our previous observations �6�
shown in Fig. 1 for �=0.1 and �=1, we have plotted the
corresponding Monte Carlo simulation results for �=0.5 and
�=2.0 in Figs. 2 and 3, respectively. Note that in all three
figures the parameter product �� satisfies 0����1.

For this small � case, Newman and Phoenix �6� noted
that, early in the bundle collapse process, the shedding of
load from a failed fiber to its two flanking survivors would
result in very little increase in failure rates of the two accept-
ing it. In fact, in summing the failure rates for all the survi-
vors after a fiber failure event, the time until the next fiber
failed �which was exponentially distributed since �=1�
would tend to be longer than before since there was now one
less fiber and the vast majority were all carrying their origi-
nal loads. Thus, despite the localized load redistribution, as
time went on there was virtually no tendency to develop a
large isolated cluster that might grow unstable, since for any
cluster, the sum of the failure rates on the many nearby non-

overloaded fibers would overwhelm the sum of the rates for
the two flanking survivors to the cluster. Consequently the
failure process would strongly favor nucleation of clusters
rather than extension of existing ones. In some respects a
large failure cluster of k failed fibers would act effectively to
block the failure process as the failure rate of its two flanking
survivors would be far less than the sum of the failure rates
of k+2 surviving fibers not next to failed fibers.

Thus, for 0���1, and other � values, one might specu-
late that the system behaves as the longest lived of N asymp-
totically independent “elements,” consisting perhaps of small
collections of fibers in some failure resistant, load sharing
state rather than individual fibers, since ultimately the loads
must increase greatly on the fibers in these collections of
survivors. In other words, there exists some “strongest char-
acteristic link” distribution function for failure, denoted Q�t�,
with survival function 
�t�=1−Q�t� such that the distribu-
tion function for bundle failure, GN�t�, behaves as

GN�t� = �Q�t��N = �1 − 
�t��N


 exp�− N
�t��


 exp�− exp�− ln� 1

N
�t�
��	 , �4�

FIG. 1. Distribution scaling for �=0.1, �=1 adapted from New-
man and Phoenix �2001�, where a straight line limit occurs with
slope 
1.27 and intercept 
−0.45. The inset shows the line shape
for the largest bundle size N=1 048 576.

FIG. 2. Distribution scaling for �=0.1, �=0.5 where a straight
line limit occurs with slope 
1.27 and intercept 
−0.45. The inset
shows the line shape for the largest bundle size N=1 048 576.

FIG. 3. Distribution scaling for �=0.1, �=2, where a straight
line limit fails to occur on this scaling. The inset shows the line
shape for the largest bundle size N=1 048 576.

FIG. 4. Bundle mean lifetime t̄N as N→� for 0.1���20 and
�=1.
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for large N. Newman and Phoenix �6� observed through
Monte Carlo simulations that

GN�t� 
 exp�− exp�− a� t − t̄N

�̄N
� + b�	 , �5�

with a
1.27 and b
−0.45 for N large as seen in Fig. 1
where straight line behavior emerges as N→�.

This observation motivates us to consider whether similar
behavior occurs for other values of �, whereby

ln� 1

N
��t�
� 
 a� t − t̄N,�

�̄N,�

+ b� , �6�

for N large or

N
��t� 
 exp�− a� t − t̄N,�

�̄N,�

+ b�	 , �7�

for N large. Indeed for the case �=0.1 and �=0.5, as shown
in Fig. 2, the same straightline scaling limit occurs for the
shape of the lifetime distribution as N→�, again with a

1.27 and b
−0.45, though for small bundle sizes N, the
distribution shapes are initially opposite in curvature to those
in Fig. 1. This limiting, straight line scaling behavior, how-
ever, does not universally occur for higher ��1 values, as
Fig. 3 shows for the case �=2, �=0.1, where curvature de-

velops in the shape of the limiting lifetime distribution.
To further investigate the size scaling of lifetime for small

