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Stock prices are known to exhibit non-Gaussian dynamics, and there is much interest in understanding the
origin of this behavior. Here, we present a model that explains the shape and scaling of the distribution of
intraday stock price fluctuations �called intraday returns� and verify the model using a large database for
several stocks traded on the London Stock Exchange. We provide evidence that the return distribution for these
stocks is non-Gaussian and similar in shape and that the distribution appears stable over intraday time scales.
We explain these results by assuming the volatility of returns is constant intraday but varies over longer periods
such that its inverse square follows a gamma distribution. This produces returns that are Student distributed for
intraday time scales. The predicted results show excellent agreement with the data for all stocks in our study
and over all regions of the return distribution.
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It is well known that the probability distribution of stock
returns is non-Gaussian �1,2�. The distribution is fat tailed,
which means that extreme price movements occur much
more often than predicted given a Gaussian model. There is
considerable interest in determining the origin of non-Gaus-
sian returns, and a large number of recent papers on the
subject have been written by physicists �3–21�. These studies
often attempt to fit the shape of the return distribution and to
determine how it scales in time. The shape and scaling of the
distribution are important because they provide information
about the underlying process that is driving asset prices. In
addition, understanding the true distribution of returns is es-
sential for asset allocation, risk management, and option
pricing.

In this Rapid Communication, we present evidence that
the return distribution for stocks is non-Gaussian, similar
across stocks, and stable in shape for intraday time scales.
We show that these results are due to specific properties of
the scale of individual returns �called volatility� and that the
similarity of these properties across stocks allows for their
return distributions to collapse onto one curve. This work is
related to the large literature on stochastic volatility models
�22� and, specifically, to one of the original papers that sug-
gested such a model to explain the non-Gaussian behavior of
returns �23�. In that paper, the return distribution was as-
sumed to be a mixture of Gaussian distributions with vari-
ances that are inverse-gamma distributed—this produces re-
turns that are Student distributed. Here, we extend this result
by assuming that volatility is slowly varying. This produces
returns that are Student distributed throughout intraday time
scales.

Two explanations for the non-Gaussian shape of the re-
turn distribution are often mentioned in the literature. Our
model is an example of the mixture-of-distributions hypoth-
esis, which states that return distributions are a mixture of

Gaussian distributions with different variances �2,23–26�.
Several papers have suggested different explanations for why
the variance changes. The most popular explanation is that
fluctuations in the rate of trade underlie these changes
�19,24,25,27,28�. Here, we measure time in increments of
events rather than in clock increments and show that the
return distribution exhibits interesting properties without
considering the rate of trading. This is supported by previous
work that reports fluctuations in the size of returns dominate
those in trading �7,13,16,17�.

The other explanation for the non-Gaussian shape of the
return distribution is known as the stable Paretian hypoth-
esis—this states that returns are pulled independently and
identically from a stable or truncated stable distribution
�1,3�. Although a non-Gaussian stable distribution can also
be described as a mixture of Gaussian distributions with dif-
ferent variances �26�, the stable Paretian hypothesis is con-
sidered a separate hypothesis because it explains how the
return distribution can retain its non-Gaussian shape for
long-time intervals without violating the assumption of inde-
pendent and identically distributed �IID� returns. Here, we
show that the apparent stability of the non-Gaussian shape is
not due to a stable distribution but instead is due to a slowly
fluctuating volatility, which violates the IID assumption. This
is supported by previous work that reports shuffling volatility
removes the fat tails of the return distribution for longer time
scales �4,29�.

To begin our analysis, we define the tth return as the
difference in logarithmic price from time t to time t+�,

rt��� = ln�pt+�� − ln�pt� , �1�

where the price pt is the midpoint price between the best bid
price and offer price in the market �these prices are known as
quotes�. There are several ways to set the unit of the time
index t. Here, we study returns over the finest possible time
scale, which we call midpoint time. In midpoint time, t is
updated whenever an event causes a change in the midpoint
price.*gerig@santafe.edu
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We model individual returns rt��=1� as a discrete time
stochastic process with a fluctuating variance,

rt = �t�t, �2�

where �t is an IID Gaussian N�0,1� random variable and �t
2

is the local variance of the process ��t is the standard devia-
tion of returns at time t and is commonly called volatility�.
We neglect any drift for returns, which is small on the time
scales we study here. In the econometrics literature, Eq. �2�
is the standard form for an autoregressive conditional het-
eroskedasticity �ARCH� model �30�. Such models can be in-
terpreted as a diffusion process with a time-dependent diffu-
sion parameter �in our case D=�t

