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Motivated by a series of experiments that revealed a temperature dependence of the dynamic scaling regime
of growing surfaces, we investigate theoretically how a nonequilibrium growth process reacts to a sudden
change of system parameters. We discuss quenches between correlated regimes through exact expressions
derived from the stochastic Edwards-Wilkinson equation with a variable diffusion constant. Our study reveals
that a sudden change of the diffusion constant leads to remarkable changes in the surface roughness. Different
dynamic regimes, characterized by a power-law or by an exponential relaxation, are identified, and a dynamic
phase diagram is constructed. We conclude that growth processes provide one of the rare instances where
quenches between correlated regimes yield a power-law relaxation.
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I. INTRODUCTION

Because of their ubiquity in nature, nonequilibrium
growth processes have been the subject of numerous studies
during the last two decades �1–3�. Remarkably, these studies
revealed very general properties of growing interfaces that
are encountered in a large variety of growth processes, rang-
ing from crystal growth to tumor growth. In this context, due
to its obvious technological relevance, thin-film growth has
been one of the major research thrusts.

From the theoretical point of view, many important in-
sights into the universal aspects of nonequilibrium growth
processes have been obtained through the study of stochastic
differential equations and of simple model systems �4,5�.
One of the simplest approach is due to Edwards and Wilkin-
son �6� who described the surface growth due to particle
sedimentation by �h�x , t� /�t=��2h�x , t�+u, where h�x , t� is
the surface height at time t at a site x of a d-dimensional
substrate �of area A� and u represents a constant flux of
deposition. The physical origin of the “diffusion constant” �
can be traced to the surface tension as well as T, the tem-
perature of the substrate. When noise is added to this and the
process is viewed from a comoving frame of the steady state
�i.e., h�x , t�−ut→h�x , t��, we arrive at the stochastic
Edwards-Wilkinson �EW� equation

�h�x,t�
�t

= ��2h�x,t� + ��x,t� , �1�

where ��x , t� is a Gaussian white noise with zero mean and
covariance ���x , t���y ,s��=D�d�x−y���t−s�. A microscopic
realization of the Edwards-Wilkinson equation was soon pro-
posed by Family �3,7� �see also Ref. �8� for a recent more
in-depth comparison of that model with the EW equation�. In
the random deposition with surface relaxation �RDSR� pro-
cess particles drop from randomly chosen sites over the sur-
face. Instead of sticking to the surface at the point of impact,
the particles are allowed to explore the nearest vicinity of
that point and are finally incorporated into the surface at the
neighboring site with lowest height. This diffusion step
smooths the surface and yields correlated growth.

The roughness of a growing surface is characterized by
the time dependent mean interface width

W�t� = ���h − h̄�2� , �2�

where h̄�t��	h�x , t�ddx /A is the mean surface height at
time t. In many instances the mean interface width �after an
initial regime of random surface growth when starting from a
flat initial condition� displays a power-law dependence on
time, W�t�
 t�, before saturating at a value W
L� where L
is the size of the system. The growth exponent � and the
roughness exponent � are universal quantities that character-
ize large classes of growth systems belonging to the same
growth universality class. Thus for the Edwards-Wilkinson
universality class one finds for a one-dimensional substrate
�=1 /4 and �=1 /2. Other universality classes have also
been found �4,5�, some of which, as for example the Kardar-
Parisi-Zhang �KPZ� �9� and the conserved KPZ universality
classes �10,11�, are of direct relevance for thin-film growth.

