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Influence of confinement by smooth and rough walls on particle dynamics
in dense hard-sphere suspensions
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We used video microscopy and particle tracking to study the dynamics of confined hard-sphere suspensions.
Our fluids consisted of 1.1-um-diameter silica spheres suspended at volume fractions of 0.33-0.42 in water-
dimethyl sulfoxide. Suspensions were confined in a quasiparallel geometry between two glass surfaces: a
millimeter-sized rough sphere and a smooth flat wall. First, as the separation distance (H) is decreased from 18
to 1 particle diameter, a transition takes place from a subdiffusive behavior (as in bulk) at large H, to
completely caged particle dynamics at small H. These changes are accompanied by a strong decrease in the
amplitude of the mean-square displacement (MSD) in the horizontal plane parallel to the confining surfaces. In
contrast, the global volume fraction essentially remains constant when H is decreased. Second, measuring the
MSD as a function of distance from the confining walls, we found that the MSD is not spatially uniform but
smaller close to the walls. This effect is the strongest near the smooth wall where layering takes place.
Although confinement also induces local variations in volume fraction, the spatial variations in MSD can be
attributed only partially to this effect. The changes in MSD are predominantly a direct effect of the confining
surfaces. Hence, both the wall roughness and the separation distance (H) influence the dynamics in confined

geometries.
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I. INTRODUCTION

The dynamics of particles in confined colloidal suspen-
sions is an intriguing topic that has raised a lot of attention
recently. On one hand, it has been argued that experiments
on spatially confined systems can reveal the dynamic length
scales that occur in bulk suspensions [1,2] or molecular sys-
tems [3]. On the other hand, the influence of confining walls
on the mechanisms and time scales of structural rearrange-
ments is also a topic in its own right [4]. Most fluids that
have been studied are (near) hard-sphere (HS) suspensions,
motivated by their conceptual simplicity at the level of the
particle pair interactions. Even for this system, the collective
dynamic behavior can already be rather complex.

Bulk HS dynamics has been studied extensively, both at
the macroscopic level of the colloidal glass transition [5,6]
and at the microscopic level of particle motions [7-9]. On
increasing the HS volume fraction, a consistent slowing
down of the dynamics was found, which has manifested it-
self as an increase in the correlation time [10] and a decrease
in the diffusion coefficient [7,11-13] or mean-square dis-
placement (MSD) [9,14,15]. However, understanding the
mechanisms underlying this slower dynamics beyond quali-
tative notions can be difficult. From an intuitive point of
view, it is clear that the local free volume should play an
important role. If this volume is decreased then the motion of
individual particles will become more restricted by the (tran-
sient) cages formed by the surrounding particles, and conse-
quently the system will slow down. A description of this cage
dynamics in terms of length and time scales was given by
Weeks and Weitz [16]. However, on approaching the colloi-
dal glass transition, also more collective rearrangements
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have been reported that cannot be covered by a simple cage
concept [3,14]. This illustrates that our understanding of col-
lective dynamics is still incomplete, even for colloidal hard-
sphere fluids.

Spatial confinement of a HS suspension will certainly in-
terfere with the mechanisms for structural reorganizations. If
dimensions of the fluid container are reduced to the length
scales involved in the structural rearrangements, such as
those that occur in bulk, then at least certain modes of large-
scale reorganization will be disabled. For example, while
small-scale processes like the caging of individual particles
may be sustained until the confinement distance becomes
only a few particle diameters, collective motions of, e.g.,
hydrodynamic clusters will become impossible already at
larger confinement distances. Generally, the disabling of dy-
namic modes is expected to result in a slower dynamics
manifested, for example, as a decrease in MSD. Indeed, this
trend has also been found in several experimental [1,2] and
simulation [17-19] studies. However, a deeper insight into
how the observed reduction in MSD comes about is still
lacking. Several shortcomings can be pointed out:

(1) The effects of the particle-wall interaction are still
incompletely understood. The simplest case is that of hard
spheres confined by hard walls: here, only the roughness of
the wall has to be considered. In several computer simulation
studies, the wall roughness has been found to strongly affect
the local particle dynamics [4,18,20]. However, in experi-
ments [1] the permanent adhesion of a fraction of the par-
ticles to a smooth wall did not have a noticeable effect. In
another experimental study [2], a layer of particles was de-
posited and subsequently sintered in order to roughen the
wall. As far as we know, no other experimental studies exist
that specifically address the effect of the wall roughness on
particle dynamics in confined fluids.

