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The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investi-
gated using a direct numerical simulation method, which takes into account hydrodynamic interactions and
thermal fluctuations accurately. Simulations were performed under steady shear flow with periodic boundary
conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume
fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions.
The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into
a semiempirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctu-
ating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square dis-
placement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so
that the particle diffusion coefficient is determined from the long-time behavior of the mean square displace-
ment. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural
relaxation of the dispersed Brownian particles is examined.
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I. INTRODUCTION

The links between macroscopic rheological properties and
microstructures in colloidal dispersions have been exten-
sively investigated for many systems, including dispersions
of sterically stabilized and charged-stabilized particles in
host fluids �1,2�.

The behavior of a monodisperse dispersion composed of
solid particles immersed in a Newtonian host fluid strongly
depends on the volume fraction of the dispersed particles �
and the shear rate �̇. When the shear rate is zero ��̇→0�, the
shear viscosity of the dispersion is referred to as the zero-
shear viscosity �0. In the dilute limit ���1�, the zero-shear
viscosity is well approximated by Einstein’s formula �3�,

�0 = ��1 + 2.5�� , �1�

where � is the shear viscosity of the host fluid. In a concen-
trated dispersion, theoretical difficulties become rather se-
vere, since the behavior of the dispersed particles is compli-
cated by the interactions between the particles and thermal
fluctuations. In particular, the solvent-mediated many-body
hydrodynamic interactions �HI� between the particles com-
plicate the dynamical behavior. A number of experiments for
concentrated dispersions have been performed to reveal the
origin of the non-Newtonian behavior of these dispersions,
and several semiempirical formulas for �0 have been pro-
posed to characterize the experimental results. For example,
the Krieger-Dougherty relationship �4�,

�0 = ��1 −
�

�m
�−����m

, �2�

where ��� is the intrinsic viscosity and �m is the packing
volume fraction at which the viscosity diverges, is often used

for fitting the experimental data for uniform colloidal spheres
suspended in nonaqueous media.

When a dispersion is subjected to shear ��̇�0�, the flow
properties of the dispersion show a variety of non-Newtonian
behaviors, such as shear thinning and shear thickening.
These non-Newtonian behaviors are associated with the
changing microstructures of the dispersion. Several physical
mechanisms for these peculiar behaviors have been pro-
posed; for example, shear-induced order-disorder transitions
�5–7�, formations of dynamic clusters of the particles �8,9�.
However, a full understanding of the relationships between
the rheological properties and the microstructure has not yet
been obtained, despite extensive studies.

Computer simulations are very powerful tools in the di-
rect investigation of the dynamics of individual particles in
concentrated dispersions. The Stokesian dynamics �SD�
method �10� has been widely used to measure the rheology
of dispersions and provides valuable information regarding
the non-Newtonian behavior of flowing dispersions �14–17�.
The SD method, however, is based on the Stokes approxima-
tion, which assumes that all relaxation times associated with
fluid motions are short as compared with those of the par-
ticle, i.e., ����B, where ��=� fa

2 /� and �B=2�pa2 /9�. Here,
� f and �p are the density of the fluid and the particle, respec-
tively, and a is the radius of the particle. With this assump-
tion, the HI is treated as the Ronte-Prager-Yamakawa �RPY�
tensor and the lubrication correction. Furthermore, it is as-
sumed that the relaxation time associated with the particle’s
inertia is zero ��B→0�. These approximations are valid for
the motion of the particles at time scales much greater than
the time scales of the relaxation of both the fluid and the
particle inertia. Therefore, the short-time motion of Brown-
ian particles over the kinematic time scale �� cannot be de-
scribed by simulation methods based on the Stokesian ap-
proximation. On the kinematic time scale, the dynamic
coupling between the fluid motion and the particle motion
remains strong.
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Sheared dispersions have a nondimensional parameter
that includes the particle’s inertia, e.g., the particle Reynolds
number Rep=�p�̇a2 /�=9�B /2��̇, where ��̇�=1 / �̇� represents
the characteristic time due to shear. For most colloidal dis-
persions, the particle Reynolds number is very small. The SD
method has a particle Reynolds number of zero and, there-
fore, cannot be applied to problems with finite particle Rey-
nolds numbers. Typical examples include the motions of dis-
persions subjected to strong shear or composed of large
particles; in these cases, the particle Reynolds number has a
relatively large finite value.