�, we study the behavior of the mean t̄N and standard devia-
tion �̄N as N→� and for various � values from very small to
large. Figures 4 and 5 allow a comparison of results for t̄N for
the cases �=1 and �=0.2, respectively. For the smallest �
values, the mean lifetime increases in N and is similar in
shape for the two cases of �, although the growth is much
more rapid in N for the smaller value �=0.2. The plot is
clearly not linear on log-log coordinates, thus appearing to
rule out a simple power law and while one cannot rule out a
fixed limit for 0���1 such a limit would appear to be
much larger for small �. Thus for smaller bundles with very
small �, the tendency for increasing mean lifetime with in-
creasing bundle size N reflects the general tendency for a
redundant, nonload sharing system of N parallel elements to
have increasing lifetime, since load redistribution is ineffec-
tive in the former and nonexistent in the latter. In essence, N
has to be very large for 1�N� whereby load redistribution
can exert a major limiting effect on lifetime.

Figures 6 and 7 show the corresponding behavior for the
lifetime standard deviation �̄N. For �=1 and 0���1, �̄N
appears to decrease with N, following the scaling 1 /Nq for
some 0�q�1 /2, and for �=1 we know that q=1 /2 �6�. The
same, however, is not true when �=0.2, as shown in Fig. 7,
where �̄N increases with N for 0���1 /2.

On the other hand, the coefficient of variation �CV�,

FIG. 5. Bundle mean lifetime t̄N as N→� for 0.1���20 and
�=0.2.

FIG. 6. Standard deviation of bundle lifetime �̄N as N→� for
0.1���20 and �=1.

FIG. 7. Standard deviation of bundle lifetime �̄N as N→� for
0.1���20 and �=0.2.

FIG. 8. CV of bundle lifetime �̄N / t̄N as N→� for 0.1���20
and �=1.0.

S. LEIGH PHOENIX AND WILLIAM I. NEWMAN PHYSICAL REVIEW E 80, 066115 �2009�

066115-6



namely, �̄N / t̄N, behaves differently from t̄N and �̄N, and, as
shown in Figs. 8–10, decreases as N increases irrespective of
the values of �. The straight line log-log plots indicate that
there is a strong tendency for power-law behavior when 0
���1, although for very small � the bundle sizes and res-
olution to fully confirm this would need to be much larger
than permitted by our current computational capability.
Nonetheless, there are several important trends.

The most striking feature in Figs. 8–10 is that the rate of
decrease in relative variability with increasing bundle size N
is largest when �=1 irrespective of � and follows a power-
law scaling 1 /Nq as N→� with exponent q=1 /2. In the case
of �=1 and �=1 �Fig. 8�, we know �6� that the overall rate
of failure of fibers is independent of the actual choice of load
sharing rule and in fact is constant, provided that the loads
on individual fibers sum to the applied bundle load L. How-
ever, for �=0.2 and �=1 �Fig. 9�, the dependence of fiber
failure rates on past fiber load histories rules out making
such a blanket statement, yet this value still provides the
most rapid decrease in relative variability, which again ap-
pears to asymptotically follow a power law with slope q
=1 /2.

Next we consider the case 1 /2���1 and focus first on
�=1 /2. Guided by our observations in Newman and Phoenix
�6� for �=1 /2 and �=1, we plot in Fig. 11 Monte Carlo
simulation results for �=1 /2 and �=2.0 using Gaussian co-

ordinates whereby a true Gaussian distribution would plot as
a straight line. The normalized time to failure tnorm


�t− t̄N� / �̄N converges to a straight line even more rapidly
than for �=1 in Newman and Phoenix �6�, suggesting even
stronger asymptotic Gaussian behavior. However, the CV as-
ymptotically has exponent q=0.425 in 1 /Nq and, neverthe-
less, is only slightly larger than the observed value of about
0.41 for �=1.