The morphology of growing structures can depend cru-
cially on experimental parameters as for example the flux of
deposited particles or the substrate temperature �12�. Differ-
ent experimental groups have reported a temperature depen-
dence of the roughness of growing or sputtered surfaces, and
temperature dependent values of the growth exponents have
been found in some systems �13–23�. Systems for which this
has been observed include homoepitaxial growth on Cu�001�
�13,21�, Ag�100� �16,19�, and Ag�111� �16�, amorphous thin-
film growth �22�, growth of CdTe polycrystalline films �23�,
molecular-beam epitaxy growth of Si/Si�111� �15�, as well as
ion-sputtered Si�111� �14�, Ge�001� �17,18�, or Pt�111� �20�
surfaces. The dependence of the roughness on temperature
can be rather involved, yielding different types of behavior
for different systems, depending on how diffusion takes
place and whether additional smoothening mechanisms are
present. In many instances one observes that growth be-
comes increasingly rougher with decreasing temperature,
yielding an increase of the value of �. On the other hand,
some experiments �22,23� revealed an increase of the global
roughness with temperature.

The observation of a transition between different dynamic
scaling regimes due to a change of experimental conditions
is very intriguing and raises the question how a growing
surface evolves from one regime to another after a sudden
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change of, for example, the substrate temperature. We are not
aware of any experimental study of growth processes where
this kind of protocol has been implemented. However, we
expect that the intriguing results reported here will motivate
future experimental studies along similar lines. In this paper
we discuss exact results derived from the EW equation with
a variable diffusion constant, which allows us to investigate
systematically the changes in the surface roughness in case
growth conditions are changed during the growth process.
Interestingly, different dynamic regimes are encountered,
some of which are characterized by a power-law relaxation.
Here, we do not have a specific experimental system in
mind. Instead, our interest is broader, namely, to understand
universal responses of a growing surface to sudden changes
of experimental parameters through the study of simple mod-
els.

It is to be noted that our study is complementary to an
earlier investigation due to Majaniemi, Ala-Nissila, and Krug
�24�. Similarly to our work, these authors studied the impact
of a change of growth conditions on processes described by
linear growth equations. Whereas we discuss in the follow-
ing the effects of a variable diffusion constant, Majaniemi et
al. analyzed how the growing surface reacts to a change of
the noise in the system.

There is also a second, theoretical motivation for our
study. Sudden changes of external conditions, as for example
due to a temperature quench, have been investigated in re-
cent years in a large variety of systems, ranging from mag-
netic systems to glasses �25–27�. In the most common set-
ting, a system initially prepared in some equilibrium state is
suddenly brought out of equilibrium through a temperature
quench. If the system is characterized by slow, nonexponen-
tial relaxation �as it is the case for a ferromagnet quenched to
or below the critical point�, interesting nonequilibrium pro-
cesses and aging phenomena are observed �27�. Some studies
also focused on slow relaxation encountered in up-quenches
in which a magnetic system initially in the ground state is
quenched to the critical point �28,29�. Interestingly, however,
slow relaxation is usually not observed when both the initial
and final temperatures are below the critical point. Indeed,
for models with a discrete global symmetry such as Ising or
Potts models a competing ordered state cannot be reached if
the starting point is close to one of the minima of the equi-
librium free energy. Consequently, nonexponential relaxation
is only encountered in this type of quench if the system has
a continuous symmetry, as it is for example the case of the
XY model �30,31�. As we will show in this paper, surface
growth processes constitute an interesting class of systems
where a change of parameters yields a transition from one
correlated state to another characterized by a power-law re-
laxation.

The paper is organized in the following way. In Sec. II we
discuss the dependence of the surface width, derived from
the EW equation, on the value of the diffusion constant. Sec-
tion III is devoted to the study of the time evolution of the
surface roughness following a sudden change of the diffusion
constant. We thereby identify different dynamic regimes and
present a dynamic phase diagram that summarizes the pos-
sible responses of the growing interface. Finally, we end with
a summary and outlook in Sec. IV.