2� �7,16�.
As originally noted by Mandelbrot �1�, �t slowly varies in

financial markets. This property is now commonly called
clustered volatility �30�, and its cause remains unknown. In
our model, we assume that �t is sufficiently slow varying,
such that we can treat it as a constant over intraday time
scales. The consequences of this assumption are discussed
and empirically validated later. Replacing �t with its local
constant value �, individual returns can be approximated,
rt���t. We define the variable � as the inverse squared
volatility ��1 /�2, so that the return distribution can be
written,

P�r,���� =� �

2��
exp	−

�r2

2�

 . �3�

Therefore, within our model, the distribution of returns on
any single day is a Gaussian with variance 1 /�=�2. Because

� can vary at longer time scales, the return distribution ob-
served with data pulled from many different days is obtained
by marginalizing over �,

P�r,�� =� P�r,����f���d� , �4�

where f��� is the distribution of �. This mixture-of-distri-
butions formulation was originally suggested several decades
ago to explain the non-Gaussian shape of the return distribu-
tion. As presented here, it is similar to the recent field of
superstatistics, where the statistics of physical systems are
separated by different time scales and stationary distributions
are derived from the superposition of these statistics
�12,31,32�.

Motivated by the empirical data below, we assume that �
is gamma distributed, f�� �a ,b�= �ba /��a���a−1e−b�. This is
consistent with previous empirical work that reports that �t is
inverse-gamma distributed �33�. There are several economic
explanations for why the inverse variance might have this
distribution �34,35�, which we discuss later. In more general
terms, a gamma distribution is one of several distributions
with positive support that can be derived from universality
arguments �36�. Carrying out the marginalization above
gives the following for the distribution of returns:

P�r,�� =
��a + �1/2��

��a�
1

�2�b�
	1 +

r2

2b�

−�a+�1/2��

, �5�

which is a variant of the Student’s t-distribution. Note that
the
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FIG. 1. �Color online� Several plots for the stock AZN. �a� The probability density of daily � fit by a gamma distribution. �b� The
probability density of �� for different � compared to N�0,1�. �c� The probability density of returns for different � compared to theory. �d� The
cumulative distribution of returns for different � compared to theory.
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return distribution is determined solely by the two param-
eters �a and b� from the distribution of the inverse squared
volatility � and that it remains a Student’s t-distribution for
different �. The distribution appears stable, despite being out-
side the stable regime, because volatility is assumed constant
for these time scales.

To facilitate the presentation of the empirical results , we
define the following normalized variables:

�� = rt���/��/� , �6�

r� = rt���/�b� , �7�

P� = ��P�1/�a+�1/2��, �8�

where �=�2� ��a� /��a+ �1 /2��. These normalizations al-
low results for different time scales and different stocks to
collapse on a single curve.

To test the above model, we present empirical results for
five stocks traded on the London Stock Exchange �LSE�
from the period May 2, 2000 to December 31, 2002. There
are 675 trading days during this period. The stocks are As-
traZeneca �AZN�, Lloyds TSB �LLOY�, Prudential Plc
�PRU�, Reuters �RTR�, and Vodafone �VOD�. Our data set
contains information about the complete on-book market—
including all on-book transactions, order placements, and
cancellations �41�. We truncate the first 30 min of market
activity to remove the effects of price discovery at the begin-
ning of the day. In all of the results for aggregate numbers of

events, we choose nonoverlapping intervals. We only con-
sider intraday returns and do not include returns measured
across days.

In the plots below, we compare empirical results to those
predicted by the above model. Others have successfully fit
returns to a Student’s t-distribution �called a q-Gaussian or
Tsallis distribution in some papers� �6,8–10,15,21,23,26,37�.
Note that we do not fit the return distribution here but instead
determine the two parameters a and b from a maximum-
likelihood estimate given the daily �’s �42�. These param-
eters then set the return distribution for intraday time scales.

