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Monocular deprivation experiments can be used to distinguish between different ideas concerning properties
of cortical synaptic plasticity. Monocular deprivation by lid suture causes a rapid disconnection of the deprived
eye connected to cortical neurons whereas total inactivation of the deprived eye produces much less of an
ocular dominance shift. In order to understand these results one needs to know how lid suture and retinal
inactivation affect neurons in the lateral geniculate nucleus �LGN� that provide the cortical input. Recent
experimental results by Linden et al. showed that monocular lid suture and monocular inactivation do not
change the mean firing rates of LGN neurons but that lid suture reduces correlations between adjacent neurons
whereas monocular inactivation leads to correlated firing. These, somewhat surprising, results contradict as-
sumptions that have been made to explain the outcomes of different monocular deprivation protocols. Based on
these experimental results we modify our assumptions about inputs to cortex during different deprivation
protocols and show their implications when combined with different cortical plasticity rules. Using theoretical
analysis, random matrix theory and simulations we show that high levels of correlations reduce the ocular
dominance shift in learning rules that depend on homosynaptic depression �i.e., Bienenstock-Cooper-Munro
type rules�, consistent with experimental results, but have the opposite effect in rules that depend on heterosyn-
aptic depression �i.e., Hebbian/principal component analysis type rules�.

DOI: 10.1103/PhysRevE.80.061915 PACS number�s�: 87.19.ll, 87.19.lw

I. INTRODUCTION

Receptive fields in visual cortex are modifiable in the
early period of an animal’s postnatal development. This is
thought to depend on synaptic plasticity �1,2�; the detailed
dynamics of such receptive field modifiability has been used
to infer the precise form of synaptic plasticity �3,4�. In a
classical paradigm, called monocular deprivation �MD�, vi-
sion through one eye is deprived in early development. In
this paradigm cells in visual cortex tend to disconnect from
the deprived eye �5�. We have previously shown how vari-
ants of deprivation can be used to distinguish between dif-
ferent classes of learning rules: rules that depend on homo-
synaptic modification, such as the rule proposed by
Bienenstock-Cooper-Munro �BCM� �4,6� and rules that de-
pend on heterosynaptic modification �7� such as the
Hebbian-based Oja rule, or principal component analysis
�PCA� rule �4,8�. Experiments have shown that if monocular
deprivation is produced by monocular �MC� lid closure then
a rapid loss of response to the deprived eye occurs, while if
the retina is inactivated by an injection of TTX �MI�, signifi-
cantly less loss is observed �9,10�. These results are consis-
tent with homosynaptic BCM-like learning rules. However,
the theoretical analysis relies on the, seemingly reasonable,
assumption that in the inactivated case �MI� activity in the

lateral geniculate nucleus �LGN�, which is the cortical input,
is reduced compared to the lid closure case �MC�. This as-
sumption has been questioned by experimental results.

In a recent study �11� the activity of neurons in LGN has
been recorded during normal vision, when the eyelid of the
experimental animals was sutured and when TTX was in-
jected into the eye. The recordings were conducted on awake
animals while they watched movie clips and sinusoidal grat-
ings. The surprising result of these experiments is that MI
did not reduce mean activity in LGN when compared to MC;
however MI caused an increase in correlations between dif-
ferent cells within the LGN. Previous experimental results in
ferret LGN �12,13� and recent results in mouse LGN �11�
indicate that the activity of nearby cells in LGN are corre-
lated, that this activity falls off as a function of the distance
between the receptive fields of the cells, and that these cor-
relations exist even in the absence of retinal activity.

In this paper we examine the impact of input correlations
during deprivation experiments on two different iconic ex-
amples of homosynaptic and heterosynaptic learning rules:
BCM and PCA. We find that the consequences of the PCA
rule are inconsistent with experimental results but that large
correlations in LGN can significantly slow down the loss of
response to the deprived eye for BCM neurons in agreement
with experiment. Further experimental work to quantitatively
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determine the correlations within LGN in MI would permit
more detailed comparison of theory with experiment.

A. Monocular deprivation: The original BCM argument

For completeness, we summarize the original argument
from the BCM theory on the consequences of MD �4�. It is
important to note that, while the analysis provided in this
paper assumes a linear neuron, the conclusions are not lim-
ited to linear neurons. The numerical simulations presented
�see Sec. IV B� use a nonlinear output sigmoid �3� with
quantitatively similar results.

