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The bifurcation diagram of a model stochastic differential equation with delayed feedback is presented. We
are motivated by recent research on stochastic effects in models of transcriptional gene regulation. We start
from the normal form for a pitchfork bifurcation, and add multiplicative or parametric noise and linear delayed
feedback. The latter is sufficient to originate a Hopf bifurcation in that region of parameters in which there is
a sufficiently strong negative feedback. We find a sharp bifurcation in parameter space, and define the threshold
as the point in which the stationary distribution function p�x� changes from a delta function at the trivial state
x=0 to p�x��x� at small x �with �=−1 exactly at threshold�. We find that the bifurcation threshold is shifted
by fluctuations relative to the deterministic limit by an amount that scales linearly with the noise intensity.
Analytic calculations of the bifurcation threshold are also presented in the limit of small delay �→0 that
compare quite favorably with the numerical solutions even for moderate values of �.
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I. INTRODUCTION

We study the bifurcation diagram of a nonlinear stochastic
differential equation that includes delayed feedback. The
model equation considered exhibits both pitchfork and Hopf
bifurcations. The bifurcation thresholds are obtained as a
function of the model parameters, and our results contrasted
with two related limits: The deterministic limit of a differen-
tial delay equation, and the stochastic bifurcation of the same
model without delay.

The study of differential delay equations �1� is an impor-
tant topic in applied mathematics, with widespread applica-
tions in physics �lasers, liquid crystals�, control systems in
physiology �neural and cardiac tissue activity� �2,3�, and
economy �agricultural commodity prices� �4�. Recent interest
has arisen in the mathematical modeling of cellular function
at the molecular level, especially in transcriptional gene
regulation �5�. Feedback regulation is a common motif in
cellular networks, with delays arising from the complexity of
the underlying network, or from the wide disparity in time
scales of the many chemical processes involved in regulation
�3�. For example, DNA is transcribed at a rate of 10 to 100
nucleotides per second, and it may take a delay on the order
of minutes before the transcription factor appears as a fin-
ished product in the cell, and hence is available for regula-
tion. Significant delays can also be attributable to the time
required for the diffusion of proteins through membranes, so
that, for example, the auto regulated feedback on protein
production at time t is often proportional to protein concen-
tration at time t−�, where � is known as the delay time. For
short delay times, a reaction may be approximated as being
instantaneous, and the system as being in quasi equilibrium.
However, when the delay is comparable to the characteristic
time scales of reaction, the noninstantaneous nature of the
interactions can no longer be ignored, and delay terms need
to be included in the governing equations for the network
under study �6,7�.

Experimental evidence has been mounting that highlights
the importance of stochastic effects in transcriptional regula-
tion �8–10�, not only for natural networks, but for engineered

gene circuits and networks as well �11,12�. However, despite
the wealth of evidence pointing to the importance of stochas-
ticity in feedback regulation, delays in stochastic models of
metabolic feedback are very often neglected, possibly be-
cause the resulting stochastic equations are no longer Mar-
kovian, and hence rarely tractable analytically. Exceptions
include the derivation of a two time Fokker-Planck equation
and the study of its small delay time limit in �13�, and results
on the bifurcation of the first and second moments of a linear
stochastic equation with delay �6,14�. We extend these latter
results to the analysis of the stationary probability distribu-
tion function of a nonlinear model, and discuss in detail the
stability of the solutions that results from the interplay be-
tween delay and stochasticity.

We focus here on the normal form for a pitchfork bifur-
cation augmented with multiplicative or parametric noise
�additive noise has been shown to have no effect in the case
of a delayed equation �6��, and linear delayed feedback.
Parametric noise generically originates from the stochastic
variation of the control parameters, see, for example,
�8,12,15�. Delayed feedback leads to a Hopf bifurcation in
some region of parameters �for sufficiently strong negative
feedback�. Our model for a dynamical variable x�t� is

ẋ�t� = ax�t� + bx�t − �� − x3�t� + x�t���t� , �1�

where the constant a plays the role of the control parameter,
b is the intensity of a feedback loop of delay �, and ��t� is a
white, Gaussian noise of intensity D. The initial condition is
a function ��t� specified on t= �−� ,0�. We generally focus on
the stationary probability distribution function p�x� for a
range of values of a, b, and D.