Another problem that cannot be treated by the SD method
is the short-time motion of the particle, in which the fluid
inertia becomes significant even if the particle Reynolds
number is very small. For example, the characteristic time
scale is ���1 	s for a neutrally buoyant particle of 1 	m
in water, and Rep�10−8 for �̇=0.01. The effects of the fluid
inertia appear as memory effects of the particles. For a com-
plete understanding of these flowing dispersions, full time-
dependent HIs are required.

In recent years, several numerical methods have been de-
veloped in order to accurately simulate dispersions in a va-
riety of situations, including those described above. These
methods of dispersion modeling are based on the same ap-
proach, which involves resolving the fluid motion simulta-
neously with the particle motion. We refer to this approach as
the direct numerical simulation �DNS� approach. This ap-
proach enables us to accurately treat the full time-dependent
HI. The numerical methods differ mainly in the approach
used to resolve the HIs between the fluid and particle mo-
tions �18–26�.

In this work, we apply a direct numerical scheme based
on the smoothed profile method �SPM� �26–30� to a mono-
disperse concentrated dispersion of repulsive and neutrally
buoyant Brownian particles in a shear flow. In the SPM, the
Navier-Stokes equation for the fluid motion is discretized on
a regular grid, and the Newtonian equations for the particle
motion are solved simultaneously with the fluid motion. This
developed scheme accounts for thermal fluctuations, a shear
flow, and memory effects. The SPM can reproduce the cor-
rect short-time behavior of a single Brownian particle in a
shear flow on the kinematic time scale, and the numerical
tests for a single Brownian particle in a shear flow were
reported in �30�.

Although some groups have studied flowing dispersions
composed of repulsive spherical particles by using a DNS
method based on the lattice Boltzmann method �31–33�, all
the simulations have been applied to a dispersion of non-
Brownian particles and ignore the thermal fluctuations of the
particles. Systematic analyses have not yet fully carried out
for concentrated dispersions of Brownian particles in a shear
flow at finite Reynolds numbers.

In the present study, we examine the non-Newtonian rhe-
ology of concentrated dispersions in shear flow at finite Rey-
nolds and Peclet numbers using a DNS method that takes
into account hydrodynamic interactions and thermal fluctua-
tions accurately. Note that the simulated situations are differ-
ent from those of the prevailing experiments for colloidal
dispersions, since even the lowest particle Reynolds number
in these simulations is several hundred times larger than

those of the experiments. We first present the simulation
method and the manner in which the apparent shear viscosity
of the dispersions is calculated. Three-dimensional simula-
tions are performed with periodic boundary conditions, and
the non-Newtonian behavior of the shear viscosity is ob-
tained for several volume fractions. Both the high and low
shear limiting viscosities obtained from the simulations are
then compared with the Krieger-Doughty relationship. More-
over, we investigate the short-time motions of Brownian par-
ticles in a sheared concentrated dispersion on the kinematic
time scales. The mean square displacement �MSD� of
Brownian particles is monitored at several Peclet numbers
and volume fractions, and the long-time diffusion coefficient
is determined from the long-time behavior of the MSD. We
also suggest a simple relationship between the non-
Newtonian viscosity of the dispersions and the structural re-
laxation time of the dispersed Brownian particles.

II. SIMULATION METHOD

A direct numerical scheme that implements both a shear
flow and thermal fluctuations is briefly explained. A more
detailed explanation is given in a previous publication �30�.
We consider a monodisperse dispersion of Np repulsive
spherical particles of diameter 
 in a Newtonian host fluid.
The particles interact via a truncated Lennard-Jones �LJ� po-
tential,

ULJ�r� = �4�	�


r
�36

− �


r
�18

+
1

4

 �r � 21/18
� ,

0 �r 
 21/18
� ,
� �3�

where r is the distance between two particles and the param-
eter � characterizes the interaction strength. The position of
the ith dispersed particle is Ri, the translational velocity is Vi,
and the rotational velocity is �i. The time evolution of the
ith particle with mass Mi and moment of inertia Ii is gov-
erned by Newton’s equations of motion,