In the BCM theory, the left and right weights between
LGN and cortical cells, wl and wr, respectively, modify de-
pending on the input to those weights, xl and xr, and a func-
tion, �, depending on the output of the entire cell, y, and a
modification threshold, �M as shown in Fig. 1.

wl�r� = ��y,�M�xl�r�. �1�

In monocular deprivation the deprived eye is presented with
noise, n, and the open eye receives patterned input, x. If the
left eye is the open eye, the inputs become

�xl,xr� ⇒ �xo,xd� � �x,n� , �2�

where we use the superscripts o and d for open and deprived
eyes, respectively.

If MD begins when the receptive fields have already
reached their selective fixed points, and we further assume
�without loss of generality� that the threshold, �M, adjusts
very quickly, then we have for the open eye

wo · xi
o = �M, i = 1 �preferred input� ,

wo · xi
o = 0, i � 1 �nonpreferred input� , �3�

where the preferred inputs are input patterns to which the
neuron is selective, and the nonpreferred inputs are input
patterns to which the neuron is not selective. �In a realistic
environment, the actual responses fall with some distribution
peaking near zero or �M.�

Expanding � around zero and �M, we get

� � + �1�y − �M�, y near �M ,

� � − �2y, y near zero. �4�

The output of the cell for the different patterns entering the
open eye is

y � �M + wd · n, i = 1 �preferred input� ,

y � wd · n, i � 1 �nonpreferred input� , �5�

so that the deprived-eye weights modify as

ẇd � 	+ �1��M + wd · n − �M�n preferred patterns

− �2�wd · n�n nonpreferred patterns.


�6�

For the deprived eye, averaged over the environment and
time, we have

�ẇi
d� � − 


j

��wj
dnjni� = − 


j

��wj
d��njni�

= − 

j

��wj
d��n2�Qji, �7�

where

� � − ��2Nnonpref − �1Npref�/�Nnonpref + Npref� ,

�n2� = �ni
2� for all i ,

�n2�Qij � �ninj� ,

and Npref and Nnonpref are the number of preferred and non-
preferred patterns, respectively. Note that the diagonal ele-
ments of Q are 1.

If ni and nj are uncorrelated in space, both with mean zero

�ninj� = �ni��nj� = 0 when i � j , �8�

yielding the usual result,

ẇi
d � − �n2wi

d. �9�

Thus the deprived-eye weights decrease, and decrease faster
if there is more noise �i.e., higher n2� from the deprived eye.
This deprivation effect is stronger for more selective neu-
rons.

B. Monocular deprivation: The original Hebbian (PCA)
argument

The dynamics of Hebbian learning rules are determined
by the eigenvectors of the correlation matrix with the largest
eigenvalues, or the principal components �PCA� �4,14�. In
one learning rule proposed by Oja in 1982 the weight vector
converges to the largest eigenvector and the length of the
vector is normalized to 1 �8�. This rule takes the form

ẇ = xy − y2w . �10�

We now show that the monocular deprivation results cannot
be obtained by a PCA learning rule such as that of Oja, given
the same assumptions about the inputs. This PCA analysis is
not restricted to this one learning rule, but is representative

FIG. 1. The modification function, �, for BCM versus the cell
output, y. The function has a zero crossing at y=0 and one at y
=�M, the modification threshold. When the cell is selective its re-
sponses to inputs are close to these zero crossings, so we expand the
� function around these and keep only the linear terms, ��−�2y
and ��+�1�y−�M�, respectively.
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of a general class of Hebb-based learning rules �4,14�.
An exact solution to Oja’s learning rule, which is a form

of PCA or stabilized Hebbian learning, is shown by Wyatt
and Elfeldel �15� to be

w�t� =
eQFULLtw0

��eQFULLtw0�2 + 1 − �w0��1/2 , �11�

where w0=w�t=0� is the initial state of the weight vector
and QFULL is the two-eye correlation function. We need to
include the correlation for the open eye when considering
PCA because both the initial development of selectivity with
this rule, and the dynamics of deprivation, depends on the
open-eye correlations.