II. INTERFACE WIDTH

In order to study the effect of a change of external condi-
tions on simple growth processes we consider the Edwards-
Wilkinson equation �1� with a variable diffusion constant �
�a microscopic realization of this process has recently been
discussed in �32��. When describing a deposition or growth
process by this equation, one implicitly assumes that � and
the noise amplitude D depend on the experimental param-
eters, as for example the temperature T. In the following we
will not need to know the explicit dependence of � and D on
these parameters �which would be system dependent�, and
study how the interface width changes when changing the
value of �. The reaction of the growing surface to a change
of the noise has been studied in �24�.

The stochastic EW Eq. �1�, can be solved exactly to give
us for a fixed value of � the width �squared�

W2�t� =
D

2�L
�

n

1 − e−2�tkn
2

kn
2 , �3�

where kn=2�n /L and the sum is over �−L /2,L /2� but ex-
cluding the zero mode: n=0. In Fig. 1�a� and 1�c� we show
the time dependence of the surface width for, respectively,
the case with fixed L=1000 at different �’s and the case with
a fixed �=0.1768 and various L’s. As for the RDSR process
one distinguishes three regimes separated by two crossover
points: a random deposition �RD� regime, followed by a EW
regime, with a final crossover to the saturation regime. In
contrast to Family’s original model, the initial RD process is
not confined to very early times t�1 but might extend to

FIG. 1. �Color online� �a� Log-log plot of the surface width vs
time for a system of size L=1000 and different diffusion constants.
The dotted lines have the slopes 1/2 and 1/4 expected in the random
deposition and EW regimes, respectively. The locations of both
crossover points depend on the diffusion constant. The data are
obtained from the exact solution of the EW stochastic equation. �b�
Time evolution of the effective exponent �Eq. �4�� for the data
shown in �a�. �c� Log-log plot of the surface width vs time for
systems of different sizes evolving at the same diffusion constant
�=0.1768. �d� Time evolution of the effective exponent �Eq. �4�� for
the data shown in �c�. The data in this and the following figures
have been obtained for D=1.
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larger times. In fact, the crossover time t1 between the RD
and the EW regimes is shifted to higher values for decreasing
diffusion constants and diverges in the limit of vanishing �.
As the crossover is smeared out, we identify the crossover
point with the intersection point of the straight lines fitted to
the two linear regimes in the log-log plots. We have the
identity W2= t in the RD regime, yielding the width W1
=�t1 at the crossover point. In the EW regime the relation
between width and deposition time changes to W� t1/4. This
regime extends up to a second crossover point �t2 ,W2�,
whose precise location depends on the values of � and D and
beyond which the final saturation regime prevails. The cross-
over between the different regimes is further illustrated in
Figs. 1�b� and 1�d� where we show the time evolution of the
effective exponent

�ef f =
d ln W

d ln t
=

�t�
n

e−2�tkn
2

�
n

�1 − e−2�tkn
2
�/kn

2
. �4�

for the two cases.
We end this Section with a few remarks:
�i� The �“first”� crossover from the RD to the EW regime,

denoted by �t1 ,W1�, depends only on �. For the range of L’s
we explored, we find W1

2= t1�	 /�, with a constant 	
�0.148. In the L→
 limit, 	→1 /2� �as shown in the Ap-
pendix, see also �33��.

�ii� The �“second”� crossover from the EW to the satura-
tion regimes, denoted by �t2 ,W2�, depends on both � and L.
W2 may be identified with the saturation width, i.e.,
�DL /8�2���nn−2 �33�. Combining this result with the line
drawn through the EW regime, we arrive at t2= �L /24	�2t1
�see Appendix�.

III. SUDDEN CHANGE OF GROWTH CONDITIONS

With a clear picture of the properties of a surface growing
under a constant diffusion constant, we proceed to study the
time evolution of the roughness when � is suddenly changed.
To investigate the response of the growth process to this
change, we use the following protocol: we start at t=0 with a
flat surface and let the surface grow at �i until time t=s, at
which point we change the diffusion constant to the final
value � f. The change of roughness is then monitored through
the time evolution of W2.