For the case �=0.75 and �=1, Newman and Phoenix �6�
found asymptotic Gaussian behavior for the normalized time
to failure, tnorm with a standard deviation scaling as 1 /Nq

where q=0.4709. Although not shown, the case �=2 and �
=0.75 has even more rapid convergence to an asymptotic
Gaussian distribution with q=0.485. We also considered the
asymptotic behavior of the lifetime distribution for the much
smaller value, �=0.2, again with �=0.75. When normalized
according to tnorm
�t− t̄N� / �̄N the distributions plotted on
Gaussian coordinates are extremely curved though with
some tendency to straighten as N→�. Plotting the results as
though the bundle lifetime follows a log-Gaussian or lognor-
mal distribution �i.e., ln�t� follows a Gaussian distribution�
was much more illuminating. Figure 12 shows plots of the
normalized log-lifetimes according to ln�t�norm
�ln�t�
−ln�t�N� /��ln�t��N for N=23, 215, 216, 218, and 220. We ob-

FIG. 9. CV of bundle lifetime �̄N / t̄N as N→� for 0.1���20
and �=0.2.

FIG. 10. CV of bundle lifetime �̄N / t̄N as N→� for 0.1��
�20 and �=2.0.

FIG. 11. Distribution scaling using Gaussian coordinates for �
=0.5, �=2 and increasing N, showing linear limiting behavior as
N→�.

FIG. 12. Distribution scaling using log-Gaussian coordinates for
�=0.5, �=0.2 and increasing N, suggesting eventual linear limiting
behavior as N→�.
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serve that whereas the normalized log lifetimes of the small-
est bundles have near straight line behavior on lognormal
coordinates, the curvature progressively increases for bundle
sizes up to about N=215=32 768, but thereafter the curvature
decreases so that the lines become fairly straight over most
of the probability range by N=220=1 048 576. In practical
terms, the lifetime of large �and small� bundles is log normal.
However, it should be noted that since the coefficient of
variation decreases in N, asymptotic lognormal behavior im-
plies asymptotic normal behavior �through a Taylor series
expansion� albeit with extremely slow convergence when �
is small. Finally we note that similar behavior but with
slower convergence was seen also for �=0.1 and �=0.75.

For the case �=1, Figs. 13–15 show plots of tnorm


�t− t̄N� / �̄N for the cases �=0.2, 0.5, and 2.0, respectively,
where the case �=1 was given in �6�. In all cases, a Gaussian
limit occurs as N→�, although the convergence is rather
slow in the case of �=0.2. Thus, the behavior is similar to
that for �=1. Numerical results were obtained for �=0.1 and
�=1, but convergence to a Gaussian form, although likely,
would require N to be 100 times larger and would be more
rapid on lognormal coordinates. Overall we see asymptotic
Gaussian behavior emerging in the region 1 /2���1.

Figure 16 summarizes the power-law exponents q for the
1 /Nq behavior �slopes� seen in Figs. 8–10, and from addi-

tional calculations for �=0.1 for various values 0���1.
Clearly, as � becomes smaller, the exponents are driven to
lower values, until even for �=1 the exponent appears to fall
short of q=1 /2 for �=0.1. Caution must be exercised, how-
ever, since the results for �=0.1 have more noise and the
limiting slope was not quite reached for N=106 and would
require N=108 fibers. Although the final slope observed was
q
−0.45, there is no reason to believe that it would not
eventually become 1/2 as N→�.

B. Further theoretical considerations

At the other extreme in Fig. 16, the points corresponding
to �=0 were obtained by treating the bundle as if load redis-
tribution does not occur, and thus has no effect on the failure
rate since the load on a surviving fiber acts as though it is
always 1. Then the distribution function for fiber lifetime is
simply

Q�t� = 1 − exp�− t�� , �8�

and thus

GN�t� = �Q�t��N = �1 − exp�− t���N 
 exp�− N exp�− t��� ,

�9�

for N large, or

FIG. 13. Distribution scaling for �=1 and �=0.2 using Gauss-
ian coordinates where a straight line limit eventually occurs as
N→�.

FIG. 14. Distribution scaling for �=1 and �=0.5 using Gauss-
ian coordinates where a straight line limit eventually occurs as
N→�.

FIG. 15. Distribution scaling for �=1 and �=2.0 using Gauss-
ian coordinates where a straight line limit eventually occurs as
N→�.