1. Normal rearing

If both eyes have exactly the same input, the two-eye
correlation function, QFULL, has the form

QFULL = �Qopen Qopen

Qopen Qopen
� , �12�

where Qopen is the open-eye correlation function.
We expand the initial weight vector w�0� in terms of the

eigenvectors, u j, of the open-eye correlation matrix.

w�0� = �wl�0�
wr�0� � = 


j
�aj

lu j

aj
ru j

� , �13�

where u j, the jth eigenvector of the one-open-eye correlation
function Qopen, has the eigenvalue � j and aj

l ,aj
r are the ex-

pansion coefficients for left and right eyes, respectively. We
assume that eigenvectors and eigenvalues are arranged in a
descending order, that is �1��2� ¯�N. Inserting this into
the Wyatt formula, and taking the limit, we get

w�t → �� =�1

2
�u1

u1
� , �14�

as long as the largest eigenvalue is nondegenerate.
Thus the solution converges to a state in which both eye

receptive fields are eigenvectors of the one-eye correlation
function Qopen. The higher the ratio between �1 and the
smaller eigenvalues the faster it will converge.

2. MD

As for BCM, we assume that one eye is open and gener-
ates a structured input to the cortical cell, whereas the other
eye is deprived and the activity of the deprived LGN inputs
is uncorrelated with open-eye inputs.

Thus the full correlation function has the form

QFULL = �Qopen 0

0 n2Q
� , �15�

where n2 is the variance of the deprived-eye inputs. The
eigenvectors and eigenvalues of the open and deprived-eye
correlation function are defined as

�open eye� Qopenui = �iui, �16�

�deprived eye� Qv j = � jv j . �17�

MD is started after the neuron has converged to the binocular
fixed point,

w�0� =�1

2
�u1

u1
� . �18�

We expand the initial condition for the deprived eye in terms
of the eigenvectors of the deprived-eye correlation function,
Q,

u1 = 

j

bjv j . �19�

The deprived-eye term in the numerator of the Wyatt solu-
tion �Eq. �11�� using the correlation function in Eq. �15� is

en2Qtu1 = 

j

en2�jtbjv j , �20�

�en2�1tb1v1, �21�

=en2�1t�u1 · v1�v1, �22�

where the approximation assumes that the largest eigenvalue
of the deprived-eye correlation function is larger then all of
the others. In the case of a degenerate largest eigenvalue, a
constant N would multiply the term in Eq. �22� and none of
the conclusions that follow would change.

After this approximation, we arrive at the solution

w�t� =

� e�1tu1

en2�1t�u1 · v1�v1
�

�e2�1t + e2n2�1t�u1 · v1�2�1/2
. �23�

If the magnitude of the deprived-eye maximum eigenvalue
�scaled by the variance� is smaller than the largest eigenvalue
of the visual inputs, that is n2�1��1, then the t→� limiting
case becomes

w�t → �� = �u1

0
� , �24�

and the deprived-eye weights decay.
The rate of decay of the deprived eye depend on the dif-

ference between the open-eye maximum eigenvalue, �1, and
the deprived-eye maximum eigenvalue scaled by the vari-
ance, n2�1. Thus, the larger the variance of the noise the
slower the decay of the deprived-eye weights, which is the
opposite behavior to BCM. It is in fact possible, in the pres-
ence of very large noise, to get a PCA neuron to have an
increased response to the deprived eye and a corresponding
decrease in the open-eye responses.

II. RESULTS

A. Monocular deprivation with BCM and correlation of LGN
activity

We now generalize the BCM argument to deal with com-
plex correlations in LGN activity. We explore the possibility
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that lid closure �MC� leads to LGN noise that is uncorrelated,
and that retinal inactivation with TTX �MI�, leads to LGN
noise that is correlated resulting in a possible decrease in the
synaptic modification for inactivated inputs.

Denote

�wi
d� → wi,

�n2� → n2,

to obtain

ẇi = − 

j

�n2Qijwj . �25�

In matrix form

ẇ = − �n2Qw , �26�

where Q is a square, N dimensional correlation matrix. The
eigenvectors of Q are

Qvi = �ivi. �27�

We expand the weight vector in the complete set of eigen-
vectors,

w�t� = 

i=1

N

ai�t�vi,

so that

w�t�˙ = 

i=1

N

ȧi�t�vi = − �n2Q

i=1

N

ai�t�vi = − �n2

i=1

N

�iai�t�vi.

�28�

This gives

ai�t� = ai�0�e−�n2�it, �29�

and

w�t� = 

i=1

N

ai�0�e−�n2�itvi = 

i=1

N

ai�0�e−t/	ivi, �30�

with the time constants for the decay defined as 	i
= ��n2�i�−1.