In Fig. 1, we present results for the stock AZN; although
not shown, the results for the other stocks in our study are
similar in appearance. In Fig. 1�a�, we plot the probability
density function of �. We overlay the plot with the best-fit
gamma distribution and we report the parameters for this fit
in the figure legend and also in Table I. In Fig. 1�b�, we show
the probability density of �� for �=40 to �=640 in log-log
coordinates. This is compared to a normal distribution with
zero mean and unit variance, which is assumed in our model.
At time scales shorter than �=40, which are not shown, the
distribution of �� is leptokurtic but with finite variance. As
seen in the figure, the distribution approaches a Gaussian for
time scales ��40. That �� is Gaussian distributed was also
reported for daily time scales in �38�. In Fig. 1�c�, we plot the
scaled return probability density for �=10 to �=640 in semi-
log coordinates. Using the parameters a and b, we predict the
full probability distribution of returns, as derived in Eq. �5�,
and overlay this prediction on the plot. We focus on the tails
of the distribution in Fig. 1�d� by plotting the scaled cumu-
lative distribution function for the unsigned returns F��r��� in
log-log coordinates. As seen in both plots, the distributions
collapse both in the central region and in the tails and are
well described by the predicted curve. In our model, the col-
lapse occurs because volatility is assumed constant intraday.
For comparison purposes, we fit a Gaussian distribution to
the data for �=80 and plot this in Figs. 1�c� and 1�d�.

In Fig. 2�a�, we plot the empirical cumulative distribution
of � versus the fitted cumulative distribution for all five
stocks. This plot is created by first fixing the value of the
fitted F� · �, calculating � at this point, and then plotting the
value of the empirical F� · � for this �. The plot is similar to a
Q-Q plot; when the empirical distribution follows the fitted

TABLE I. Table of parameters for the five stocks studied.

Security Events Events/Min a b

AZN 962516 3.0 2.7 0.44	10−6

LLOY 746845 2.3 3.4 1.1	10−6

PRU 583792 1.8 2.6 1.5	10−6

RTR 653915 2.0 3.9 3.6	10−6

VOD 770352 2.4 3.9 2.1	10−6
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FIG. 2. �Color online� �a� The cumulative distribution of � compared to the cumulative distribution from the best fit to a gamma
distribution for all the stocks in our study. �b� The normalized probability density of returns �with �=80� compared to theory for all the stocks
in our study.
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distribution exactly, the curve will lie on the 45° line. In Fig.
2�b�, we plot the normalized probability density P��r�� with
�=80 for the five stocks in our study. The data from all five
stocks collapse on the curve.

Taken together, these results suggest that slow significant
fluctuations in volatility produce the interesting features of
the intraday return distribution. We do not provide an expla-
nation here for why volatility has the properties that we have
assumed. We note, however, that there exists a general class
of stochastic volatility models that produce volatilities that
are inverse-gamma distributed �34�. The generalized ARCH
�GARCH��1,1� �39� model and the 3/2 model are two spe-
cific examples. Variants of the GARCH�1,1� model can be
motivated by simple feedback mechanisms for volatility and
have been shown to produce similar results to our empirical
findings �6,35�. The 3/2 model is known to be a by-product
of a one-dimensional diffusion equation for prices: a squared
Bessel process of dimension four �34�. This process de-
scribes the dynamics of a growth optimal portfolio with de-
terministic drift and can be motivated by straightforward
economic arguments �34,40�.

In this Rapid Communication, we have presented a model
for individual stock returns that reproduces the shape and

scaling of the intraday return distribution for a collection of
stocks from the London Stock Exchange. Our model decom-
poses individual returns into the product of two terms: a
Gaussian term and a slowly varying volatility term. On any
single day, volatility is relatively constant so that returns are
well described by Gaussian fluctuations. Across many days,
however, fluctuations in the volatility term dominate and lead
to a non-Gaussian distribution for returns. The resulting
distribution—a Student’s t-distribution—appears stable for
short to intermediate time scales despite being outside the
stable regime. This occurs because volatility is slowly vary-
ing and therefore not IID. Thus, we can explain both the
shape and apparent stability of the distribution, two results
that previously seemed to contradict one another and that
individually could be used to support one or the other com-
peting hypotheses for non-Gaussian returns. Finally, we find
that the statistical properties of volatility for different stocks
are similar, allowing for a single representation of the return
distribution for intraday time scales.

This work was supported by the U.S. National Science
Foundation Grant No. HSD-0624351.
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