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Diffusive and subdiffusive axial transport of granular material in rotating mixers
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The segregation of granular mixtures in rotating cylinders into axial bands is not well understood so far.
Abnormal diffusion of the grains has been proposed to play an important role in that process. We measure axial
diffusion in binary mixtures, completely embedded in water, by means of nuclear magnetic imaging (magnetic
resonance imaging). It is found that the small size particles in a radially segregated structure undergo normal
(Fickian) axial diffusion, whereas an initial pulse of the large species shows subdiffusive behavior. An inter-
pretation within a model for the particle dynamics is given. The diffusion of small particles occurs in the axial
kernel, whereas particles of the large species migrate on the free surface of the granular bed.
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I. INTRODUCTION

Granular material can behave like a liquid or solid and
even like a gas under appropriate experimental conditions.
One of the unique, sometimes even counterintuitive proper-
ties of granular mixtures is their tendency to separate by size
or density under agitation in a wide variety of situations
[1-3]. This ubiquitous phenomenon is found both in nature
and technological processes. A classical experiment for the
study of segregation effects is the horizontally rotating mixer
(e.g., [4-25]) in the form of a cylinder, cuboid, sphere, or
other. When initially well mixed particles of different sizes
are filled into such containers, one observes a radial segrega-
tion of the components and the formation of an axially ex-
tended core of the smaller-sized particles [5] after few rota-
tions. In many, although not all, mixtures of particles of
different sizes this process is followed by an axial banding
[11,14]. After this phase, a gradual coarsening of the band
structure occurs [10] as a consequence of the redistribution
of grains between the individual bands. The physical expla-
nation for the latter processes is not fully clear so far, irre-
spective of different theoretical models and simulations
[8,26-30]. Even though some of these models reproduce the
dynamics of axial banding, including oscillatory transients
that precede band pattern formation, most of them disregard
the true geometry of the experiment, viz., the importance of
the core for the particle dynamics. Elperin and Vikhansky
[30] assumed that an axial instability of the core is respon-
sible for the observed spatial banding. It seems that the dif-
fusion characteristics of particles in a granular mixture are of
crucial importance for the understanding of the segregation
dynamics. All models assume that the grains undergo normal
(Fickian) diffusion along the container axis. This precondi-
tion has been questioned by Khan and Morris [17,18]. Their
experiments demonstrate a subdiffusive character of the par-
ticle distribution in the axially extended core. The experi-
ments reported by Khan are based on an optical observation
of the cylindrical mixer in transmission and an evaluation of
particle distribution in the core from the optical transmission
intensity and some assumptions of the geometry of the core.
Taberlet et al. [31-33] in 2006 conducted extensive discrete
elements method (DEM) simulations of the corresponding
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pulse experiments and they reported for their axial propaga-
tion normal Fickian diffusion, in agreement with the earlier
model assumptions, but in contradiction to Khan’s experi-
ments.

Figure 1 shows our experimental geometry. The inner
mixer diameter is 36.8 mm, and its length is 662 mm. The
mixer is rotated by a stepper motor and observed in trans-
mitted light with a video camera.

We note that the interstitial fluid does not influence the
observed structures qualitatively. Fiedor er al. [6] demon-
strated that similar segregation patterns are formed in dry
granulates and in granular mixtures embedded in water. The
characteristic ranges of rotation speed are shifted, but the
structure formation is comparable in both systems. Our
present paper strictly makes predictions for granular mixture
in water only, but we assume that for the described experi-
ment such details as the nature of the particle diffusion are
not qualitatively influenced by the presence of water as an
interstitial medium.

II. EXPERIMENTS
A. Optical experiments

A typical optical experiment is shown in Fig. 2. Bidis-
perse compositions of glass beads are investigated. The im-
ages reflect the evolution of a pulse of small particles (0.55
mm “sil-rock SB” [34]) in large beads (1.5 mm “sil-glass
NG” [34]), observed optically in transmission. The mixer
was filled with 50% granulate and then filled up with water.