(2) How the effects of the confining walls on the particle
dynamics are transmitted from the walls into the suspension
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FIG. 1. (Color online) (a) Schematic illustration of our CA. Colloidal fluid is confined between a glass plate and a sphere in a
quasiparallel geometry. The position of the sphere can be accurately controlled via the piezo stage on which the CA tripod is resting.
Observations of the particles are made from below using a CSLM. (b) Close-up of the sphere-plane geometry with confinement gap (H) and
height of the focal plane (Zgp). Also a typical CSLM image of a confined fluid is shown (scale: 87 X 66 um?).

is also an unsettled issue. Depending on the restructuring
mechanism, the particle dynamics could be collective or al-
ternatively very local and dependent on the separations from
the walls. From the literature it is not clear which cases to
expect. In computer simulations on Lennard-Jones fluids, a
confinement-induced glass transition was reported as a col-
lective effect of all layers [4]. Another simulation study [18]
reported a lack of evidence that the particle layer closest to
the wall was decoupling dynamically from the rest. How-
ever, in simulations on HS confined by spherical cavities
with smooth and rough walls, Nemeth and Lowen [21] found
MSDs that depend strongly on the distance from the wall.
For the smooth walls, the tangential MSDs were larger at the
wall as compared to the interior, whereas for rough walls a
different spatial dependence was found. Experiments on HS
suspensions confined between two flat plates, performed by
Nugent et al. [1] showed yet again different trends: MSDs in
planes parallel to the wall did not depend on the distance
from the wall. If and how these different findings could be
reconciled is not clear at present, and hence a further study is
warranted.

(3) To what extent local variations in the MSD of con-
fined fluids could be attributed to local differences in volume
fraction is also unknown at present. The issue has been
raised, but only addressed in a few studies. Mittal ef al. [17]
studied this issue via computer simulations and found that
higher local densities in a confined HS fluid correlated with a
faster local diffusion. This counterintuitive result was ex-
plained via the increased Widom insertion probability. Also
experimental data that allow correlating between local MSD
and local volume fraction are scarce. Dullens and Kegel [22]
studied HS suspensions at a single wall and found, up to a
volume fraction ¢=0.54, a continuous decrease in MSD. Sa-
rangapani and Zhu [2] measured local volume fractions in
two confined samples but did not aim for correlation with
local MSDs. Nugent et al. [1] measured MSDs and local
densities and found that one of the two particle species of
their bidisperse system showed a concentration peak at the
wall, but no change in the MSD parallel to the wall.

In this paper, we shed light on the three mentioned issues
via an experimental study on confined hard-sphere suspen-
sions, focusing our analysis on the MSDs measured with
video particle tracking. A systematic study was performed
into the effect of confining a colloidal fluid by two different
walls (smooth and rough), on local particle dynamics. We
found that progressive confinement caused a dramatic de-
crease in the MSD, without significant changes in the overall
concentration. Local concentration variations within the con-
finement gap did occur, however, and showed significant
asymmetry when comparing the different walls. Also the
MSDs were significantly different at the smooth and rough
walls. These trends will be analyzed, from which it will be
concluded that the roughness of the wall and the distances
from the rough and smooth walls have a much stronger in-
fluence on MSD than the variations in local volume fraction.