MiV̇i = Fi
H + Fi

C + Gi
V, Ṙi = V̇i, �4�

Ii · �̇i = Ni
H + Gi

�, �5�

where Fi
H and Ni

H are the hydrodynamic forces and torques
exerted by the host fluid on the particle. Fi

C is a repulsive
force arising from the potential of Eq. �3�, which prevents
the particles from overlapping. Gi

V and Gi
� are random forces

and torques, respectively, due to thermal fluctuations. These
random fluctuations are assumed to be Markovian �white or
time delta correlated� and determine the particle temperature
T. The procedure for determining the temperature is de-
scribed in �28–30�.

In the SP method, the velocity and pressure fields, v�x , t�
and p�x , t�, are defined on three-dimensional Cartesian grids,
which consist of fluid and particle domains. In order to dis-
tinguish the particle and fluid domains on the grids, a
smoothed function ��x , t�, which is equal to 1 in the particle
domains and 0 in the fluid domains, is introduced. These
domains are separated by a thin interfacial domain of thick-
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ness �. The system size is �0,Lx�� �−Ly /2,Ly /2�� �0,Lz�.
The time evolution of the velocity field is governed by the

Navier-Stokes equation with the incompressibility condition
� ·v=0,

� f��tv + v · �v� = � · � + � f�fp + � ff
shear, �6�

where the stress tensor �=−pI+���v+ ��v�T
, and
fshear�x , t� is an external force field that is introduced to en-
force a simple shear flow on the system. The flow is imposed
in the x direction and the external force is introduced as a
constraint force so that the velocity field satisfies vx�y�=
−�̇Ly /4 at y=−Ly /4 and vx�y�= �̇Ly /4 at y=Ly /4, where y
denotes the distance in the velocity gradient direction. A
simple shear flow with a shear rate of �̇ is then approxi-
mately produced over a range from y=−Ly /4 to y=Ly /4. �fp
represents a body force that ensures the rigidity of the par-
ticles and the appropriate nonslip boundary conditions at the
fluid/particle interface, which is further elaborated upon in
Refs. �26,27�.

The unit of length is taken to be the lattice spacing �, and
the unit of time is �0=� f�

2 /�. Unless otherwise stated, we
set �=1, �0=1, �=1, � f =1, �p=1, a=4, �=1, and 
=8.
Assuming dispersions of neutrally buoyant particles of radius
1 	m in water at room temperature, our unit length � and
time �0 correspond to 0.25 	m and 0.0625 	s, respectively
The second-order Runge-Kutta algorithm is used to integrate
the Newtonian equations. The Navier-Stokes equation is dis-
cretized with a Fourier spectral scheme in space and with a
second-order Runge-Kutta scheme in time. The discretized
time step is h=0.07145. Although this value is chosen from
the stability condition of the Navier-Stokes equation, it can
be used safely for the particle’s equations motion because h
is much smaller than the Lennard-Jones time unit �M
= �Mi


2 /��1/2�131. The phase diagram of the present
�36:18� LJ system depends weakly on the system tempera-
ture T as well as the volume fraction � of the particles. To
avoid the delicate issue of crystallization, all the simulations
in the present paper were carried out at T and � with which
the system is in amorphous states.

To measure the rheological properties of the particle dis-
persion in shear flow, we can calculate the apparent stress
�app of the dispersions in the following manner. The mo-
mentum equation for the dispersion is formally written as

d

dt
��tv� = � · �dis + �tf

shear, �7�

�t = �1 − ��� f + ��p, �8�

where �dis denotes the stress tensor of the dispersion includ-
ing the inertia, the pressure and the viscous terms. The full
stress tensor s of the flowing dispersion is then defined by
introducing a convective momentum-flux tensor explicitly as

s = �dis − �tvv, �9�

where �tvv represents momentum transport by the bulk flow
of the dispersion.