The activity in LGN neurons from the deprived eye can
now be characterized by the correlation matrix, Q.

1. Uncorrelated noise

In the original MD uncorrelated noise argument of BCM,
the matrix Q is

Q →�
1 0 0 0 ¯

0 1 0 0 ¯

0 0 1 0 ¯

0 0 0 1 ¯

] �

� = I . �31�

This leads to �i=1 for all w, therefore

w�t� = w�0�e−�n2t,

which approaches 0 as t→�.
This is the “normal” BCM uncorrelated noise result and

gives the reference time of decay, 	= ��n2�−1. Note that the
weights all decay in time, with a faster decay for a larger
noise variance, n2.

2. Fully correlated noise

If the inputs to the deprived eye are completely correlated,
Q becomes

Q →�
1 1 1 1 ¯

1 1 1 1 ¯

1 1 1 1 ¯

] �

� . �32�

This results in

�1 = N for the DC eigenvector v1 =
1

�N
�1,1, . . . ,1�T,

�33�

�2, . . . ,�N = 0, �34�

so that

w�t� = a1
1

�N�
1

1

1

]

1
�e−�n2Nt + 


i=2

N

ai�0�vi. �35�

The first term is nonselective and decays rapidly. All of the
others do not decay, 	i�1=�. Thus, if the initial state is se-
lective there is no decay.

3. Partial constant correlation

Let the inputs to the deprived eye be partially correlated
so that Q is �21�

Q →�
1 q q q ¯

q 1 q q ¯

q q 1 q ¯

] �

� . �36�

We can write Q as

Q = �1 − q�I + qJ , �37�

where I is the identity and J is defined as

J ��
1 1 1 1 ¯

1 1 1 1 ¯

1 1 1 1 ¯

] �

� . �38�

The eigenvectors and eigenvalues of Q are
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v1 =
1

�N
�1,1,1, . . . ,1�T, �1 = 1 + �N − 1�q ,

vi orthogonal to v1 �i = 1 − q for i � 1. �39�

This gives

w�t� = a1�0�e−�n2�1+�N−1�q�tv1 + 

i=2

N

ai�0�e−�n2�1−q�tvi.

�40�

The first term is nonselective and decays rapidly. The other
terms decay with characteristic time 	q= ��n2�1−q��−1. Note
that since 	q

−1
�n2, the weights decay more slowly than the
uncorrelated case, and 	q reaches its maximum at q=1,
where there is no decay as in Eq. �35�.

4. Partial nonuniform correlation

We now relax the assumption that the correlation between
any two neurons is a constant, q. Let the correlation matrix
have the form

Q = Q0 + Q1, �41�

where Q0 is the correlation function above,

Q0 = �1 − q�I + qJ , �42�

and Q1 is a symmetric, N-dimensional random-valued matrix
whose off-diagonal elements have mean zero with variance,
m2,

Q1 � � 0 �ij ¯

�ij 0 0 ¯

] �

� , �43�

where

� pij��ij��ij
2 d��ij� = m2,

�ij = � ji uncorrelated independent random

variables of the N � N symmetric matrix,

� pij��ij�d��ij� = 1.

Matrices such as Q1 have been analyzed by Wigner �16� and
found to have the following eigenvalue distribution in the
large N limit:


��� = � �4Nm2 − �2�1/2

2�Nm2 for �2 � 4 N m2

0 for �2 � 4 N m2.
� �44�

In order to find the eigenvalues of Q we use a perturbation
theory argument. In the nonperturbed case:

Q0vi = �i
0vi,

�1
0 = 1 + �N − 1�q ,

�2
0, . . . ,�N

0 = 1 − q .

If we treat Q1 as a perturbation, in the lowest order

���1 = ��
0 + ���Q1��� . �45�

Because the zero-order eigenvalues are largely degenerate
we must diagonalize Q1 over the degenerate states; but this is
just the problem solved by Wigner. We can therefore add the
Wigner distribution to the unperturbed eigenvalues,
�2 , . . . ,�N=1−q, to get

�2, . . . ,�N = 1 − q + �Wigner distribution� . �46�

This result is close to exact �beyond the perturbation argu-
ment�. Since

Q = �1 − q�I + qJ + Q1, �47�

and a transformation that diagonalizes Q1

UQ1UT = �diagonal� , �48�

does not change I

UIUT = I . �49�

For J, excluding the dc eigenvalue, gives us the invariant
subspace that corresponds to the degenerate eigenvalue 1
−q. The matrix corresponding to this subspace is spherical
�all the eigenvalues are the same� and the eigenvalue distri-
bution is unchanged in any orthogonal �rotational� transfor-
mation.