II. EXPERIMENTAL METHODS

A. Confinement apparatus

Our homemade confinement apparatus (CA) [23] is
sketched in Fig. 1. Colloidal suspensions are confined be-
tween two glass surfaces (a sphere and a cover slide). The
sphere (Dj,..: 2 mm, Duke Scientific) is glued onto a
holder, which is connected to the CA tripod via stiff double
cantilevers. The tripod rests on a piezo stage via three micro-
screws. Coarse control over the gap height H is achieved via
the screws and guided by a visualization using fluorescent
liquid. Fine control is achieved using a computer driven pi-
ezo stage (Physik Instrumente) with a vertical range of
20 pm and an accuracy of 0.01 wm. In typical measure-
ments, Dg,p...>H, which means that an effective plane-
plane geometry is obtained, independent of the precise align-
ment. Both confining surfaces were analyzed for topography
with atomic force microscopy (AFM). The results are shown
in Fig. 2. The root-mean-square (rms) value of the height
variations reveals that, while the bottom surface is smooth
(rms=10 nm), the surface of the glass sphere shows signifi-
cant roughness (rms=0.13 um).
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FIG. 2. (Color online) Representative cross sections of AFM
topography analysis of the two confining surfaces. Axis ranges are
scaled to the diameter d of the colloidal particles. Inset (a) shows
topography image of the rough glass sphere while inset (b) shows
the smooth confining wall, i.e., cover slip. The color bar of both
insets shows the height, also scaled to d. The dotted lines corre-
spond to the line profiles in the main graph.

B. Colloidal fluid

Core-shell silica particles with outer diameter d
=1.1 um were synthesized following the method described
in [24], which entails the deposition of nonfluorescent silica
onto a fluorescent core. In our case, the core contains
Rhodamine isothiocyanate and had a diameter of =500 nm.
Such core-shell particles allow for an accurate localization of
particle centers from video microscopy images, even at high
volume fractions. The polydispersity was assessed to be 8%
from scanning electron microscopy images (see supplemen-
tary material [25]). To obtain (near) hard-sphere suspensions,
the solvent was changed to a refractive index matching mix-
ture of H,O/DMSO [26] to minimize the van der Waals
attractions (and to optimize visualization, see Sec. II C),
while LiCl was added to a final concentration of 0.01 M, to
reduce the electrical double layer thickness to =7 nm.

Soft centrifugation (1000 g for 1 h) was used to concen-
trate the fluid. This was done directly in the sample holder,
which was made of an open cylindrical tube (diameter: 20
mm) glued onto a round glass cover slip. Sediments were
prepared at volumes ranging in between 0.25 and 1.5 ml, at
an initial volume fraction ¢=0.66, in line with expectations
for random close packing of a system with 8% polydispersity
[27]. After the removal of the supernatant the tube was
weighed, and the amount of solvent needed to achieve the
target ¢ was added. Then the sediment was resuspended us-
ing a whirl mixer. Samples were prepared at ¢ values rang-
ing from 0.15 to 0.57.

The precise volume fractions were ascertained a poste-
riori from the confocal scanning laser microscope (CSLM)
observations. Localizing all particles (see Sec. II C) allowed
us to obtain ¢ values as follows: (X,Y,Z) control volumes
(V) were defined as (65 umX65 umXAZ) with either
AZ=H (for the global volume fraction) or AZ<<H (for local
¢ values). Then it was calculated for each particle (i), which
fraction (f;) of its volume fell within the control volume V,
by using the relative location of the particle to the boundaries
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of V and assuming d=1.12 um. For V> 7d*/6 this mostly
corresponded to f;=1, but for small AZ mostly 0=f;<1.
Then taking N,;=2N,f; as the effective number of particles
allowed us to calculate ¢ as Neffwd3/6V. In this way it was
ensured that ¢ always represents a physical volume fraction,
even for AZ<d. Typical values were N, ;> 1000 (global ¢)
and N,;~ 1000 (local ¢). In the case of local volume frac-
tions it must be underlined that this is a strictly geometrical
definition; hence, it will be designated as ¢, from now on.

An accurate and consistent way to measure d was to ana-
lyze a CSLM image of a very dense layer on a cover slip
with many particles touching each other. The average dis-
tance between touching particles was found to be
1.12+0.03 um, giving an estimated relative inaccuracy in
the volume fraction of 8%. Also the magnitude of H was
measured more accurately, by making use of the CSLM re-
cordings. The location of the bottom surface was defined as
0.5d below the measured average Z position of all particle
centers in the lowest layer. The top surface was localized by
extrapolating the steep flank of the concentration profile to
zero (see Fig. 6) and adding 0.5d. Considering the particle
polydispersity and the rms roughness of the top surface, we
estimate the inaccuracy of H to be 0.2-0.3 um.