The bifurcation diagram for the differential delay equation
resulting from Eq. �1� with �=0 is known �see, e.g., �6��.
Linearization around x=0 shows that trajectories decay as-
ymptotically to zero according to

b � − a if b� � − 1, �2�
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��b2 − a2 � cos−1�−
a

b
� if b� � − 1. �3�

The boundary separating exponentially decaying solutions
from exponentially growing solutions is shown as the solid
line in Fig. 1. The upper branch corresponds to a pitchfork
bifurcation �real eigenvalue, Eq. �2��, whereas the lower
branch corresponds to a Hopf bifurcation �complex eigen-
value, Eq. �3��. In both cases, we show in the figure the case
of �=1. The cusp at the intersection of both boundaries is
located at �a ,b�= �1 /� ,−1 /��.

The bifurcation threshold of Eq. �1� without delay �b
=0� is also known, and has been given in �16–18�. Recall
that an analysis of the linearized equation leads to the un-
physical conclusion that the bifurcation threshold depends on
the order of the statistical moment of x�t� considered. On the
other hand, with a saturating nonlinearity in Eq. �1�, a sta-
tionary probability distribution of x exists both below and
above threshold, thus allowing a proper determination of the
bifurcation point. The stationary distribution function of x
with b=0 has been found to be �16�

p0�x� = ��x�, if � � − 1, �4�

p0�x� = Nx�e−x2/2D, if � � − 1, �5�

where the exponent is �=a /D−1, and N is a normalization
constant. The solution �5� exists but is not normalizable for
��−1 and hence it is not a physically admissible solution.
Therefore the stochastic bifurcation threshold is located at
ac=0, point at which p0�x� changes from a delta function at
the origin to a power law at small x with an exponential cut

off at large x. Contrary to what an analysis of the moments of
x�t� for the linearized model would indicate, the existence of
parametric fluctuations has no effect on the location of the
bifurcation threshold: both deterministic and stochastic equa-
tions exhibit a pitchfork bifurcation at ac=0. We further note
that in −1���0, p0�x� is unimodal with a singularity at x
=0, whereas for ��0 the distribution is bimodal reflecting
nonlinear saturation of x.

II. STOCHASTIC BIFURCATION

We now turn to the case of delay, b�0. Analytical results
for the stability of the trivial solution x=0 for the lineariza-
tion of Eq. �1� have been given in �6,14�, and are shown in
Fig. 1. The bifurcation threshold of the first moment 	x
 is
shifted relative to the deterministic delay equation result;
only bounds can be given for the stability of the second
moment 	x2
 �14�, and no results are available for p�x�.
Given the anomalous behavior described above for the sto-
chastic bifurcation of the linear equation with b=0, it is of
interest to determine p�x� for the full model of Eq. �1�. Un-
fortunately, the non-Markovian character of this equation has
precluded progress along these lines �13�.

We have first extended an existing second-order algorithm
for the integration of stochastic differential equations �19� to
the case of delay. The algorithm needs to take into account
trajectories into the past for an interval �, and also new con-
tributions from the stochastic terms that result from the cou-
pling to the delayed feedback. The derivation of the algo-
rithm is presented in the Appendix. In the numerical
calculations to be presented below, the initial condition is a
constant function in �−� ,0� for each trajectory, with the con-
stant being drawn from a Gaussian distribution of zero mean
and variance 1. The time step used in the numerical integra-
tion is 	t=0.01. We also present approximate analytic calcu-
lations in the limit of small delay time �→0, following the
approach of Frank �20�. Reasonable agreement is found with
our numerical calculations for �=1.