Finally, we have the result that the inverse of the time
constant for the decay, 	i

−1, is distributed between �n2�1−q
−2m�N� and �n2�1−q+2m�N�.

An obvious problem of marrying the Wigner random ma-
trix with the correlation matrix of Eq. �41�, is that not all of
the matrices, Q, that result are correlation matrices �some of
the resulting eigenvalues may be negative�. This restricts the
possible values of m to be smaller than �1−q� /2�N.

This problem can be solved by introducing a Wishart dis-
tribution �17�. Let

Q � ��Q0 + mW�2, �50�

where W is a symmetric random matrix with independent
N�0,1� distributed elements. We present

m = mo�1 − q

N
, �51�

and obtain a distribution for the eigenvalues

���� =
�4mo

2 − ���/�1 − q� − 1�2

4��1 − q��mo
2�

. �52�

This distribution is shown in Fig. 2.
To determine the effect of this distribution on the decay

time we have simulated the response of the deprived-eye
neurons in an environment that corresponds to the appropri-
ate correlation matrix �as described in methods�. The results
are shown in Fig. 3�A�.

We conclude that the greater the correlation between LGN
afferents, the longer the lifetime for the decay of the de-
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prived eye and that this result is insensitive to noise added to
the precise shape of the correlation function. It remains to be
determined experimentally how great this correlation is.

B. Monocular deprivation with PCA
and correlated of LGN activity

We next explore the consequences of correlation in LGN
activity on the predictions of the PCA rule in monocular
deprivation.

1. Uncorrelated noise

For completeness, we present the result for uncorrelated
noise. If the deprived-eye inputs are completely uncorrelated,
the correlation is given by Eq. �31�, and the largest eigen-
value is �1

deprived=1. As stated above, this leads to the predic-
tion that the larger the variance of the noise the slower the
decay of the deprived-eye weights.

2. Partial constant correlation

If the input correlations to the deprived eye are of the
form in Eq. �36� then we know the eigenvectors and eigen-
values, given in Eq. �39�. If the initial �selective� one-eye
vector, u1 has no dc component �i.e., u1 · �1,1 ,1 , . . .�=0� then
the numerator term of the deprived-eye Wyatt solution �20�
becomes



j

en2�jt�u1 · v j�v j = en2�1−q�t

j

�u1 · v j�v j , �53�

=en2�1−q�tu1. �54�

Thus the Wyatt solution yields

wMI�t� = � wopen�t�
wdeprived�t�

� =

� e�1tu1

en2�1−q�tu1
�

�e2�1t + e2n2�1−q�t�1/2
, �55�

which will result in the decay of the deprived-eye weights if
�1�n2�1−q�, where �1 comes from the natural images. In

the special case that �1�n2, the deprived-eye weights decay
exponentially

�wdeprived� � exp�− �1t� . �56�

The largest eigenvalue, �1, coming from the natural images
tends to be large compared to n2�1−q� �on the order of 10�,
thus there is very little dependence on q, as seen in Fig. 3. In
practice there is a small dc component due to the finite size
of the receptive field, which would grow exponentially, but
the test stimulus does not register any changes due to the dc
component of the receptive field.

3. Partial correlation with variance

It follows from Wigner’s work on stochastic matrices, ex-
plored in Sec. II, if the correlation function from Eq. �36� is
perturbed with random components, the distribution of ei-
genvalues has a maximum value of ��2−2q before the dis-
tribution becomes partly negative and we no longer have a

FIG. 2. �Color online� Eigenvalue distributions with correlation
q=0.9. Shown are the Wishart distribution �solid� and the Wigner
distribution cut off at �=0 �dashed� for several values of the vari-
ance of the noise.