In the presence of confining surfaces, concentrated sus-
pensions may change their structures and dynamics. How-
ever, the time that is needed for such changes is not known a
priori and may depend on the volume fraction. For this rea-
son, we studied confined systems at ¢=0.33-0.42, i.e., well
below the glass transition point for hard spheres at ¢=0.58
[5]. Moreover, we also examined the influence of the waiting
time after the fluid had been confined to a new gap height.
Here, it turned out that waiting 4 h instead of the (standard)
1 h gave similar results. Furthermore, we checked whether
the colloidal fluid crystallized at time scales comparable to
the duration of our experiment. No evidence of crystalliza-
tion was found, in accordance with the 8% polydispersity
and a previous study [28].

C. Confocal microscopy and particle tracking

The CSLM was an UltraView LCI10 system (Perkin-
Elmer) containing a Nikon Eclipse inverted microscope
equipped with a Nipkow disk (Yokogawa module) and
100X numerical aperture 1.3/0il objective. When tracking
particle dynamics, we imaged horizontal (X,Y) focal planes
for 240 s at a rate of 10 frames/s. For measuring particle
locations in three dimensions (3D) we measured series of
images along the Z direction (up to 30 wm from the bottom,
taking =60 s) at 0.1 wm/step. The images were processed
via the available particle tracking codes in two dimensions
and 3D [29]. The accuracy of locating the centroid of par-
ticles in 3D was 0.02 um in X-Y and 0.05 um in Z direc-
tion. The Z resolution of our two-dimensional particle track-
ing was measured to be =~0.8 um (full width at half
maximum), by localizing (almost stationary) particles in a
three-dimensional volume and subsequently analyzing per
focal plane, up to which distance from the focal plane par-
ticles were still accepted by the two-dimensional particle
tracking code (using typical selection criteria for brightness,
object size, etc.).
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FIG. 3. (Color online) MSD vs time lag for bulk samples at
different volume fractions. Lower abscissa and left ordinate: lag
time (s) and mean-square displacement (um?). Upper abscissa and
right ordinate: normalized data, where (Ar?(7)) was divided by d?
=1.32 um? and 7 by the Brownian time (7,), where 7,=d?/4D,
equals 3.54 s. The symbols indicate volume fractions (¢) of 0.16
(M), 0.26 (@), 0.37 (A), 0.42 (V¥), 0.52 (#), 0.54 (), and 0.57
(»). Open symbols (0J) indicate the noise floor.

Image-time series aimed at studying particle dynamics
typically consisted of 2500 time steps. After localizing all
particles in each frame and building trajectories, MSDs in
the horizontal plane were calculated using

(A1) ={[x(r+ ) = x(O P+ [p(r+0 - yOF}, (1)

where x(7) is the X position of a particle at real time ¢, 7is the
lag time, the braces { } indicate an averaging over all times ¢,
and the angular brackets ( ) indicate an averaging over all
particles. In the calculation of x(z) and y(z) a correction for
mechanical drift was applied by subtracting the measured
average displacement of the ensemble of particles. The typi-
cal accuracy in the MSD was 1.0 X 10™* um?. In the follow-
ing, MSDs will be fitted as

(Ar*(n) = A7/ 1)* (2)

with A as the amplitude, 7, as the shortest exposure time, and
« as the exponent indicating the behavior of Brownian mo-
tion (a=1 diffusive, @<<1 subdiffusive). The fitting range for
«a was taken from 0.1 to 10 s.

III. RESULTS
A. Particle dynamics in bulk fluids

As a reference, we present in Fig. 3 a series of MSD
curves measured for the bulk suspensions at different volume
fractions ¢=0.16—0.57. To ensure that the measurements
pertained to the dynamic behavior in bulk, observations were
done at Zpp=30 wum, which will be shown to be sufficiently
far away from the wall. As ¢ is increased both the amplitude
A and the exponent a of (Ar’(7)) [see Eq. (2)] become
smaller. The exponent () is observed to change from almost
1.0 (as for a viscous liquid) to 0.0 (as for a solid). The oc-
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currence of a plateau for ¢ =0.52 suggests a solidlike micro-
scopic dynamics already starting at this volume fraction,
whereas the macroscopic glass transition for colloidal HS is
supposed to occur at ¢=0.58 [5]. These results are qualita-
tively in agreement with other studies and will be further
analyzed in Sec. IV A.