As our system displays three different roughness regimes
�RD, EW, and saturation�, there can be in principle nine sce-
narios for the change to be arranged. They can be distin-
guished conveniently by �1� �i, the diffusion constant of the
initial growth, �2� � f, the final value of the diffusion constant,
and �3� s, the time at which � is suddenly changed. By
choosing these three controls judiciously, we can access all
the scenarios. However, covering all cases in detail is not the
aim of this paper. Instead, we are interested in the new phe-
nomena associated with the t dependence of the width,
W2�t ,s�, after �up-or down-� quenches. Obviously, for t�s,
the surface roughness will settle into the value in an “unper-
turbed” system, grown at � f from the start. Denoted by

Wu
2�t�, it is just expression �1� with �=� f. We also refer to

this as the “reference system.” To highlight the changes, we
also study the difference �with t�s�


W2�t,s� = 
W2�t,s� − Wu
2�t�
 �5�

between quenched system and the reference. Clearly, this
quantity reveals how the roughness of the growing surface
adapts itself to the new “experimental” condition, and be-
haves very differently for the various cases. Our goal is to
map out the regions in the �i-� f-s space corresponding to the
novel behavior following a quench.

To be precise, we will evolve the height h�x , t� starting
from h�x ,0�=0 with �i to time s and then continue with � f
until time t. At that point, we compute the width squared and
denote it by W2�t ,� f ;s ,�i�.

Our starting point is the exact solution of Eq. �1�

h̃�kn,t� = e−�fkn
2�t−s��

0

s

dt�e−�ikn
2�s−t���̃�kn,t��

+ �
s

t

dt�e−�fkn
2�t−t���̃�kn,t�� , �6�

written here in terms of the Fourier amplitudes for h�x , t� and

��x , t� : h̃�kn , t�=	dxeiknxh�x , t�, etc. Since the noise is delta

correlated, �
h̃
2� simplifies so that the width square is

W2�t,� f ;s,�i� =
D

L
�

n
�e−2�fkn

2�t−s��
0

s

dt�e−2�ikn
2�s−t��

+ �
s

t

dt�e−2�fkn
2�t−t��� . �7�

Since the width square Wu
2�t ,� f� of the unperturbed system is

given by

W2�t,� f ;s,�i� =
D

L
�

n
�

0

t

dt�e−2�fkn
2�t−t��, �8�

we arrive at the exact result for the difference 
W2

= 
W2�t ,� f ;s ,�i�−Wu
2�t ,� f�
,


W2 = �D

L
�

n

e−2�fkn
2�t−s��

0

s

dt��e−2�ikn
2�s−t�� − e−2�fkn

2�s−t����
= �D

L
�

n

e−2�fkn
2�t−s��1 − e−2�ikn

2s

2�ikn
2 −

1 − e−2�fkn
2s

2� fkn
2 �� . �9�

For later convenience, we define ��� f
W2�t ,� f ;s ,�i� and
note that it depends only on three scaling variables,

� � �i/� f, � � � fs, � � t/s .

Explicitly, we have

���,�,�� � � f
W2, �10�
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=�D

L
�

n

e−2kn
2���−1��1 − e−2kn

2��

2kn
2�

−
1 − e−2kn

2�

2kn
2 �� . �11�

To set the stage for discussions, we begin with the data for
some typical cases, all with s=105, shown in Fig. 2. In order
to be able to discuss the different cases for a fixed s, we must
work with a relatively small system: L=400. The dashed
lines in �a�–�c� represent Wu

2�t� in an unperturbed system.
With � f =4.7�10−10, 0.000 47, and 0.18, the surface is, at
the time of the quench, in the �a� RD, �b� EW, and �c� satu-
ration regimes, respectively. The corresponding differences,

W2�t ,s�, are shown in Figs. 2�d�–2�f�.