A. Pitchfork bifurcation

A qualitative view of the bifurcation of Eq. �1� is given in
Fig. 2. Equation �1� has been integrated numerically, and
histograms of x�t� computed once trajectories approach a sta-
tistical steady state. The histograms shown correspond to 106

independent trajectories for each value of a. For a
−1.169,
the histogram is sharply peaked at x=0. As discussed further
below, we observe long transients in x�t� until it eventually
decays to x=0. At a critical value ac�−1.169, the bifurca-
tion point, a broad distribution emerges, although the most
likely value remains x=0. At larger values of a, the histo-
gram becomes bimodal. The histogram shown in the figure
corresponds to the direct bifurcation branch, but a qualita-
tively similar graph is obtained for the Hopf bifurcation.

Our results for the stationary distribution function p�x� are
shown in Fig. 3. For a�ac, we expect p�x�=��x�. We ob-
serve instead a very long lasting transient with p�x� approxi-
mately characterized by a power law distribution, with an
effective exponent ��−1 �leading to a non-normalizable
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FIG. 1. Numerically determined bifurcation diagram for Eq. �1�
with �=1 and D=0.3 ��� defined as the point in the �a ,b� plane for
which �=−1, the exponent of the stationary probability distribution
function. For reference, we also show the exact bifurcation diagram
for the deterministic equation �=0 �solid line�, and the exact results
for the bifurcation threshold of the first moment 	x
 of the linearized
equation at the same value of D and � �6� �dashed line�. The two
points labeled by �+� lie on the line b=0, and are known results for
the case of no delay for �from left to right� 	x
, and for deterministic
case of �=0. The dotted line is the approximate threshold �Eq.
�23��, and ��� are the numerically calculated Hopf branch from the
probability distribution function of the maximum amplitude of the
Fourier transform of the trajectories.
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distribution�. The amplitude of the point p�x�0� �not shown
in the figure� grows with time, signaling the build up of the
delta function at the origin. Because of overall normaliza-
tion, growth at x=0 implies a decaying amplitude for finite x,
as shown in the figure. For a�ac, we do obtain a time inde-
pendent power law distribution p�x� with exponent −1��
�0. This distribution is normalizable, and represents the sta-
tionary distribution above threshold. We finally show p�x� in
the range of a for which the distribution is bimodal. The
function p�x� around the most likely value is approximately
constant over time, but we still observe some transients in
the region around x=0. Figure 4 shows our results for the
exponent of a power law fit to p�x� at small x, as a function
of the value of the control parameter a. We observe a smooth
variation of the exponent � with a that allows a convenient
determination of ac, the value of a for which �=−1. This is
the method that we have used to determine the bifurcation
threshold in all the results presented below.

We summarize our results for the bifurcation diagram of
Eq. �1� in Fig. 1. The analytic results for the threshold with-
out noise ��=0� are shown for reference, as well as earlier
results for the threshold of 	x
 of the linearized equation �6�.
Our numerical results do agree with the known threshold for
the special point of no delay �b=0� given in �16�. The figure
presents our results for the stochastic bifurcation threshold
defined directly from the stationary probability distribution
function as discussed above. We conclude that the stochastic
threshold is shifted relative to the deterministic threshold ex-
cept in the special point of no delay �b=0�.

B. Hopf bifurcation

The calculation of p�x� just shown for the case of a pitch-
fork bifurcation has been repeated in the vicinity of the de-
terministic Hopf branch shown in Fig. 1. In the deterministic