(b)

(a)

FIG. 3. �Color online� Simulations of monocular deprivation
versus the correlation value, q. Both learning rules are generally
insensitive to the deviation from pure correlation, as specified by
the variance parameter m0 in the Wishart distribution. �a� The BCM
learning rule exhibits a slow down of the effects of deprivation as
the correlation increases. �b� Hebbian learning shows very little
dependence on the correlation, q.
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correlation matrix. Generalizing this to the Wishart distribu-
tion, we can obtain eigenvectors with larger eigenvalues. In
practice, however, this has little effect. �Fig. 3�

III. DISCUSSION

The BCM theory �4,6� makes the testable prediction that
the ocular dominance shift due to lid closure �MC� is more
rapid than that due to retinal inactivation with TTX �MI�.
This prediction motivated the experiment of Rittenhouse et
al. that attempted to test the noise dependence of loss of
deprived-eye response by comparing MC with MI �produced
by injecting TTX into the retina of the deprived eye shutting
down retinal neuronal activity�. It was implicitly assumed in
this study that shutting down retinal activity would reduce
LGN noise to cortical cells. The results of Rittenhouse et al.
were in accord with the BCM prediction: MI showed a much
slower loss of response to the deprived eye than MC. These
results were confirmed and expanded in studies in mice �10�.
But this prediction of BCM was based on the assumption
that retinal inactivation would reduce the activity level in the
layers of LGN corresponding to the inactivated eye.

The study of Linden et al. was done to directly check the
assumption that TTX reduction of retinal activity actually
reduced LGN activity. Instead it was found that LGN activity
is not reduced on average but becomes highly correlated.
These results require a re-examination of the analysis and the
expected results of different deprivation experiments in the
BCM theory as well as in other theories of synaptic plasticity
�4�.

Our present study was initiated to investigate the conse-
quences on the BCM and the PCA theories for MC vs MI in
situations when retinal inactivation leads to LGN noise that
is not reduced but is correlated. We note that theoreticians
had not investigated this previously because no one thought
this would be a consequence of TTX retinal inactivation: a
wonderful reminder that the real world produces surprises
most of us would not expect.

Our present analysis shows that the BCM theory in the
situation where the average noise activity is unchanged �11�
predicts a reduced loss of response of the inactivated eye
�compared to lid closure� that depends on the amount of
correlation between firing rates of LGN neurons. For zero
correlation and identical noise variance, MI would produce
the same loss as MC. But for total correlation, there is no
loss at all. In contrast we find that in the PCA theory the
magnitude of the noise correlations does not significantly
affect the time course of deprivation experiments.

Although the simulations and analysis here have assumed
the existence of both positive and negative weights, this de-
tail is not important to the results. It is true, for example, that
Eq. �26� with the all-ones correlation function �Eq. �32�� in
the case of all-positive weights leads to all weights decaying
to zero, not just the dc component. However, a small amount
of mean-field inhibition �4,19,20� is sufficient to keep this
from occurring. It has been shown elsewhere that the BCM
theory is valid for simulations using only positive weights
�4�.

We observe that the correlations needed here to get the MI
effect are fairly high, q�0.8 whereas the correlations mea-

sured in Linden et al. are fairly low, around 0.1. This arises
from a difference in the definition of the correlation measure
with spike-based neurons versus rate-based neurons. Al-
though this comparison requires more research, we show in
the Appendix that in one simple case a high rate-based cor-
relation leads to a low spike-based correlation.

Given our results, it becomes interesting to test the corre-
lation dependence of the rate of fall-off of response from the
deprived eye in MI. If such tests can be made, they would
provide a more detailed check of theoretical predictions and,
hopefully, continue the dialog between theory and experi-
ment.

IV. METHODS

A. Correlated environments

Given the form of a correlation function, such as shown
for the Wishart distribution �Eq. �50�� or more simply the
partial constant correlation �Eq. �36�� we can generate an
environment of input vectors which has that correlation.

Assuming a matrix Q is specified, that is symmetric and
real. Such a matrix can be decomposed, with the Cholesky
algorithm, into

Q = LLT.

In order to generate the environment, we start by generating
N random vectors, ui with i from 0 to N, where the elements
are drawn from a normal distribution with zero mean and
unit variance. The correlation function of these vectors is the
unit matrix. We generate correlated random vectors �vi� from
the random vectors ui using the matrix L obtained from the
Cholesky decomposition,

vi � Lui.

These vectors have the appropriate correlation function
which is demonstrated by the direct calculation,

�vivi
T� = ��Lu��Lu�T� = L�uuT�LT = LLT = Q .