FIG. 16. Scaling of exponents q as in Figs. 8–10 versus � for
�=0.1, 0.2, 1.0, and 2.0.
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GN�t� 
 exp�− exp�− �t� − ln N��� . �10�

For �=1, this has the form of the Gumbel distribution with
location parameter ln N and scale parameter unity, and the
mean, standard deviation, and coefficient of variation in this
distribution function are well known to be, respectively,

tN 
 ln N + � , �11�

�N 




�6
, �12�

and

CVN 




�6�ln N + ��
, �13�

where �
0.57722 is the Euler-Mascheroni constant. For
smaller 0���1 and 1 /� an integer, a Taylor Series expan-
sion in t about �ln N�1/� yields the approximation t�−ln N

��ln N���−1�/��t− �ln N�1/�� with relative error O��t
− �ln N�1/�� / �ln N�1/��. Again this yields, approximately, the
well known two-parameter Gumbel distribution so that

tN,� 
 �ln N�1/��1 +
�

� ln N
� , �14�

�N,� 




��6
�ln N��1−��/�, �15�

and

CVN,� =



��6�ln N + �/��
. �16�

The log-log slope is thus

d ln�CVN,��
d ln�N�


 −
1

ln N
, �17�

and so goes to zero as N→� as we have plotted in Fig. 16
for �=0. The trends in Fig. 16 are certainly consistent with
this result, including slowed convergence as N→� for
smaller �. Thus for the case �=1 and �=0 we can write

GN�t� 
 exp�− exp�−



�6
� t − �ln N + ��


/�6
+

�


/�6
��	 ,

�18�

or

GN�t� 
 exp�− exp�−



�6
�tnorm +

�


/�6
��	 , �19�

where

tnorm =
t − �ln N + ��


/�6
. �20�

Evaluating the constants in GN, we find that 
 /�6=1.283
and � / �
 /�6�=0.4499. �Note that the asymptotic analysis
performed for 0���1 results in the same behavior.� Re-
markably, these values are very close to the values a=1.27

and −b=0.45 for the linear behavior seen in Figs. 1 and 2,
though this observation offers no insight into the apparent
absence of such behavior in Fig. 3 for �=2. We note, how-
ever, that when �=2 the standard deviation �15� can be seen
to follow �N,2
1 / �2�ln N� and so decreases in N rather than
increasing. Such decreasing behavior occurs, in fact, for all
��1 so �=1 is a transition point that may subtly affect the
local scaling.

Another issue is the rate of failure of fibers and the frac-
tion typically surviving at a time equal to the mean time to
bundle failure, namely t= tN. The fraction surviving on aver-
age is

Ns

N
= 1 − F�t� 
 exp�− tN

�� 

1

N
�1 +

�

� ln N
��

, �21�

so that for bundles that achieve the mean lifetime there will
only be a few fibers left irrespective of how many there were
at the start and irrespective of �. In fact, the value of � has
its major effect at short times. When � is large, some time
must pass before fibers begin to fail, whereas when � is
small, there is a burst of fiber breaks early in the life of the
bundle that rapidly depletes the number of fibers, but there-
after the failure rate slows down sufficiently to compensate
for the early depletion, as can be seen in comparing plots in
Figs. 4 and 5 for given � values. Nonetheless we expect a
major difference in lifetime behavior between � small, say
�=0.1, versus the limiting case �=0, since even when few
fibers remain and N is large, the loads must eventually be-
come very large on the few survivors when �=0.1 to dra-
matically affect the terminal failure rate. For instance, the
failure rates of the survivors will eventually be accelerated
by the factor

N

Ns
= � N

�1 + �/�� ln N���	�

, �22�

which for nonzero � eventually becomes very large, thus
relatively shortening the remaining bundle lifetime compared
to �=0.