Although s cannot be calculated directly, we can obtain
the apparent stress �app by using the local stress s:

�app =
1

V
� dxs, �10�

=
1

V
� dx��� · �sx��T − x � · s� �11�

=
1

V
� dx�− x � · s� �12�

=
1

V
� dx	x��tf

shear −
�

�t
��tv��
 �13�

=
1

V
� dxx�tf

shear −
1

V
� dxx

�

�t
��tv� , �14�

with a volume V=LxLyLz. In the derivation of Eq. �11�, we
use an second rank identity, s= �� · �sx��T−x� ·s. In the
steady state,

� �

�t
��tv��

t

= 0, �15�

where � �t denotes time averaging over the steady state. The
time-averaged apparent shear stress of the dispersion can
then be written as

��app�t =
1

V
�� dxx�tf

shear�
t

. �16�

Then one can obtain the apparent shear stress under steady
shear flow from the external force fshear imposed in the
Navire-Stokes equation.

III. RESULTS AND DISCUSSION

Simulations were performed in a three-dimensional cubic
box, whose side length is L, with periodic boundary condi-
tions. Most present simulations were done with L=64, where
the number of particles are Np=300, 400, 450, 500, and 550
for �=0.31, 0.41, 0.46, 0.51, and 0.56, respectively. The
index of axis x, y, and z represent the flow, velocity gradient,
and vorticity directions, respectively. For a spherical particle,
a=4, �=2. The temperature was determined by equilibrium
calculations before the shear flow was imposed. The tem-
perature is kBT=7. The initial configuration of the particles is
set to be a random distribution. A large number of simula-
tions were performed for volume fractions of 0.31��
�0.56 and shear rates of 5�10−5��̇�0.1. These systems
have particle Reynolds numbers Rep ranging from 8�10−4

to 1.6.
For dispersions composed of Brownian particles in the

steady state, the apparent shear viscosity of the dispersion is
defined as

�app =
�
xy

app�t

�̇
, �17�

where 
xy
app denotes the xy components of �app. To examine

the system size effects in the present simulations, we calcu-
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lated the apparent shear viscosity for three different system
sizes for a constant �=0.41, i.e., L=32 with Np=50, L
=128 with Np=3200, and L=256 with Np=25 600. We found
only negligibly small differences among the values of the
apparent shear viscosity calculated for the three systems
within a statistical error.

Figure 1 shows the dependence of the apparent shear vis-
cosity on the Peclet number for several volume fractions.
Here, the Peclet number is defined as Pe=6��a3�̇ /kBT. For
the lowest concentration ��=0.31�, the viscosities remain
nearly constant and exhibit Newtonian behavior. For higher
concentrations ���0.41�, the dispersions show non-
Newtonian behavior. As Pe increases, the shear-thinning be-
havior is clearly observed from the higher plateau region for
Pe of order 10−2 to a lower plateau region for Pe of about 10.
From both of the plateau values of the viscosity curve, we
can obtain the low shear limiting viscosity �identified as �0�
and the high shear limiting viscosity �� for each volume
fraction.

In order to evaluate �0 and ��, we fit our simulation data
into the following simple empirical function of Pe and �,

� f�Pe,�� = �� + � �0 − ��

1 + b−1���Pe
� , �18�

where b��� is a fitting parameter. This empirical function is
plotted in Fig. 1 with solid lines for ��0.46. One finds that
it coincides with the simulation data reasonably well. It is
also seen that the onset of shear thinning appears at smaller
Peclet numbers with increasing volume fraction. We note

that the particles are randomly distributed in the dispersions
in the present simulations, i.e., all the viscosity data are taken
in situations at which no shear-induced crystallization oc-
curs.

Figure 2 shows the dependence of the low shear limiting
viscosity �0 and the high shear limiting viscosity �� on the
volume fraction. Both shear limiting viscosities increase
monotonically with the volume fraction. The simulation re-
sults for both of the shear limiting viscosities agree well with
the semiempirical relations of Eq. �2� by Krieger-Dougherty,
�0,�=��1−� /�m�−2.5�m where �m=0.63 for �0 and �m
=0.73 for ��. The dotted line represents Einstein’ s formula
of Eq. �1�.