FIG. 1. Sketch of the mixer and definition of geometrical quan-
tities. The dark region represents the initial pulse of diffusing
material.
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FIG. 2. (Color online) Propagation of a 5 mm pulse of small
particles (black) into a bed of large beads. The tube diameter is 36.8
mm, images have been taken (a) before rotation, (b) after 30 s, and
(c) 300 s rotation at 30 rpm. The observation direction is normal to
the free granulate surface. Using an evaluation procedure as in [17],
we obtained in different experiments diffusion exponents « (of the
mean-square displacement o r® of the small beads). The reliabil-
ity of these results scattering between 0.36 and 0.47 was not
convincing.

Alternatively, an immersion liquid (1-methyl-naphthalene
plus 28 wt % hexanol) was used in some experiments.

The initial pulse transforms immediately into a core struc-
ture which spreads axially with time. Quantitative data
analysis of the two-dimensional optical transmission images
requires assumptions about the three-dimensional (3D) core
structure and compactness. We suggest here a more direct
experiment that yields the diffusion properties of grains in
the cylindrical mixer. After certain intervals, we stop the ro-
tation and resolve the positions of all beads by use of mag-
netic resonance imaging (MRI). The exact particle distribu-
tion function is evaluated from the particle positions. We
obtain the particle statistics at selected time steps and re-
trieve the diffusion properties. Both the distribution of an
initial pulse of small beads in a bed of larger glass beads, and
the opposite case are studied. An earlier attempt to study the
diffusion properties of granular mixtures in a rotating drum
was reported in a pioneering paper by Ristow and Nakagawa
[12]. The authors studied a mixture of pharmaceutical pills.
The resolution in that experiment was far too low to allow
the identification of individual particles so that the concen-
tration profile could not be determined experimentally.

B. MRI experiments

For the MRI experiments, we prepare a single stripe con-
taining a number of =250 of small beads (2-mm-diameter
type “Ornela” [35]) in large beads (4 mm “Sigmund Lind-
ner” type M [36]), designated as S pulse, and in a different
experiment a stripe of 2=100 large beads (4 mm “‘Sigmund
Lindner” type M) in 1.5 mm small beads (“sil-color” trans-
parent), designated as L pulse. The fill level of the tube is
50%. After the granulate layer is prepared, the tube is com-
pletely filled up with water. A rotation speed of 15 rpm was
chosen, but the choice of the rotation speed is not critical.
NMR experiments are performed in a Bruker BioSpec 47/20
MRI scanner at 200 MHz 'H resonance frequency (4.7 T)
using the rapid acquisition with relaxation enhancement
(RARE) spin-echo sequence. The inner receiver coil diam-
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FIG. 3. The top row shows three typical slices of an § pulse
after 2.5 rotations, (a) the 0.5-mm-thick slices are taken 5 mm left
of the pulse center, (b) in the pulse center, and (c) 5 mm right from
it. The bottom row shows three slices of an L pulse after three
rotations, taken 10 mm (d) left and (f) right, respectively, (e) from
the pulse center.

eter is 7 cm, much larger than the mixer tube. The sensitive
volume of the MRI scanner is only 8 cm in axial direction,
thus we reconstruct the complete images from a set of three
measurements at mutually shifted axial positions, with ap-
propriate overlap. The glass beads appear black on the bright
water background in the NMR images (Fig. 3), opposite to
MRI experiments with mixtures of water-containing par-
ticles, e.g., [11]. A certain technical advantage of our system
with interstitial water over MRI measurements of water-
containing granulate in air is that we have practically no
problems with susceptibility heterogeneities. Such heteroge-
neities lead, in particular in spectrometers with high mag-
netic field strengths to local-field inhomogeneities which
may limit the experimental resolution.

All individual particle positions are extracted from the 3D
image data, and their distribution function p(x,r) is estab-
lished from histograms with 5 mm box width (Fig. 4). For
convenience, we use the number of rotations N of the cylin-
der as an equivalent of the time r. The effective particle
diffusion time is proportional to r=N/f with the rotation fre-
quency f of the cylinder. The maxima of the particle distri-
butions are found from a fit of Gauss functions

X2
p(va) = pmax(N)eXp(_ 20’2(N)>

to the distributions with the power-law dependence o N®
and a=1/2 in normal diffusion. Since the area under each
curve is preserved, the distribution maximum should scale
with an exponent B=—a. We find that the maxima p,,,,(N)
(Fig. 5) of the Gauss fits to the discrete particle distribution
functions p(x,N) follow a dependence p,, *NP with
B=-0.52*0.03.