These results motivate further interpretation in terms of a
comparison with what might be expected for ELS bundles
under the same fiber parameters. To this end, we consider
results in Phoenix �28� in the case of large ELS bundles,
since ELS and LLS bundles were found in Newman and
Phoenix �6� to have very similar behavior for 0���1 and
�=1. One asymptotic result in Phoenix �28� for the mean
was

tN 
 tref� L

�ref
�−��

0

�

exp�− �z��dz

= tref� L

�ref
�−�

�−1/���1 +
1

�
� . �23�

This result shows that the lifetime, though large, is eventu-
ally bounded as N→� despite the impression given by Fig. 5
for the case �=0.2 and �=0.1 and additional calculations
mentioned for �=0.1. In fact, for L=�ref, the limiting value
will be of order 5! �105
1.2�107, which is certainly con-
sistent with the behavior seen in Fig. 5. For the standard
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deviation, Phoenix �28� also gives the asymptotic result

�N 
 tref
�

�N
� L

�ref
�−�

� ��
0

� �
0

�

F�z1,z2�dz1dz2	1/2

,

�24�

where

F�z1,z2� = exp�− �� − 1��z1
� + z2

�����z1,z2� , �25�

and

��z1,z2� = �1 − exp�− min�z1
�,z2

���� � exp�− max�z1
�,z2

��� ,

�26�

which can be expressed as

�N 
 tref� 2

N
� L

�ref
�−�

��K�� − 1,�;�� − K��,�;�� ,

�27�

where

K���,�;�� = �
0

� �
0

z2

exp�− ��z1
��exp�− �z2

��dz1dz2.

�28�

It can be shown that

K��,�;�� =
�2�1 + 1/��

2�2/� ; �29�

however, the integral K��−1,� ;�� fails to converge for 0
���1 /2. The transitional nature of �=1 /2 was shown in
Newman and Phoenix �6� for �=1, where CVN decreased as
�N ln N�−1/2 and the above results suggest this same transi-
tion also occurs for other values of � in the case of ELS.

Figure 16 suggests that �=1 /2 might, perhaps, be a tran-
sitional value under LLS as well, but only for large �. Such
differences between LLS and ELS might be anticipated for
�=1 /2 �or other values less than unity� since for a given
configuration of failed and surviving fibers at time t, which
from the load sharing law determines the surviving fiber
loads, the sum of these loads individually raised to the power
� will be smaller under LLS than ELS, thus suggesting a
smaller fiber failure rate in the former and perhaps a longer
and more variable lifetime. Unfortunately, proving such con-
jectures for ��1 appears to be difficult. Overall, these re-
sults underscore the difficulty in attempting to determine the
behavior of the lifetime distribution for bundles of small �
and � since N=106 fibers is too small to determine the ulti-
mate limiting behavior.

IV. BRITTLE-LIKE BEHAVIOR FOR ��1

A. Monte Carlo results

Next, we consider the cases where ��1. Figure 17 shows
simulation results for GN�t� for �=4 and �=0.1 plotted on
Weibull coordinates whereby ln�−ln�1−GN�� vs. ln t would
plot as a straight line if GN�t� were truly a Weibull distribu-

tion. We see that the bundle lifetime progressively decreases
with increasing size but the relative variability dramatically
decreases as well. Furthermore, the behavior becomes more
Weibull-like for the largest bundles �which would be espe-
cially apparent if the horizontal scale were stretched�.

As in Newman and Phoenix �6�, we consider the reverse
weakest-link scaling

WN�t� = 1 − �1 − GN�t��1/N, �30�

or

ln�− ln�1 − WN�t��� = ln�− ln�1 − GN�t��� − ln N , �31�

appropriate to Weibull coordinates.
Figure 18 shows data for �=4 and �=0.2 but this time

rescaled by this transformation, Eqs. �30� and �31�. The life-
time range for all bundle sizes, even when rescaled, spans
about five orders of magnitude. As N→�, however, the con-
vergence to one limiting distribution function shape, which
we will call W�t�, is extremely rapid and by N=256 the
convergence is essentially complete over the full 1024 point
simulation range. Note, however, that for higher values of
ln�−ln�1−WN�t���, the convergence is complete for even
smaller N and the reverse would have been observable for

FIG. 17. Lifetime distributions GN�t� for �=4 and �=0.1, with
N=2m, m=3,4 ,5 , . . . ,20 plotted on Weibull probability
coordinates.