B. Particle dynamics in confined fluids

The effect of confinement on the MSD was examined for
bulk volume fractions of 0.33, 0.38, and 0.42, in the range
where the bulk fluid still showed liquidlike behavior. For all
three volume fractions the trends were similar; results will be
presented for the system at ¢=0.33, unless mentioned other-
wise. Figure 4(a) shows the MSDs taken in the midplane of
the gap (Zpp=H/2) between plate and sphere. On decreasing
H from 20 um to 1 particle diameter, strong changes in the
MSD curve are observed: a reduction in amplitude as well as
a decrease in the exponent, eventually reaching zero. These
changes are qualitatively similar to the effects of increasing
the volume fraction in bulk systems, and that eventually led
the system into the glass state (Fig. 3). Same trend is ob-
served for Fig. 4(b) where the MSDs at a fixed distance
(2 wm) away from the rough and smooth walls are moni-
tored.

A systematic study was performed, covering MSDs as a
function of distance from walls. It then turned out that the
MSDs of our confined fluids are not constant over the gap.
This is demonstrated by the comparison of Fig. 4(a), which
shows the MSDs measured at the midplane, with Fig. 4(b) in
which the MSDs measured at Zpp=2 um and Zpp=H
—2 um are plotted. Clearly, near the surfaces the MSDs are
different from those at the midplane. It is also evident from
Fig. 4(b) that near the smooth bottom plate, the MSDs are
consistently lower than at the rough surface of the top
sphere. This difference will be further discussed in Sec.
IV B.

We examine the MSD(H,Zp, 7) function in more detail
by plotting the magnitude of (Ar?(7)) evaluated at a lag time
=10 s, for many (H,Zpp) combinations. At this lag time,
the differences between the MSDs are more pronounced than
at shorter times, while the typical errors found at long times
(due to poor statistics and gradients in drift [30,31,35]) are
still small.

The solid symbols in Fig. 5 show the spatially resolved
MSDs for the same gap heights as in Fig. 4(a) (including an
additional experiment for which H— ). It is observed that
the MSDs show a maximum in between the two confining
surfaces. This maximum is not in the middle of the gap but
closer to the surface of the top sphere. It is also noted that the
Zpp dependence of the MSD is gradual. Although the MSDs
become rather small due to the confinement, they all remain
well above the noise floor, indicating that the particles are
still rearranging themselves. This finding is corroborated by
our trajectory analysis (not shown), in which all particles still
show motion. Hence, we found no evidence that particles
had permanently stuck to any surface.

Considering the possibility of layer formation at walls and
the clear dependence of the MSD on the concentration in
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FIG. 4. (Color online) MSD vs time lag plot for decreasing confinement gap (H). In (a), each curve indicates the MSD at the midplane
Zpp=H/?2 (see Fig. 1). Correspondence between H (um) and symbols: 20 (H), 16 (@), 12 (A), 8 (V), 4 (#), and ~1.3(«) um. (b) MSD
vs time lag for different gap heights H, now for planes 2 um away from the confining walls. Open and closed symbols correspond to rough
(top) and smooth (bottom) walls, respectively. Volume fraction (¢) of the sample is 0.33. Qualitatively similar behavior was observed for

samples at ¢=0.38,0.42.

bulk HS systems (Figs. 3 and 7), the question arises to what
extent the variations in MSD could be attributed to local
volume fraction effects. The main graph of Fig. 6 shows the
“geometrical local volume fraction” profile ¢ (Z), calculated
as explained in Sec. II B. Clearly, the profiles are strongly
peaked near the bottom wall. The peaks are approximately
equally spaced (distance AZ,,: 1.14 um) and their ampli-
tude becomes progressively smaller as the distance from the
wall is increased. This is similar to the behavior that was
found in previous studies on layering of HS suspensions
[32-34]. In our case the depth of the first minimum is re-
markably low, corresponding to a very low occurrence of
sphere centers (as was checked from the three-dimensional
localization data). Furthermore, the first peak to peak dis-