The effects of two up quenches into the RD regime, from
the EW ��i=0.0046� and the saturation ��i=0.23� regimes,
are displayed in Fig. 2�a�. As Fig. 2�d� shows, for quenches
into RD, the width W2�t ,s� cannot reach that of the reference
system, Wu

2�t�. The “best” 
W2�t ,s� can achieve is a con-
stant. The physical origin of this behavior lies in the linear
growth of W2 in the RD regime. Thus, for two unperturbed
systems started at different times �say, t= t0 and t1�, the dif-

ference W0
2−W1

2 is just a constant: t1− t0. In our case, the
correlated growth up to time s endowed our surface with a
smaller W2�s� than the reference Wu

2�s�. Immediately after
the quench, correlated growth is simply replaced by indepen-
dent growth of different columns and the width W2�s� is
“frozen” in as a kind of “initial condition” �at t=s�. As a
result, the difference 
W2=Wu

2�t�−W2�t ,s� remains at the
value Wu

2�s�−W2�s�. Of course, if we follow these two sys-
tems further in time, 
W2 will eventually vanish.

Turning next to quenches to the EW regime, we found the
most interesting behavior �Figs. 2�b� and 2�e��. The differ-
ence 
W2 initially decreases rapidly, before crossing over to
a slower, power-law decay at larger times �t�s�,


W2 
 t−�. �12�

For example, for the cases shown in Fig. 2�e�, we measure
close to the end of the time interval the exponents �=0.72
for �i=0.23, �=1.24 for �i=0.0046, and �=1.65 for �i=4.7
�10−10. As we argue below, these are effective values, the
asymptotic values of � being 1/2 or 3/2. Below we will also
discuss in more detail the conditions under which these val-
ues can be expected. Finally, for a quench to the saturation
regime, 
W2 decays exponentially,


W2 
 exp�− �t� , �13�

with a decay constant � that depends both on the value of the
final diffusion constant � f and on the system size L.

Up to now, we have shown only the simplest situation
where the system is well within a given initial regime at the
moment of the quench and, in addition, that it has time to
relax into a well defined regime of the reference system.
Clearly, as we let the final system evolve further, it may
crossover to a different regime �e.g., in case of Figs. 2�a� and
2�d� a crossing over to the EW and saturation regimes will
take place for larger t�. Therefore, we should expect the gen-
eral relaxation process to be quite complex.

The closed forms �9� and �11� are not particularly trans-
parent, as they involve all possible crossover behaviors. To
shed some light on the various scenarios, we consider some
limiting cases where simple properties �exponentials and
powers� can be extracted. A straightforward case is � f�t−s�
�L2, so that � fkn

2�t−s� is always large. Then, the leading
decay is exponential, namely e−8�2�f�t−s�/L2

, since the other
terms in the sum will be much smaller,

�e−8�2�f�t−s�/L2
�4,�e−8�2�f�t−s�/L2

�9, ¯ � e−8�2�f�t−s�/L2
.

�14�

In the opposite limit, where � fs ,�is�1, we have

�1 − e−2�ikn
2s

2�ikn
2 −

1 − e−2�fkn
2s

2� fkn
2 � � �� f − �i�s2kn

2 �15�

to leading order. The summation over n then yields, for
t−s�1, a power-law decay: t−3/2, i.e., �=3 /2.

In order to explore the three-dimensional parameter space
�� ,� ,�� in a comprehensive way, we evaluate numerically
the closed form �11�. The exponent � can be defined effec-
tively as −d log��� /d log�t�. In Fig. 3 we show the contour

FIG. 2. �Color online� ��a�–�c�� Time evolution of the width
square in case the diffusion constant is changed after 105 time steps.
The dashed lines show Wu

2�t� for an unperturbed surface growing at
constant � f. In �a� the quench is to the RD regime, whereas in �b�
and �c� the quenches are to the EW and saturation regimes, respec-
tively. ��d�–�f�� The same cases as shown in �a�–�c�, but now the
difference 
W2, see Eq. �5�, is plotted. Qualitative different behav-
ior is observed, depending on the regime that the unperturbed sys-
tem has at the quench time.
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plot of � as a function of � and � for �=64. This plot reveals
four different regimes: the regime where � or 
W2 is con-
stant �labeled by �=0�, two power-law regimes with values
�=1 /2 and �=3 /2, and finally a regime of exponential de-
cay for large �. The different regimes are separated by cross-
over regions where the effective exponent does not lock-in
into one of the values 0, 1/2, or 3/2.