FIG. 18. Convergence of cumulative lifetime distribution func-
tions WN�t�=1− �1−GN�t��1/N, plotted using Weibull probability co-
ordinates for �=4, and �=0.2 with N=2m, for m=3,4 ,5 , . . . ,20.
The theoretical dashed line is calculated using Eq. �53�.
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lower values had the replication size been much larger than
1024 points. This convergence indicates that we know the
limiting behavior of WN�t� down to a probability of level of
at least e−19
10−8.

Very similar behavior is seen for several other cases as
shown in Figs. 19–22. Looking also at the figures in New-
man and Phoenix �6�, we can conclude that the higher the
values of either � or �, the more rapid the convergence in
bundle size N and, in fact, the convergence rate seems to be
governed by the product ��. On the other hand, the range
spanned by time t in orders of magnitude is strongly driven
by the magnitude of � but increasing � tends to reduce this
range.

B. Theoretical model

To understand this behavior, we consider the fixed load
��t�=L�0 on the bundle although we retain tref=�ref=1.
This leads to a time constant tL=L−� in the problem. Gener-
ally, the time constant is tL= tref�L /�ref�−�. To calculate the
distribution function GN

�k��t� for the time to formation of a
cluster of contiguous breaks of length k, we appeal to results

in Phoenix and Tierney �11� where it is shown for large N
and t� tref that

GN
�k��t� 
 1 − exp�− Nck�L�tk��, t 	 0, �32�

where

ck�L� = Lk�� ��� + 1�k

��k� + 1�
2k−1�

j=1

k

Kj−1
�� . �33�

Motivated by the behavior seen in Figs. 18–22, we wish to
approximate the lifetime distribution function GN�t� by the
continuous form

GN�t� = 1 − exp�− NW�t�� , �34�

where W�t� is called the characteristic distribution function
for lifetime. To this end, we consider the intersections of
GN

�k��t� and GN
�k+1��t�, which ought to occur very close to the

limiting curves seen in Figs. 18–22. This yields the intersec-
tion points tk given by

ck�L�tk
k� = ck+1�L�tk

�k+1��, k 	 1, �35�

which reduces to

FIG. 19. Convergence of cumulative lifetime distribution func-
tions WN�t�=1− �1−GN�t��1/N, plotted using Weibull probability co-
ordinates for �=2, and �=0.5 with N=2m, for m=3,4 ,5 , . . . ,20.
The theoretical dashed line is calculated using Eq. �53�.

FIG. 20. Convergence of cumulative lifetime distribution func-
tions WN�t�=1− �1−GN�t��1/N, plotted using Weibull probability co-
ordinates for �=20, and �=0.2 with N=2m, for m=3,4 ,5 , . . . ,20.
The theoretical dashed line is calculated using Eq. �53�.

FIG. 21. Convergence of cumulative lifetime distribution func-
tions WN�t�=1− �1−GN�t��1/N, plotted using Weibull probability co-
ordinates for �=20, and �=0.5 with N=2m, for m=3,4 ,5 , . . . ,20.
The theoretical dashed line is calculated using Eq. �53�.

FIG. 22. Convergence of cumulative lifetime distribution func-
tions WN�t�=1− �1−GN�t��1/N, plotted using Weibull probability co-
ordinates for �=20, and �=2.0 with N=2m, for m=3,4 ,5 , . . . ,20.
The theoretical dashed line is calculated using Eq. �53�.
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tk
� = L−�� ���k + 1�� + 1�

2��� + 1���k� + 1�� 2

k + 2
���

, �36�

or

tk = L−�� ���k + 1�� + 1�
2��� + 1���k� + 1�	1/�� 2

k + 2
��

. �37�

We then consider Wk
� defined as

Wk
� = ck�L�tk

k�

= Lk�� ��� + 1�k

��k� + 1�
2k−1�

j=1

k � j + 1

2
���

� L−k�� ���k + 1�� + 1�k

�2��� + 1���k� + 1��k� 2

k + 2
�k��

=
���k + 2�� + 1 − ��k

2���k + 2�� + 1 − 2��k+1� �k + 2�!
�k + 2�k+2���

� �k + 2���.