In order to avoid the inaccuracies related to the finite
widths of the histogram boxes, we determine the time depen-
dence of o from cumulative functions [7 0p()c’,N)dx’ with
error functions. The lower boundary x; is chosen such that
p(xo,N)=0. The fits match the experimental data convinc-
ingly at all times, see Figs. 4 and 6. The mean-square dis-
placements and maxima of the distribution function as func-
tions of time are in excellent agreement with normal
diffusion, 0?={x?)=2Dt (brackets denote averaging over the
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FIG. 4. (Color online) Positions of the small particles in an S
pulse (a) after 2.5 rotations of the tube and (b) after 24 rotations.
The solid lines are Gauss fit curves.

ensemble). Note that o determined from the Gauss fit of
p(x,N) differs slightly from that of the cumulative fit. We
rely on the latter one for the determination of the scaling
exponent a.

The repetition of the experiment yielded practically iden-
tical statistical results. The mean-square displacement o~ is a
linear function of the number of revolutions within experi-
mental accuracy. Similarly, the distribution functions of the
axial coordinates of diffusing particles are Gaussian and the
maximum height of the Gaussian fit curves decays with
Pmax®N~V? within experimental accuracy, in perfect agree-
ment with normal Fickian diffusion of the small beads in the
mixer.
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FIG. 5. (Color online) Maximum p,,,,(N) of the Gauss fit to the
discrete particle distribution function p(x,N) (histogram box width
5 mm) vs number of revolutions N. The fit curve represents a de-
pendence p. % NP with 8=-0.52.

PHYSICAL REVIEW E 80, 061302 (2009)

2504 cumulative distribution
24 rotations

c=2.6cm

¢ 2004 5 =250
<4

2

%150~

T

£ 1004

G

2 50

-8 -
(a) axial coordinate [cm]

4

34 |a=0.52+0.02

24
€
L,
o

14

2 5 10 30 50

(b) number of rotations

FIG. 6. (a) Cumulative presentation of the particle distribution
after 24 revolutions. The solid line is a fit with a Gauss function for
p(x,N). (b) Plot of o(N) for the S pulse. The fit represents a poten-
tial law oo« N* with @=0.52.

The second experiment has been performed with 2 =100
large beads (same as above) initially forming a narrow stripe
(L pulse) surrounded by small beads of 1.5-mm-diameter in
the mixer. The evaluation of the MRI data was equivalent to
that in the previous experiments. Figure 7 shows the distri-
bution p(x,N) of the initial pulse after six rotations and after
31 rotations, respectively. All distribution functions can be
approximated by Gaussians. This encourages us to use inte-
grals of the Gauss shape as fit curves to the cumulative func-
tions [ 0p(x’,t)dx’, as shown exemplarily in Fig. 8(a). The
mean-square displacements as functions of time, however,
are no longer in agreement with normal diffusion. Instead, as
is seen from Fig. 8(b), @=0.33, the mean-square displace-
ment {x’) is proportional to N*%. Again, a repetition of the
experiment reproduced the statistical data with high accu-
racy. The diffusion of the L pulse is clearly subdiffusive.

Although the distribution functions p(x,N) look rather
similar to Gaussians in the latter experiment, they strictly are
not. The subdiffusive character (a¢<<0.5) of the particle dy-
namics implies that the particle distribution is not Gaussian.
The actual difference between Gaussian model and experi-
ment is systematic but at the limits of resolution [it is hardly
acknowledged in Fig. 8(a)]. It becomes evident when the
difference between the Gaussian model and the experiment is
plotted (see Fig. 9). The plot suggests that diffusion is some-
what faster in the high concentration regions near the initial
pulse position and slower in the lateral low concentration
regions. In the particle distribution function, this leads to a
lower gradient of p(x) than for a Gaussian near the maximum
of the distribution and to steeper tails. In the cumulative
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FIG. 7. (Color online) Positions of the large particles in an L
pulse (a) after six rotations of the tube and (b) after 31 rotations.
The solid lines are Gauss curves.

distribution, the integral of p(x), one consequently expects
systematic deviations such as qualitatively sketched by the
dashed line in Fig. 9.
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FIG. 8. (a) Cumulative presentation of the particle distribution
after 31 mixer rotations. (b) Plot of o(N) as a function of the num-
ber of revolutions N for the L pulse. The fit represents a potential
law o N* with a=0.33.
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FIG. 9. Difference between the actual cumulative particle distri-
bution [Fig. 8(a)] and the Gaussian model for the L pulse after 31
rotations. The dashed line guides the eye only.