Z,, (pm)

FIG. 5. (Color online) Spatially resolved behavior of MSD ;g
for the fluid at ¢=0.33, confined at different gap heights H. Corre-
spondence between H (um) and symbols: 20 (H), 16 (@), 12 (A),
8 (V¥), and 4 (). The @ symbol belongs to the experiment where
the second confining surface is far away (H— ). Corresponding
open symbols indicate “bulk” MSD values calculated from the local
volume fraction showing what MSD__;, ¢ would be if the system
was bulk and dynamics were solely governed by volume fraction.
The open symbols have been calculated from the linear fit to a
characteristic curve in the inset of Fig. 6. The error bars have been
calculated from different fits to inset of Fig. 6. The dotted part of
open symbols indicates extrapolation. See text for further details.

tance is slightly larger; we offer no tentative explanation for
this.

Confinement by the second surface causes only little
changes in the ¢((Z) profile near the bottom surface; the
strongly peaked structure remains and also the ¢, values su-
perimpose fairly well. The overall volume fraction shows a
small decrease upon confining the fluid from H—x to H
=20 wum, but upon progressive confinement it shows less
than 5% relative variation. Also the concentration profile un-
der the top sphere can now be studied. Although some lay-
ering occurs, the peaks are by far less pronounced than at the
bottom surface. Again this points at an important difference
between the top and bottom surfaces, which will be dis-
cussed in Sec. IV B.

We return to the question whether the variations in MSD
could be due to the variations in local volume fraction only.
We examine this by measuring the relation between the local
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FIG. 6. (Color online) Geometric volume fraction (¢;) vs Z for
different confinement gaps: correspondence between H (um) and
symbols: 20 (H), 16 (@), 12 (A), 8 (V¥), and 4 (). The @ symbol
belongs to the experiment where the second confining surface is far
away (H— ). ¢ indicates local volume fraction calculated in a bin.
Inset: convoluted volume fraction (¢) vs Z histogram, as needed for
generating reference MSD ;)  data at in Fig. 5. Solid line is linear
interpolation to convoluted volume profile used to calculate ex-
pected MSD values in Fig. 5. See text for further details.
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¢ and the local MSD and subsequently comparing each local
MSD magnitude with the value that it would have in a bulk
system at the local ¢. A question that then arises is down to
which length scale a calculated local ¢ would still be mean-
ingful. Since the MSD of a particle should at least depend on
the cage defined by its direct neighbors, the use of ¢ values
calculated at smaller length scales than this cage length
would not make sense (the precise length scale at which local
¢ does matter still has to be assessed for confined systems).
To take this aspect into account and sample the ¢(Z) profile
at a more appropriate length scale, we convoluted the Z his-
togram of particle center locations with a block profile of
width AZ,,~d. Subsequently we applied an additional con-
volution with a Gaussian kernel with 0.8 um FWHM to
account for the optical Z resolution of the MSD measurement
(see Sec. II C). These operations produce the ¢(Z) profiles
shown in the inset of Fig. 6. Looking up the ¢ values from
this profile and interpolating against the MSD(¢) relation for
bulk samples then produces the densely dotted MSD(Z) data
shown in Fig. 5. Since slightly different convolutions and
interpolations would have been possible, we represent the
effect thereof on the MSD values by error bars. Now com-
paring the interpolated MSD curves to the measured data, it
becomes clear that the data interpolated from the MSD(¢)
relation strongly overestimate the MSDs of the confined sys-
tems, and the more so as H gets smaller. This demonstrates
that the dramatic decrease in MSD near the surface(s) can
only for a very small part be attributed to variations in local
volume fraction.

Confinement experiments were done at several volume
fractions (¢=0.33,0.38,0.42), but so far only the results at
¢=0.33 were shown. Importantly, for all three samples a
similar behavior was found when the gap height was reduced
from (effectively) infinite to just a few particle diameters. To
illustrate this, we plotted MSD data at 7=10 s, for both bulk
and confined fluids in Fig. 7. For all three confined fluids, the
local volume fraction changes only a little with confinement,
and dramatic reductions in MSD compared to the bulk are
found. At the smallest gaps, it seems that the volume fraction
differences even do not matter anymore. This strong depen-
dence of the MSD on H as compared to the dependence on ¢
is also illustrated in the inset of Fig. 7. This underlines once
more that the reductions in MSD are largely due to confine-
ment, rather than due to the local volume fraction.