The fluid and particle inertia contribution to the apparent
shear stress can be written as


xy
inertia =

1

V
� dx�tvxvy , �19�

which is similar to the Reynolds stress of a uniform fluid in
turbulence. This stress represents the strength of the hydro-
dynamic instability. The inertia contribution to the viscosity,
�inertia= �
xy

inertia�t / �̇, is about two order of magnitude smaller
than the apparent shear viscosity. We conclude that the iner-
tia contribution is negligible in the range 8�10−4�Rep
�1.6.

We next examine the dynamical motion of Brownian par-
ticles in a shear flow. We analyze the mean square displace-
ment in the vorticity direction �z� for the Brownian particles,

���Rz�t��2� =
1

Np
�
j=1

Np

��Rj
z�t� − Rj

z�0��2� . �20�
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FIG. 1. The Peclet number Pe=6��a3�̇ /kBT dependence of the
apparent shear viscosity of the dispersion for several volume frac-
tions. The solid lines represents � f =��+ ��0−��� / �1+b−1���Pe�
for ��0.46, where �0 is the low shear limiting viscosity, �� is the
high shear limiting viscosity, and b��� is a fitting parameter, with
b=0.20, 0.50, and 0.63 for �=0.56, 0.51, and 0.46, respectively.
The dashed line represents the shear viscosity of the host fluid.
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FIG. 2. �Color online� Volume fraction dependence of the low
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of the dispersions. The solid line represents the Krieger-Dougherty
relationship with �m=0.63 for �0 and the dashed line �m=0.73 for
��. The dotted line represents Einsteinfs formula of Eq. �1�.
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Figure 3�a� shows the MSD of the dispersion with the
lowest Peclet number for each volume fraction. These results
are considered to be the MSD at thermal equilibrium. As the
volume fraction is increased, the dynamical behavior of the
MSD varies greatly, as compared with that of the hydrody-
namic analytical solution for a single Brownian particle in a
shear flow �34�. The analytical solution is derived from the
generalized Langevin equation with memory effects. With
increasing volume fraction, MSD increases more slowly with
time. For �=0.56, we found that a plateau region starts to
appear around a time scale of order 102, which is slightly
greater than the kinematic time ��. This is a typical behavior
of colloidal dispersions in glassy states, e.g., colloid glasses.

Figure 3�b� shows the MSD of the dispersion at the high-
est Peclet number for each volume fraction. Since Pe
�17.2 here, the shear force is much stronger than the ther-
mal force. The volume fraction dependence of the MSD in
this figure is opposite to the previous case at the lowest Pe-
clet number shown in Fig. 3�a�. At short times, the MSD
grows more rapidly in time with increasing volume fraction
because HIs between particles are more enhanced at higher
volume fraction. At later times, the MSDs tend to exhibit
diffusive motions with a volume fraction independent diffu-
sion coefficient.

We then calculated the long-time diffusion coefficient
Dz

sim in the vorticity direction via

Dz
sim = lim

t→�

1

2t
���Rz�t��2� �21�

and examined the system size effects in Dz
sim. In contrast to

the negligibly small system size effects observed in the ap-
parent shear viscosity �app, Dz

sim shows notable increase with
increasing system size for all volume fractions. It is, how-

ever, confirmed that the diffusion coefficients behave as

Dz
sim��,L−1� = Dz��� − �kBT/6��L �22�

with ��2.83, where Dz��� represents the value of diffusion
coefficient extrapolated for L→�. The system size effects
observed in the present simulations are essentially the same
as those reported in earlier papers �11–13�. We calculated
Dz��� from extrapolation of our simulation data Dz�� ,L�
with finite L. Figure 4 shows the volume fraction and the
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FIG. 3. The mean square displacement in the vorticity direction for several volume fractions �a� at the lowest Peclet number �Pe
=0.0086 at �=0.56 and Pe=0.022 for ��0.46� and �b� at the highest Peclet number �Pe=17.2�. The solid line represents the analytical
solution for the generalized Langevin equation of a free Brownian particle �34�. The arrows indicate the kinematic time ��=� fa

2 /�=16 and
the diffusion time �D=a2 /D0�172.
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Peclet number dependencies of Dz��� normalized by D0
=kBT /6��a. For the low Peclet numbers, the diffusion co-
efficient decreases with increasing volume fraction, and this
dependence is similar to that of the dispersion at thermal
equilibrium. On the other hand, for the highest Peclet num-
ber, the volume fraction dependence of Dz is almost constant.
We can see that the diffusion coefficients at high volume
fractions are strongly affected by shear. The dynamics of the
Brownian particles differs considerably, depending on
whether the thermal or shear force is dominant. The volume
fraction dependence is in qualitative agreement with the nu-
merical results achieved based on the SD method, which is
valid for long-time scales �14�.