Figure 4�a� shows how the extensions of the four regimes
depend on the value of � in cases where ��1. Interestingly,
an increase of the value of � mainly shifts the contours in the
log��� vs log��� plot along the �−1,1� direction. This is
shown in Fig. 4�b� where we plot log�� ft�=log���� vs
log��is /� ft�=log�� /��. This way of plotting indeed leads to
an approximate data collapse, which gets better for larger
values of �. That this data collapse is only approximate also
follows from inspection of the exact solution �11�. Still, Fig.
4�b� nicely allows us to visualize the extent of the different
dynamic regimes for large ratios �.

Finally, in Fig. 5, we discuss the change of the effective
exponent � as a function of t for various values of � �and
s=105�. Note that an increasing time t corresponds in Fig. 3

approximately to a cut along the �−1,1� direction, so that we
can distinguish three typical scenarios, separated by the
dashed lines there. Along the upper dashed line, Fig. 5�a�
shows the effective exponent rising to the �=1 /2 plateau
where it remains for a long time before crossing over to the
regime where the difference 
W2 vanishes exponentially fast
�“�=
”�. For the region above this line in Fig. 3, we can
expect similar results. Along the lower dashed line, the same
behavior is seen, except that the plateau value is now �
=3 /2 �Fig. 5�c��. This can also be expected for the region
below this lower dashed line in Fig. 3. Between these two
protocols, a more complex behavior is encountered, as the
effective exponent shows some tendency to lock in at both
values 1/2 and 3/2 �see Fig. 5�b��. We should remind the
reader that the ��t� curves shown here are applicable for all
varieties of quenches �different quench times, as well as dif-
ferent initial and final values of �� as long as the rescaled
time � fs is fixed.

It is interesting to note that a change of the noise during
the growth process also yields a power-law relaxation, as
discussed in �24�. Thus for the one-dimensional EW equation
it was observed that 
W2
 t−1/2 if the system is in the EW
regime before and after changing the noise of the system.
The situation studied in �24� is therefore comparable to our
case, even though we do observe a richer behavior when
changing the diffusion constant.

IV. DISCUSSION AND OUTLOOK

The morphology and roughness of growing surfaces de-
pend in a crucial way on experimental conditions. Motivated
by various observations of a change of the roughness univer-
sality class when changing experimental conditions, we have

FIG. 3. �Color online� Contour plot of � as a function of � fs and
�i /� f for t /s=�=64. Four different regimes, separated by crossover
regions, are identified. The two dashed lines separate the three
qualitatively different types of behavior encountered when plotting
the effective exponent as a function of t, see Fig. 5.

FIG. 4. �Color online� �a� Contour plots of � as a function of
� fs=� and �i /� f for t /s=�=64 �full lines� and 256 �dashed lines�.
Only contours bounding the �=0, 1/2 and 3/2 regimes are shown.
�b� The same contour plots as shown in �a� but as a function of � ft
and �is /� ft. An approximate collapse of the contours is observed.