III. DIFFUSION MODEL FOR LARGE BEAD PULSES

From the measured exponent a=~0.33 and the profile of
Fig. 9, it seems natural to assume a concentration-dependent
diffusion for an interpretation of the subdiffusive character of
the large beads pulse. A concentration-dependent diffusion
constant D(p) in the (one-dimensional) diffusion equation

dp d Jdp
T
Jt Jdx ox

renders this type of equation in general analytically unsolv-
able, with few exceptions (e.g., [37-39]). For example, the
assumption of D=D(p/p,)" yields a scaling of o with
/2 [39]. Our experimental data are not sufficient to allow
the extraction of the actual D(p) dependence, but it is obvi-
ous that there is a uniform trend dD/dp>0 in our L-pulse
system. This trend can be understood from a physical point
of view. Figure 3, bottom shows that the large particles are
on the free surface or rotate attached to the glass wall. The
dynamics of their redistribution occurs essentially while they
slide down the free surface. At low local concentrations of
those particles on the surface, they slide straight down the
slope and their lateral diffusion is weak, whereas at larger
concentrations, the large particles interact with each other on
the slope via collisions. Such collisions increase a stochastic
lateral motion and lead to a higher diffusion coefficient. This
explains the trend of the systematic deviations from normal
diffusion reflected in the measured exponent «, and the sub-
diffusive character of the spreading of the L pulse.

IV. SUMMARY

We have demonstrated by magnetic resonance imaging
investigations that in a granular mixture contained in a rotat-
ing cylindrical container, the small particles undergo normal
diffusion. A comparison with our optical investigations
shows that the data obtained from the optical experiment are
not reliable enough to extract the scaling exponent. This may
be partially attributed to problems with the projection tech-
nique. There are two major problems with the optical experi-
ments. The first one is the relation between the composition
of the mixture and the optical transmission intensity, which
cannot be established with the desired accuracy. The second
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problem is connected with the assumptions about the three-
dimensional shape of the segregated core, which cannot be
verified with this method.

The MRI experiments are much more reliable, and they
provide a powerful tool to study granular dynamics. We con-
clude that the small particles dynamics can be described with
models assuming normal diffusion. This does not necessarily
mean that this result can be generalized, in particular in view
of the systems studied by Khan and Morris [17]. Rather, it
demonstrates that the conditions for diffusion in the rotating
cylinder are more complex [18] and may depend on specific
details of mixtures and geometries. Our MRI experiments are
in qualitative agreement with DEM simulations published
recently [32]. Taberlet and Richard discussed in their paper
the discrepancies between their work and the experimental
data in Ref. [17]. They propose different explanations: the
force model in the simulations might be inappropriate, there
could be problems with the experimental data evaluation, in
particular the projection technique in the optical experiment,
and the reason could be physical differences in the two in-
vestigated systems (particle and mixer diameters and particle
shapes). The clear result of the MRI experiment is that in our
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investigated system a pulse of small beads spreads axially by
normal diffusion.

Large particles that were initially contained in a narrow
stripe clearly show subdiffusive dynamics. This indicates
that the mechanism of the particle redistribution is essen-
tially different. Physically, this can be explained by a
concentration-dependent diffusion coefficient, in connection
with the experimental observation that the axial dynamics of
the large particles in that case occurs exclusively on the sur-
face of the granular bed. It is clear that this phenomenon
should be observable only when there is a sufficient concen-
tration gradient of large particles on the granular bed surface.
When the amount of large beads is large enough, the diffu-
sion is expected to be Fickian, like in the case of a small
pulse of small-sized particles.
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