case, the bifurcation leads to oscillation. When fluctuations
are added, oscillation amplitudes fluctuate as well. We also
observe in this range of parameters a sharp bifurcation
threshold which is shifted relative to the deterministic Hopf
bifurcation. The bifurcation threshold is obtained from the
probability distribution function of the maximum amplitude
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FIG. 3. Probability distribution function p�x� for b=1, �=1, and
D=0.3 at the times given, and averaged over 106 independent real-
izations. Values of the control parameter shown are: �a� a=−1.2
with ��−1.208, �b� a=−1.1 with ��−0.638, and �c� a=−0.9 with
��0.746. The distributions in �a� show a clear transient, whereas
those in �b� and �c� are stationary. The solid line shows the power
law at small x; the domain covered by the line indicates the range of
data that were used to estimate �, and is placed above or below the
curves for clarity. The dashed line is our approximate determination
of p�x� in the limit of small � �Eq. �22��.
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FIG. 4. Results of a power law fit to p�x� for small x. The fitted
value of the exponent � is shown as a function of the control pa-
rameter a. We define the bifurcation threshold for the stochastic
problem when �=−1, or ac�−1.169 for this parameter set �b=1,
�=1, and D=0.3�. The solid line follows from our approximate
determination of p�x� in the limit of small �. There are no adjustable
parameters.

-2 -1 0 1 2 3 4

-2.4

-4.8

0

2.4

4.8

x

a

1 × 10−4

max [p(x)]

FIG. 2. Long time histogram of x �in grayscale� as a function of
the control parameter a with b=1, �=1, and D=0.3. The histograms
have been collected in the time interval t� �50,80� and further
averaged over 106 independent runs. In the absence of noise, the
critical value of the control parameter for instability is ac=−1. We
find instead that the bifurcation from a delta function to a power law
distribution occurs at ac�−1.169 for this set of parameters. Fluc-
tuations around x=0 are observed for a�ac due to the finite length
of the time series.
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of the Fourier transform of the trajectories. For each trajec-
tory, we calculate the Fourier transform of the stationary so-
lution over a finite window in time, identify its maximum
amplitude, and construct a histogram of those maxima over
the ensemble.

Our results for the stationary probability distribution func-
tion of the maximum amplitude of the Fourier transform of
the trajectories p�max�X����� are shown in Fig. 5 for three
increasing values of the control parameter a. For a�ac we
observe an effective power law with exponent ��−1 and
hence not a physical distribution. As was the case above, this
is manifested by a transient distribution that decreases with
time. As the value of a is increased, a power law distribution
is found with exponent −1���0. The distribution obtained
is integrable and stationary. For yet larger values of a, the
distribution becomes bimodal.

Figure 6 shows the results of a power law fit to the result-
ing distributions at small x or at small max�X���� for a range
of values of a. We have undertaken this analysis for a range
of values of b, and the resulting Hopf branch of the bifurca-
tion diagram is shown in Fig. 1. Note that it is also shifted
relative to the branch corresponding to the deterministic
equation.

III. FOKKER-PLANCK EQUATION

We next turn to an approximate analytic calculation of the
stationary distribution function p�x� for Eq. �1�. The diffi-
culty in obtaining a closed, analytic expression lies in the
non-Markovian nature of Eq. �1� and the associated need to
find the joint probability distribution p�x�t� ,x�t−���. When �
is larger than the correlation time of x, the derivation is sim-
plified by assuming statistical independence between x�t� and
x�t−��, or p�x�t� ,x�t−���= p�x�t��p�x�t−���. This approxi-
mation has already been considered in the literature �e.g.,
Ref. �7��. However, the assumption of independence does not
hold near a bifurcation since the characteristic correlation
time diverges �21�. We instead proceed as follows: define the
probability distribution of x as p�x , t�= 	��x�t�−x�
. By using
the properties of the Dirac delta function, and Eq. �1� one
finds

�

�t
p�x,t� = −

�

�x
�	��x�t� − x��ax + bx� − x3�


+ 	��x�t� − x�x��t�
� , �6�

where we have introduced the dummy variables x�t�→x and
x�t−��→x�. The second term on the right- hand side of Eq.
�6� can be written as