Finally, the relationship between the non-Newtonian vis-
cosity of the dispersions and the structural relaxation of the
dispersed Brownian particles is examined. The structural re-
laxation time is defined as

�p��� = a2/D0��� , �23�

where D0��� is the diffusion coefficient for each volume
fraction at zero shear. This relaxation time represents a time
needed for a particle to diffuse away a distance comparable
to its radius. Figure 5 shows ��app−��� / ��0−��� versus �p�̇
for ��0.46. Here, we used Dz��� at the lowest Peclet num-
ber as D0���, and �p�̇ can be understood as a reduced Peclet
number Pe���= �̇a2 /D0���. One can see that the data lies on
a single master curve 1 / �1+Ax� fairly well, where x=�p�̇

and A is a fitting parameter. The shear thinning starts at
around �p�̇�1. This behavior is very similar to the non-
Newton rheology of supercooled liquids �35�.

We confirmed that the present numerical method of intro-
ducing the thermal fluctuation successfully reproduces the
fluctuation dissipation theorem for time scales longer than
the so-called the Brownian time �28,29�. Although it was
confirmed also that the present method works quite well for
the volume fractions 0���0.56 considered in the present
study, further careful tests must be needed for highly concen-
trated dispersions, where the fluctuation of a tagged particle
tends to correlate with motions of surrounding particles.

IV. CONCLUSIONS

We investigated the rheological properties of monodis-
perse concentrated dispersions with repulsive spherical par-
ticles by using a DNS method that accounted for a shear flow
and thermal fluctuations. Three-dimensional simulations
were performed at Peclet numbers ranging from 0.043 to
17.2 and at particle Reynolds numbers from 8�10−4 to 1.6.
The apparent viscosity for �=0.31 is almost constant over
the Peclet number change. For ��0.41, the viscosities de-
crease from the plateau region at the low Peclet number to
the plateau region at the high Peclet number. From the vis-
cosity versus Peclet number curves, we can obtain both the
low and high-limiting viscosities, and these results are in
good agreement with the Krieger-Doughty relationship. The
inertia contribution to the apparent shear viscosity is very
small throughout the entire range of Peclet numbers and vol-
ume fractions examined in the present study. As the volume
fraction increases, the behavior of the MSD in the vorticity
direction deviates from the analytical solution for a single
Brownian particle in a shear flow. For the lowest Peclet num-
ber, the MSD develops more slowly in time with increasing
volume fraction. At �=0.56, an onset of glassy dynamics
was observed. On the other hand, for the highest Peclet num-
ber, the MSD develops more rapidly at short times with in-
creasing volume fraction. Finally, the volume fraction depen-
dence disappears at long times. The diffusion coefficient was
calculated from the long-time behavior of the MSD in the
vorticity direction for different Peclet numbers and volume
fractions. For the lowest Peclet number, the diffusion coeffi-
cient decreases with increasing volume fraction, while it is
almost constant over the volume fraction change for the
highest Peclet number. We estimated the structural relaxation
time �p from the diffusion coefficient at the lowest Peclet
number. The present non-Newtonian viscosity data agree
well with a simple scaling function ��app−�0� / ���−�0�
=1 / �1+A�p�̇� for ��0.46, similar to the non-Newtonian
viscosity of a model supercooled liquid �35�.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(η
ap

p-
η ο

)/(
η ο

-η
ο
) ο

ο

Φ = 0.56
0.51

0.46

10-2 10-1 100 101 102

τpγ
.

FIG. 5. Scaled plot of ��app−��� / ��0−��� against reduced Pe-
clet number �p�̇ for ��0.46. Line is 1 / �1+A�p�̇� where A=0.57.
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