IV. DISCUSSION
A. Comparison with hard-sphere systems

Besides using the MSDs in Fig. 3 for comparison between
bulk and confined fluids, it is also interesting to examine if
they show the behavior as expected for hard spheres. From
the curve at ¢=0.16 an apparent viscosity of 6.0 mPa s was
extracted using the Stokes-Finstein equation; this gives a
relative viscosity of 1.47, which is fairly close to =1.6 as
expected for HS [36,37]. However, the calculation of a vis-
cosity from MSD data using the generalized Stokes-Einstein
relation [38,39] is not trivial for nondilute HS suspensions.
Alternatively also the normalized diffusion coefficient D/ D,
with D, as the diffusion coefficient for ¢ — 0, can be com-
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full squares indicate bulk measurements; all other symbols refer to
confinement. Open red: Zpp=H/2, solid black: Zpp=2 um, and
crossed blue: Zpp=H-2 um. Symbol shapes indicate the initial
volume fraction: ¢=0.33 (@), 0.38 (M), and 0.42 (V). H varies
between 20 and 4 um for this graph. Inset: same MSD data at
Zpp=H/2 plotted vs 1/H.

pared to literature. For ¢=0.16, Ottewill and Williams [40]
found a normalized self-diffusion coefficient of =~0.72 at
short times and =0.44 at long times. This suggests that our
data at ¢=0.16 (where D/Dy=0.68) show the short-time
self-diffusion. The subdiffusive behaviors (0<a<<1) at
higher volume fractions then show intermediate regimes be-
tween short- and long-time self-diffusion.

Also direct comparisons with MSDs of other HS systems
are possible. Kasper et al. [28] studied cross-linked
poly-z-butylacrylate particles (d=910 nm) in 4-fluorotoluene
at Zpp=10 um (or 11 particle diameters) for ¢
=0.32-0.60. They also observe a transition from an almost
diffusive behavior (at ¢=0.32) to a plateau (at ¢=0.60), with
subdiffusive behaviors (0 <a< 1) in between. After normal-
izing MSDs as (Ar?)/d* and 47D,/ d?, which should result in
a master curve for hard spheres, their data can be compared
to ours. It then turns out that, while the pattern of MSD
curves matches well between the two systems, the volume
fractions of the superimposing curves do not correspond well
(see supplementary material [25]).

Reference data are also available for systems of poly(hy-
droxystearic acid) coated spheres suspended in tetralin/
decalin/carbon tetrachloride [15], cycloheptylbromide/
decalin [9], and cyclohexylbromide/decalin [1,2]. However,
these studies address normalized times that are much longer,
and in a range that gives only a small overlap with our data
(see supplementary material [25]). Also at these longer time
scales, the normalized MSD curves of the various systems do
not show the overlap expected for ideal hard spheres.

Comparison with literature for (near) HS systems thus
leads to two conclusions: (1) the dynamics of our bulk silica
suspensions qualitatively resembles that of other (near) hard-
sphere fluids and (2) the MSDs of several (near) HS systems
do not all collapse onto the expected master curve. This sug-
gests that the particle dynamics in near HS fluids is rather
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sensitive to small deviations from ideal HS behavior and
underlines the value of MSD measurements in bulk, as a
reference for analyzing the dynamics under confinement.

B. Asymmetry between the two confining surfaces

From the AFM topography images (Fig. 2) it was clear
that whereas the cover slip was very smooth, the surface
roughness of the glass sphere was certainly not negligible
when compared to the size of the silica particles. The layer-
ing that we found at the smooth wall and the almost com-
plete absence thereof at the rough wall (Fig. 6) are also in
good agreement with expectations for ordering phenomena at
smooth and rough walls: in several previous studies (e.g.,
[18,20]) such a behavior has been found. Taking these obser-
vations together with the strong effects of wall roughness on
local particle dynamics as found in computer simulations
[4,18,20], it seems rather likely that the different MSDs
found at the two glass surfaces are to be attributed to the
differences in the wall roughness.