	��x�t� − x�x��t�
 = x�t�	��x�t� − x���t�
 , �7�

with

	��x�t� − x���t�
 = 

0

t

	��t���t��
� ����x�t� − x��
���t�� �dt�

= D� ����x�t� − x��
���t� � , �8�

by using the Furutsu-Novikov theorem. By using the proper-
ties of the delta function, one can write
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FIG. 5. Probability distribution function of the maximum ampli-
tude of the Fourier transform of the trajectories p�max�X����� for
b=−2, �=1 and D=0.3, in the time interval t� �290,300� and av-
eraged over 106 independent realizations. Values of the control pa-
rameter shown are: �a� a=−1.1 with ��−1.518, �b� a=−0.9 with
��−0.706, and �c� a=−0.5 with ��0.008, as shown by the solid
lines, placed above the curves for clarity. The solid lines extend
over the domain used for estimation of �.
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FIG. 6. Results of a power law fit to p�x� ��� and to
p�max�X����� ���, for small x or small max�X����. The fitted
value of the exponent � is shown as a function of the control pa-
rameter a. We define the bifurcation threshold for the stochastic
problem when �=−1, or ac�−0.999 ���, and ac�−0.971 ��� for
this parameter set �b=−2, �=1, and D=0.3�.
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� ����x�t� − x��
���t� � = �−

�

�x
��x�t� − x�

�x�t�
���t�� , �9�

and since �x�t�
���t� =x�t� from Eq. �1�, we find

	��x�t� − x���t�
 = − D
�

�x
x�t�p�x,t� , �10�

where we have also used

	��x�t� − x�f�x�t��
 = 

−�

�

��x�t� − x�f�x�t��p�x�dx

= f�x�t��p�x,t� . �11�

Thus the second term on the right-hand side of Eq. �6� is

−
�

�x
�	��x�t� − x�x�t���t�
�

= D
�

�x
�x�t�

�

�x
x�t�p�x,t��

= − D
�

�x
�x�t�p�x,t�� + D

�2

�x2 �x2�t�p�x,t�� . �12�

Consider now the first term on the right-hand side of Eq.
�6�. By using the law of total expectation,

	��x�t� − x��ax + bx� − x3�


=
 
 ��x�t� − x��ax + bx� − x3�p�x,x��dxdx�. �13�

We anticipate that independence, p�x ,x��= p�x�p�x��, does
not hold near the bifurcation threshold. We write instead
p�x ,x��= p�x� �x�p�x�, where p�x� �x� is the conditional prob-
ability of finding x� at t−� given the information that x�t�
=x. Then

	��x�t� − x��ax + bx� − x3�


=
 
 ��x�t� − x��ax + bx� − x3�p�x��x�p�x�dxdx�

= p�x,t��ax�t� − x3�t� + b
 x�p�x��x�t��dx�� . �14�

The last integral represents the conditional expected value of
x�t−�� given x�t�,

	x��x�t�
 =
 x�p�x��x�t��dx�. �15�

Substitution of Eqs. �12� and �14� into Eq. �6� leads to the
Fokker-Planck equation,

�

�t
p�x,t� = −

�

�x
���a + D�x�t� − x3�t� + b	x��x�t�
�p�x,t��

+ D
�2

�x2 �x2�t�p�x,t�� . �16�

We have not been able to determine 	x� �x�t�
 analytically.
However, it is possible to derive an approximate expression

under the assumption that the delay � is small �20�. We
write drift terms in Eq. �1� in the Ito representation �recall
that we were working in the Stratonovich interpreta-

tion�, f�x ,x��= �a+D�x−x3+bx� �22�. Let f̄�x ,x��= �a+D�x
−x3+b	x� �x�t�
 in Eq. �16�, and fa�x�=lim�→0 f̄�x ,x��. De-

fine also f̃�x�= �a+D�x−x3, f �0��x�= f̃�x�+bx, and g�x�=x, so
that f�x ,x��= f̃�x�+bx�. Furthermore, in the limit of small
delay time, one can assume that the zeroth order approxima-
tion pst

�0��x� , t−� �x , t� of the stationary conditional probability
distribution function pst�x� , t−� �x , t� is Gaussian �23� and
given by

pst
�0��x�,t − ��x,t� =� 1

2
�g2�x�
exp�−

�x� − x − f �0��x���2

2�g2�x� � .