�38�

Since

��az + b� 
 �2
 exp�− az��az�az+b−1/2, �39�

and �k+2� ! =��k+3�, we can approximate Wk
� as

Wk
� 


�k + 2���

2
�2
���/2�k + 2���/2 exp�− �k + 2����

� �2
�k/2��k + 2���k��k+2��+1−��−k/2 � exp�− k�k + 2���

��2
�−�k+1�/2 � ��k + 2���−�k+1���k+2��+1−2��+�k+1�/2

� exp��k + 1��k + 2��� , �40�

which simplifies to

Wk
� 


��2
���−1

2��
�k + 2��3��−1�/2 exp�− ��� − 1��k + 2�� .

�41�

Next we obtain a relationship between tk and k+2 and noting
first that

���k + 1�� + 1�
��� + 1���k� + 1�

=
���k + 2�� + 1 − ��

��� + 1����k + 2�� + 1 − 2��

=
���k + 2���

��� + 1�
, �42�

we see that

tk = L−� ��k + 2�
�2��� + 1��1/�� 2

k + 2
��

. �43�

Dropping the subscript k on t to allow it to be a continuous
variable, we can invert the above expressions to yield

k + 2 
 �L�t�−1/��−1�� �2�−1/�

��� + 1�1/��1/��−1�

. �44�

Finally, we let W�t�=Wk�t�
� and thus obtain

W�t� 
 C� a

L�t
��/��−1�

exp�− ��� − 1�� a

L�t
�1/��−1�� ,

�45�

where

� =
3�� − 1

2
, �46�

a =
�2�−1/�

��� + 1�1/� , �47�

and

C =
��2
���−1

2��
. �48�

This version of W�t� corresponds to the time it takes to de-
velop a single critical cluster, but does not include the time to
grow across the bundle. We note that the form of the constant
C=C�� ,�� depends on how we use the approximation for
the Gamma function given above where we expanded in
terms of ��k+2� to match the �k+2� /2 coming from the load
sharing. Note, however, when �=1 that we directly have
through Stirling’s approximation that

���k + 1�� + 1�k

2��k� + 1�k+1 =
�k + 1�k+1

�k + 1�!
=

exp�k + 1�
�k + 1

, �49�

which leads to an additional factor of exp�−1 /2� in C�� ,1�.
Had we previously expanded this quantity in terms of ��k
+1�, we would obtain the additional factor exp��1–2�� /2� in
C�� ,�� above and for �=1 this again yields the factor exp�
−1 /2� in C�� ,1�. Thus, we do not know the constant C�� ,��
exactly, but this turns out to be a trivial difference in light of
the many orders of magnitude ranges in both time t and
probabilities of failure we encounter, as for instance in Figs.
18–22.

Turning to the critical cluster size k�, we note that it is the
value of k�t� that solves NWk�t�

� =1. It can be shown that

k� + 2 =
log�CN�
��� − 1�

�1 + �N� , �50�

where

�N 

��log log�CN� − log���� − 1���

log�CN� − �
. �51�

The size effect for the associated critical time t� for forma-
tion of the critical cluster is

t� 

a

L�� ��� − 1�
log�CN��1 + �N���−1

. �52�

Corresponding to the time it takes to form a critical cluster
and fail the bundle, a good approximation resulting from
matching with the strength version of the problem �29� is
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W�t� 
 C� a

L�t
��/��−1�

exp�− �1 +

2/6

�2�� − 1�2�
���� − 1�� a

L�t
�1/��−1�	 , �53�

where the additional factor inside the square brackets repre-
sents the additional time it takes for the single dominating
cluster or “crack” that emerges to traverse the whole speci-
men. A factor such as this was found also in �6�. However,
comparison with the time independent strength problem �29�,
and noting that the fiber strength Weibull shape parameter is
essentially 
�� in the current context, leads to the quantity
�2��−1�2 in the denominator of the additional factor. �The
adjustment from � to �−1 is motivated by the observed criti-
cal transition occurring at �=1.� This form of W�t� obviously
tracks the simulations in Figs. 17–21 remarkably well, espe-
cially in view of the drastic differences in time scales among
these figures. Thus the lifetime distribution for the bundle is
given by Eq. �34� with Eq. �53� for the case ��1.