FIG. 5. The three different quench types illustrated by the time
dependence of the effective exponent �. In all cases the quench
takes place at s=105. Type �a� includes quenches with initial con-
ditions � fs and �i /� f located above the upper dashed line in Fig. 4.
For type �b� the starting point is located between the two dashed
lines in Fig. 4, whereas for type �c� the initial conditions put the
starting point below the lower dashed line.
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studied in this work how a growth process reacts to a sudden
change of the diffusion constant. Exploiting the fact that the
stochastic EW equation can be solved exactly, we carried out
a comprehensive study of the response of the growing inter-
face. Four main relaxation regimes, separated by crossovers,
were identified. For extremely long times any finite system
will eventually relax in an exponential way, due to the pres-
ence of the saturation regime, but this only takes place after
an earlier power-law relaxation. For finite times, a growing
surface rapidly reacts to a change of � such that its morphol-
ogy �roughness� approaches that of a reference system that
was allowed to grow under stable external conditions. If the
change of growth conditions takes place at a time where both
the quenched and the reference system are in a correlated
growth regime, than the relaxation process is governed by
power laws over many time decades. This is our main result
�see also �24��, and we expect this to hold true for other
systems.

Of course, we do not expect that our results for a one-
dimensional system can be applied quantitatively to any of
the experimental systems in which a temperature dependence
of the roughness exponent has been observed. Nevertheless,
we expect that these results should be generic for growth
processes with a sudden change of external conditions, and
that the intriguing signatures revealed in our study can be
generalized to more realistic models, so that they can be
observed in experiments on physical systems.

From a more theoretical point of view, our study reveals
that growth processes provide one of the rare cases where a
power-law relaxation is generically observed when quench-
ing from one correlated state to another. More specifically,
the exactly solvable Edwards-Wilkinson equation allows us
to derive analytical expressions, thus permitting a complete
investigation of the various possible scenarios. It is to be
expected that the power-law relaxation encountered at a
quench also entails interesting aging processes not studied in
the past. Indeed, in the few published studies of aging in
growth processes �8,35,36� constant model parameters were
always assumed.

Our study can be extended in various directions. On the
one hand, we can study quenches in systems where the in-
terface is stabilized not by surface tension, but by a curvature
Hamiltonian. The simplest case is given by the noisy
Mullins-Herring equation �10,34�. As this is again a linear
stochastic differential equation, we can follow the same strat-
egy as in the present work and investigate the response to a
temperature quench by analyzing exact expressions. On the
other hand, we can also extend our study to systems that are
of direct relevance for thin-film growth: the Kardar-Parisi-
Zhang �KPZ� �9� and the conserved KPZ universality classes
�10,11�. As exact expressions for these nonlinear systems are
not available, we plan to integrate these equations numeri-
cally and to simulate quenches in microscopic models be-
longing to the same universality classes.
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APPENDIX

Here, we show how to compute the first crossover time t1
in the limit of infinite L �see also �33��. Since this point is
defined as the intersection of the RD regime �W2=Dt� and
the EW regime �W2�At1/2�, we have

t1 = �A/D�2 �16�

so that the problem reduces to finding the amplitude A asso-
ciated with EW growth. For L→
, the sum in expression �3�
can be replaced by an integral, which can be computed to
extract A. Further simplification occurs if we consider �tW

2

=D	−�
� e−2�t�2

d� /2� instead. Imposing the ansatz W2�At1/2,
we arrive at

At−1/2 �
D

�
�

−�

�

e−2�t�2
d� . �17�

Transforming to ���2�t�, we have

A �
D

�2��
�

−��2�t

��2�t

e−�2
d� . �18�

So, as t→
 �or, to be precise, L� t��−1�, we arrive at
W2�t�=At1/2 as well as

t1 = � A

D
�2

=
1

2��
=

	

�
�19�

with 	=1 /2�.
Of course, this approach can also be used to extract t2.

Equating this W2 �i.e., At1/2� to the saturation W2 �i.e.,
�DL /8�2���nn−2=DL /24��, we arrive at

t2 = � DL

24�A
�2

=
�

288�
L2.

This provides

t2

t1
= ��L

12
�2

= � L

24	
�2

and

1

�
= log��L/12.

We should emphasize again that these results are exact in the
L→
 limit.
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