�17�

The approximate drift term of the Fokker-Planck equation is
then,

fa�x� =� 1

2
�x2

−�

�

dx�f�x,x��exp�−
�x� − x − f �0��x���2

2�x2 � .

�18�

Integrating, one finds

fa�x� = �1 + b��f �0��x� = �1 + b����a + b + D�x − x3� .

�19�

An approximate expression for the conditional average of x�

given x�t� is obtained by comparing Eq. �19� with f̄�x ,x��
defined above,

	x��x�t�
 = �1 + ��a + b + D��x�t� − �x3�t� . �20�

Further substitution of Eq. �20� into Eq. �16� results in a
closed form for the steady state distribution,
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FIG. 7. Bifurcation threshold ac from p�x� as a function of noise
intensity D for b=1 and �=1. Time averages used for the determi-
nation of p�x� are in t� �290,300�, and 106 independent realizations
have been considered. The line in the figure is the prediction from
our approximate determination of the stationary probability distri-
bution function. There are no adjustable parameters.
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�

�t
p�x,t� = − �1 + b��

�

�x
���a + b + D�x�t� − x3�t��p�x,t��

+ D
�2

�x2 �x2�t�p�x,t�� , �21�

with stationary solution,

p�x� = N�x��a+b�1+��a+b+D��/D�−1e−��1+b��/2D�x2
. �22�

This stationary distribution is found to agree quite well with
our numerical determination of p�x� �Fig. 3� around the
pitchfork branch, but fails around the Hopf branch. The bi-
furcation threshold is the point in which p�x� �Eq. �22��
ceases be normalizable: �c=

ac+b�1+��ac+b+D��
D −1=−1. Hence,

ac = −
b�1 + ��b + D��

1 + b�
. �23�

This prediction is also in very good agreement with our nu-
merical results for the pitchfork bifurcation branch. We also
show in Fig. 7 the dependence of ac as a function of the
noise intensity D around the pitchfork branch. In analogy
with the case of no delay, we find a linear dependence of ac
with D.

We have also verified our results for the conditional aver-
age with a direct numerical integration of the model equa-
tion. We show our results for 	x� �x�t�
 as a function of x�t� in
Fig. 8. Equation �1� is integrated numerically until it reaches
a statistical stationary state. For every value of the dynamical
variable x, the average of its value at time t−� is collected
for 106 independent trajectories in a time window t
� �290,300�. We note that for large values of x, the results
become less accurate because of fewer data points in this
region. This analysis has been repeated for a range of values
a, b, and D. As shown in the figure, we observe good agree-
ment between the numerical results and Eq. �20� in the re-
gion around x=0.

In summary, we find that the bifurcation point in our sto-
chastic differential equation with delay remains sharp. This is
not a straightforward observation since the delay term in Eq.

�1� could effectively act as an additive source of noise, and
lead to an imperfect bifurcation instead. This does not appear
to be the case. We also note that long transients can be ex-
pected below the bifurcation threshold, as all trajectories
eventually decay to the trivial solution x=0. Second, we ob-
serve that different moments of x obtained from the linear-
ized equation bifurcate at different values of the control pa-
rameter. When a saturating nonlinearity is introduced into the
model, all moments bifurcate at ac. By defining the bifurca-
tion point in the stochastic case as that in which the power
law form of p�x� becomes normalizable ��=−1�, we show
that the bifurcation threshold ac is shifted relative to that of
the underlying deterministic equation. The shift goes to zero
as b→0, and otherwise it scales linearly with the noise in-
tensity D. We have also derived an approximate expression
for the stationary distribution function p�x� in the limit of
small delay time �. The threshold location obtained from this
approximation agrees well with our numerical determination
even when �=1.
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APPENDIX: ALGORITHM FOR STOCHASTIC
DIFFERENTIAL EQUATIONS WITH DELAY