However, since the mass density of our particles exceeds
that of the solvent by ~800 kg/m?, it cannot be excluded a
priori that also gravity could affect the particle dynamics
(and hence contribute to the asymmetry between top and
bottom surfaces). An estimation of the importance of gravity
can be made by comparing the buoyancy force on a single
particle to the thermal force kT/a (with a as the particle
radius). Expressed as a Peclet number Pe=Apga®/ kT [41,42]
we obtain Pe=0.2. This suggests that the thermal forces are
stronger, but also indicates that the effect of gravity should
not be completely ignored. Another way of assessing the
importance of gravity is to look at the ¢(Z) profiles for Z
>10 um. While the data in Fig. 6 indeed show a decreasing
trend, taking this effect of gravity on ¢ into account as in
Fig. 5 (open symbols), it came out that a substantial part of
the reduction in MSD at the bottom wall (compared to the
bulk) cannot be attributed to the volume fraction change.
This corroborates once more that the surface effects domi-
nate.

C. Relative importance of wall and confinement effects

The availability of different wall surfaces (in contact with
the same fluid) together with the ability to control H makes it
interesting to compare the effects of the single walls and the
confinement distance on the MSD. This is illustrated in Fig.
8, which presents the same data as in Fig. 5, but now as a
function of the normalized distance from both walls. Also the
magnitude of the bulk MSD at ¢=0.33 (obtained by interpo-
lation) is included. The data at H=20 wum show a large
MSD plateau with a magnitude close to that of the bulk
system. This means that the effects of the separate walls (i.e.,
without the influence of a second surface) can be estimated
from the difference between the solid and dashed black lines.
Clearly, for the smooth wall the reduction in MSD is appre-
ciable and extends over long distance, whereas for the rough
wall the effect is small and short ranged. Figure 8 also makes
clear that both smooth wall and confinement can cause a
major reduction in MSD, and moreover that layering and
confinement can also work together: even very close to the
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FIG. 8. (Color online) Alternative representation of the data in
Fig. 5, to reveal the contributions of layering and confinement on
the MSD at 7=10 s. The dashed line indicates the MSD of the bulk
fluid (at ¢=0.33), whereas the solid black line belongs to the lay-
ered system (i.e., in the absence of the top surface). Correspondence
between H (um) and symbols: 20 (H), 16 (@), 12 (A), 8 (V¥), and
4 ().

smooth surface, where the MSD was already reduced by two
orders of magnitude due to the layering, the confinement is
able to further reduce the MSD by more than an order of
magnitude. For the rough wall, it is illustrated that the wall
effects become negligible compared to the confinement ef-
fects, already at relatively large H. This corroborates the ap-
proach taken in Ref. [2] where the wall was roughened in
order to mitigate layering effects. The implication of these
findings for practical cases (such as channels in a microflu-
idic chip or pore channels) is that the overall dynamics in the
cavity could be controlled by engineering the roughness of
the walls.

V. CONCLUSIONS AND OUTLOOK

We investigated the dynamics of dense hard-sphere sus-
pensions under confinement between smooth and rough sur-
faces. Upon decreasing the gap height H, the overall particle
dynamics was found to slow down dramatically, in accor-
dance with previous studies. Systematic experiments allowed
us to conclude that this slowing down is predominantly a
direct effect of confinement and only slightly due to the
confinement-induced variations in particle density. Within
the gap, local differences in the dynamics were found. Local
MSD minima occurring at the walls indicated that besides
the confinement effect, wall effects can also contribute to the
dynamics. In the case of a smooth wall, interplay between
the effects of layering and confinement occurs.

Our finding that volume fraction alone cannot explain the
variations in MSD for layered or confined systems confirms
that studies of mechanistic details will be needed to achieve
a deeper understanding. Finally, we also remark that the dy-
namics of confined (near) HS suspensions appears to be sen-
sitive to details of the interparticle and the particle-wall in-
teractions. Choosing very similar materials for the particles
and walls could help us to better define the systems. Also
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more systematic experiments regarding the wall roughness
should be performed.
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