One can think of Lu as a multidimensional spherical cloud
of points, each dimension scaled by the eigenvalues of Q,
and then rotated so that the principal components are point-
ing in the direction of the eigenvectors of Q.

B. Numerical simulations

We use 7�7 circular patches from images of natural
scenes to represent the normal visual environment �3,4�. The
images are processed by a retinal difference of Gaussians,
with the biologically observed approximate 3 to 1 ratio of the
surround to the center of the ganglion receptive field �18�.
Neurons with a particular learning rule are trained with natu-
ral scene stimulus to both eyes until we obtain binocular
oriented receptive fields. To model deprivation we continue
training but present correlated vectors to the deprived eye,
where the vectors are derived from the correlation function
in Eq. �50� using the method described in Sec. IV A.

To quantitatively measure the timing of the deprivation
experiments, we measure the response of the neurons using
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oriented stimuli and then estimate the characteristic half-time
for the decay of neuronal response. We report a negative
half-time if the response increases. The results of the simu-
lations are shown in Fig. 3.
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APPENDIX: ON THE CORRESPONDENCE BETWEEN
RATE AND SPIKE CORRELATIONS

Here we examine one simple case where the correspon-
dence between rate correlations and spike correlations can be
calculated in a straightforward fashion. Here we analyze the
correlations between the spike trains of two neurons. Spikes
are generated by a doubly stochastic process. At each time
bin there is a probability that the neurons will spike. These
probabilities, which are related to the spike rate, are updated
synchronously in the two neurons and these rates are corre-
lated. Switch to a different rate occurs randomly, with a
memoryless process, resulting in an exponential distribution
with a time constant 	.

The rate values of the two neurons change in a correlated
manner �as in the rest of the paper� with a mean rate r0 and
a correlation function:

Q = n2�1 q

q 1
� . �A1�

We present a variable Si�t� such that Si�t�=1 if there is a
spike at time t for neuron i, and 0 otherwise. The central
quantity we measure is �Si�t�Sj�t+��� where i and j are the
neuron indexes and � is the temporal shift. If � is within the
same time bin, then the rates are correlated. If � is in a
different bin, then the rates are uncorrelated. Correlations
within the same time bin are denoted by � �s and in a differ-
ent time bin by � �d. Consequently,

�Si�t�Sj�t + ��� = �Si�t�Sj�t + ���sPs���

+ �Si�t�Sj�t + ���d�1 − Ps���� , �A2�

where Ps���=exp�−� /	� is the probability that two bins a
time � apart belong to the same time bin.

We now calculate both terms separately, starting with the
more complicated within-bin correlations.

�Si�t�Sj�t + ���s = �ij�����ri + �1 − �����ri
2� + �1 − �ij�rirj

�A3�

where ri and rj are the instantaneous rates, but for simplicity
the dependence on time is not explicitly presented �within-
bin rates satisfy ri�t�=ri�t+���. We now take the average
over the joint distribution of ri and rj and assume that this is
equivalent to taking the temporal average. This average is
denoted by � �. We use ri=r0, ri

2=n2+r0
2, and rirj =qn2+r0

2.
We therefore get

�Si�t�Sj�t + ���s = �ij�����r0 + �1 − ������n2 + r0
2�� + �1 − �ij�

��qn2 + r0
2� . �A4�

The second term has the form

�Si�t�Sj�t + ���d = �Si�t���Sj�t + ��� = r0
2, �A5�

putting these together we get that


ij��� = �SiSj���� − �Si�t���Sj�t + ��� , �A6�

=Ps�����ij������r0 − r0
2� + �1 − �����n2� + �1 − �ij�qn2� .

�A7�

The correlation function calculated in Linden et al. �2009� is:
Cij���=
ij��� / �r0�1−r0�� if both neurons have the same
mean rates.

Using this we get

Cij��� = Ps���	�ij	���� + �1 − �����
n2

r0�1 − r0�

+ �1 − �ij�

qn2

r0�1 − r0�
 . �A8�

As an example, suppose that we have a q=0.8, a mean fre-
quency of 20 Hz, which means that r0=0.02 s−1, and the
standard deviation of 10 Hz in choosing the firing rate, which
means that n=0.01. This implies that a peak of Eq. �A8� for
i� j, is 0.001 and integral over the function from −10 to 10
ms is 0.018, a much lower correlation value than the one
implied by q=0.8.
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