We summarize in this appendix the numerical algorithm
developed to integrate Eq. �1�. Formal integration yields

x�t + 	t� = x�t� + 

t

t+	t

ax�t��dt� − 

t

t+	t

x3�t��dt�

+ 

t

t+	t

x�t����t��dt� + 

t

t+	t

bx�t� − ��dt�,

�A1�

with

x�t�� = x�t� + 

t

t�
ax�t��dt� − 


t

t�
x3�t��dt�

+ 

t

t�
x�t����t��dt� + 


t

t�
bx�t� − ��dt�. �A2�

We now approximate x�t���x�t� and x�t�−���x�t−�� so
that to first order in �t�− t� we have

x�t�� = x�t� + �ax�t� + bx�t − �� − x3�t���t� − t�

+ x�t�

t

t�
��t��dt�. �A3�

The nonlinear term x3�t�� also must be expanded around x�t�

x3�t�� � x3�t� + 3x2�t��x�t�� − x�t�� . �A4�

We substitute Eqs. �A3� and �A4� into Eq. �A1� and find,
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〈xτ |x(t)〉

x(t)

FIG. 8. Ensemble average of x�t−�� given x�t�, 	x� �x�t�
, as a
function of x�t�. We have set a=1, b=−0.25, �=1, and D=0.3. The
average is computed over 106 realizations for a time interval
t� �290,300�. The line is 	x� �x�t�
= �1+��a+b+D��x�t�, the ap-
proximate analytic result in the limit of small �.
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x�t + 	t� − x�t� = ax�t�	t + �a2x�t� + abx�t − �� − ax3�t��
	t2

2
+ ax�t�


t

t+	t 

t

t�
��t��dt�dt� + x�t�


t

t+	t

��t��dt�

+ �ax�t� + bx�t − �� − x3�t��

t

t+	t

�t� − t���t��dt� + x�t�

t

t+	t 

t

t�
��t����t��dt�dt� + bx�t − ��	t

+ �bax�t − �� + b2x�t − 2�� − bx3�t − ���
	t2

2
+ bx�t − ��


t

t+	t 

t−�

t�−�

��t��dt�dt� − x3�t�	t

− 3x2�t��ax�t� + bx�t − �� − x3�t��
	t2

2
− 3x3�t�


t

t+	t 

t

t�
��t��dt�dt�. �A5�

In order to calculate the integrals containing the random pro-
cess ��t�, we define



t

t+	t

��t��dt� = G1�t,	t� , �A6�



t

t+	t 

t

t�
��t��dt�dt� = G2�t,	t� . �A7�

If ��t� is a Gaussian process of zero mean, G1 and G2 are
also Gaussian variables of zero mean, and correlations

	G1
2
 = 2D	t , �A8�

	G2
2
 =

2D

3
	t3, �A9�

	G1G2
 = D	t2. �A10�

The three remaining integrals can be expressed in terms
of G1 and G2 as



t

t+	t

�t� − t���t��dt� = G1�t,	t�	t − G2�t,	t� , �A11�



t

t+	t 

t

t�
��t����t��dt�dt� =

1

2
�G1�t,	t��2, �A12�



t

t+	t 

t−�

t�−�

��t��dt�dt� = G2�t − �,	t� . �A13�

The Gaussian variables G1 and G2 can be simulated with two
Gaussian random variables, �1 and �2, of zero mean and
variance one,

G1�t,	t� = �2D	t�1�t� , �A14�

G2�t,	t� =�2D

3
	t3��3

2
�1�t� +

1

2
�2�t�� . �A15�

Combining all our results, we write the iteration of our
algorithm,

x�t + 	t� = x�t��1 + a	t + a2	t2

2
+ �1 + a	t�G1�t,	t� +

1

2
�G1�t,	t��2�

+ x�t − ���b	t + 2ab
	t2

2
+ b	tG1�t,	t� − bG2�t,	t� + bG2�t − �,	t�� + x�t − 2���b2	t2

2
�

+ x3�t��− 2a	t2 − �G1�t,	t� + 1�	t − 2G2�t,	t�� − x2�t�x�t − ���3b	t2

2
� − x3�t − ���b	t2

2
� + x5�t��3	t2

2
� .
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