Finally, the size effect on time to failure is

tN 

a

L���1 +

2/6

�2�� − 1�2� ��� − 1�
log�CN��1 + �N���−1

. �54�

V. CONCLUSIONS

We have studied the behavior of a previously introduced,
one-dimensional FBM consisting of N fibers under LLS
where life consumption in an a fiber followed a power law in
its load level, with exponent �, and integrated over time. This
life consumption function was further embodied in a Weibull
functional form resulting in a Weibull distribution for life-
time under constant fiber stress and with exponent �shape
parameter�, �. We have developed asymptotic results
complemented by Monte Carlo simulation using a computa-
tional algorithm from our previous work �6� that greatly in-
creases the size, N, of treatable bundles �e.g., 106 fibers in
103 realizations�. Specifically, our algorithm, developed in
Newman and Phoenix �6� is O�N ln N� in contrast with
former algorithms which were O�N2�.

Regimes were found for various �� ,�� pairs that yielded
drastically contrasting behavior as N increased. For ��1 and
large N brittle weakest volume behavior emerged expressed
in terms of characteristic elements �groupings of fibers� de-
rived from critical cluster formation, and the lifetime even-
tually but slowly goes to zero in this regime as N approaches
�. For 1 /2���1, however, LLS had remarkably similar
behavior to ELS �appearing to have identical lifetime distri-
butions at �=1� with an asymptotic Gaussian lifetime distri-
bution and a finite limiting mean for large N. The coefficient
of variation in lifetime, followed a power law in increasing
N, but except for �=1, the value of the negative exponent
was clearly less than 1/2 �characteristic of the central limit

theorem� unlike in ELS bundles where the exponent remains
1/2 for 1 /2���1.

For sufficiently small values 0���1, a transition oc-
curred, depending on �, whereby LLS bundle lifetimes be-
came dominated by a few long-lived fibers �perhaps acting in
a group�. Thus the bundle lifetime appeared to approximately
follow an extreme-value distribution for the longest lived of
a parallel group of statistically independent elements, which
applied exactly to the case �=0. The lower the value of �,
the higher the transition value of �, below which such ex-
treme value behavior occurred. No evidence was found for
limiting Gaussian behavior for values of ��1 but with 0
����+1��1, as one might have conjectured based on the
behavior of quasistatic models for bundle strength, where the
role of the Weibull exponent for fiber strength is played by
���+1�.

As a final comment, Weibull lifetime behavior and power-
law sensitivity of lifetime to load level are ubiquitous fea-
tures of structural elements, which themselves may be built
up from hierarchical substructures with elongated anisotropic
characteristics. For instance, polymer-derived fibers with
micron-scale diameters �e.g., aramid, carbon, PBO, UHM-
WPE� are constructed of oriented fibrils or crystallites, which
themselves are collections of aligned molecules. While the
molecular bonds themselves are generally viewed as having
exponentially distributed lifetimes, this is not true of the
higher level structures in the hierarchy �the fibers� which can
have more Weibull-like behavior with � that can be much
larger or smaller than unity. Furthermore, whether the higher
level structures behave in a brittle or a ductile like fashion
depends on many factors, but especially temperature. Phoe-
nix and Tierney �7� have presented molecular level argu-
ments that � is inversely proportional to absolute temperature
and in the current context that would imply a transition,
eventually from brittle-to-ductile like behavior. However the
exact transition value of � is expected to depend in the di-
mensionality of the material and the severity of localization
of the stress-redistribution mechanism. The current work as-
sumes, perhaps the most severe case in a 1D array, and thus
the transition value for � is unity, whereas real materials will
have much milder, local load sharing with many more neigh-
bors involved. This is likely to increase the � value where a
brittle-to-ductile transition might occur. The importance of
the current work is to show that, apart from the issue of the
precise transition value of �, the characteristics of the life-
time distributions can be expected to be complex. Much
more work is needed to understand the broader range of tran-
sition values for �, that are possible in real materials for the
brittle-to-ductile transition.
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