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A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C
under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For
the reaction A+B, the concentration of reactants asymptotically decay in space as x−1/2 and x−3/4 in two
dimensions and three dimensions, respectively. For 2A, it decays as log�x� /x in two dimensions. The decay of
A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is
explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion
constant with system size is found in two dimensions.
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I. INTRODUCTION

In engineering and industrial applications in chemical
plants, controlling reactions is essential for efficient produc-
tion of chemicals. The field of microreaction technology has
been taking advantages associated with reaction miniaturiza-
tion �1�. A microreactor where reactions take place in a mi-
croscale to milliscale confinement is a common device and it
is usually a continuous flow reactor where chemical reac-
tions run in a flowing stream rather than in a batch produc-
tion. The reactor is typically tube like and reactants are con-
tinually added to the input of the reactants and products
continually collected from the output. Subsequent processing
of intermediates and chain reactions is also favored in this
manner. As the reactants are continually flowing in one di-
rection, the reaction rate depends on the residence time in the
reactor which varies with the flow rate and the volume and
length of the reactor. Although the adjustment of physical
and geometrical parameters is essential to obtain a necessary
amount of products in the output, understanding the reaction
dynamics and the control in the microscopic flowing stream
are still at a phenomenological level.

On the other hand, theoretical studies show that reactive
and transport processes in a low-dimensional space can yield
striking effects. Microscopic fluctuations can strongly influ-
ence the collective behavior and lead to a breakdown of con-
ventional reaction-diffusion equation. Since the pioneering
work of Ovchinikov and Zeldovich �2�, two species annihi-
lation processes A+B→0 have been attracting much interest
and been widely investigated. The main point is that, if ini-
tially the reactants are randomly distributed in equal propor-
tions, density fluctuations between A and B cause segrega-
tion and formation of clusters of single species. The reactions
occur along the boundaries of the clusters and consequently
they proceed slower than in homogeneous systems. Actually,
the densities of A and B asymptotically approach �A�t�
=�B�t�� t−d/4 if the spatial dimensionality d is less than 4 �3�.
These effects have been also examined in isolated systems
using numerical simulations on regular lattices �3�, fractals
�4�, restricted geometries �5�, and complex networks �6�.

The purpose of this paper is to examine the effect of fluc-
tuations in the flowing condition of reactors by performing a
nonequilibrium molecular-dynamics �MD� simulation. From
the application point of view, on a macroscale such effects
might be diminished by introducing mixing stirrer in the re-
actors. However, on the microscale, mixing is dominated by
molecular diffusions, which is particularly relevant for reac-
tion miniaturization. For this purpose, we consider a continu-
ous flow between reservoirs of high-density reactants and
low-density products and examine how reactants distribute in
between. The reservoirs are attached only to the boundaries
of our system and microscopic dynamics in the bulk follows
usual Newtonian dynamics; no a priori asymmetries are in-
cluded. In the present paper, we focus on one-directional
flow, and we will not consider the effects of tubular geom-
etries. As we will explain later, we impose periodic boundary
conditions in the perpendicular directions to the flow instead
of fixed walls.

The first point we note here is that the system is a non-
equilibrium open system. A first approach to examine
reaction-diffusion systems is to write down mean-field rate
equations. However, the rate equations assume that the sys-
tem is near equilibrium. As we will explain later, the dynam-
ics of our model is Newtonian and does not assume phenom-
enological rate equations. We note that in the simplest
mutually catalyzing systems, rate constants can show non-
Arrhenius algebraic dependence on reaction energy in non-
equilibrium conditions �7,8�.

The second point is low dimensionality. While dimension-
ality is relevant to the segregation of A+B reactions, in sys-
tems with d�2, diffusion processes are anomalous. In the
isotropic case of single species annihilation 2A→ inert in two
dimensions, numerical studies show that the density decays
as log t / t in which a logarithmic factor is added to the mean-
field solution 1 / t �9�. Further, in driven diffusive systems,
density fluctuations spread faster than normal diffusive mo-
tions �10�, and it is numerically observed in the reaction A
+B that the densities decay as t−1/3, while in the isotropic
diffusive case they decay as t−1/4 in one dimension �11,12�.

While most of the numerical studies have been performed
with Monte Carlo simulations of lattice-based dynamics, MD
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simulations have been also a powerful and reliable tool for
investigating transport processes at the microscopic scales
using hard sphere fluids �9�. In particular, nonequilibrium
MD methods enable us to directly apply relevant driving
forces. For isothermal mass transport, the gradient of chemi-
cal potential acts as the driving force. We note that, in recent
nonequilibrium studies of heat conduction, anomalous be-
havior of transport coefficients has been observed in low
dimensions using hard sphere fluids �13�.

II. MODEL

We consider hard sphere fluids. The particles have uni-
form radius ��=0.5� and masses �m=1�. The geometries of
our systems are a rectangular plane Lx�Ly�Lx�Ly� in two
dimensions and a parallelepiped box Lx�Ly �Lz�Lx�Ly
=Lz� in three dimensions, respectively. At both ends of x
direction, we control the densities of particles to be high and
low, respectively, which we will explain later. In the y and z
directions, periodic boundary conditions are imposed. In-
stead of fixed walls because we first want to see how the
reaction occurs in a one-directional flow, not in a quasi-one-
dimensional geometry so that we want to reduce the effects
of walls. The particles elastically collide with each other if
the distances between them become equal to the diameter of
the particles. At the collision, the velocities of the colliding
particles are changed according to the conservation of kinetic
energy and momentum.

The simulations are carried out by event-driven molecular
dynamics, in which simulation steps are determined by the
collision events. In every step, we search the earliest colli-
sion time and the positions and velocities of the involved
pair of particles. Between collisions, we move every particle
on a straight line with its velocity as the velocities of the
particles do not change except during collision events. After
the movements, we change velocities of the colliding pair
according to the conservation laws. We repeat these proce-
dures in the simulations. In our case, simulating hundreds to
thousands of particles, this method is more efficient than
time-step-driven methods in which one has a constant time
interval.

At both ends in the x directions, the number of particles is
controlled. Before explaining how we control the number of
particles n, let us consider distributions of n particles in a
subsystem of a system which contains a fixed large number
of particles N. We denote by p the probability that a particle
is in the subsystem. The probability that the number of par-
ticles in the subsystem is n is given by the binomial distri-
bution as

PN�n� = �N

n
�pn�1 − p�N−n.

In the limit p�1 and n�N, one obtains a Poisson distribu-
tion of mean pN.

We assume that particle reservoirs are attached to both
ends in the x direction of our systems. We consider two slices
of width �x at each end in the x direction from x=0 to �x
and from x=Lx−�x to Lx. Here we fix �x=5. The volume of
the slice VS is VS=�x�Ly and �x�Ly �Lz in two and three

dimensions, respectively. In these slices, we control the num-
ber of particles as follows. For the left �x=0� and right �x
=Lx� slices, we fix the average densities of particles to be �̄L
and �̄R, respectively, with �̄L��̄R. Particles in the slices can
move into the bulk of the system and vice versa. In each
simulation step, we randomly choose a number N̂L�N̂R� from
a Poisson distribution of a mean N̄L=�LVS�N̄R= �̄RVS�. If the
number of particles NL�NR� is greater than N̂L�N̂R�, we ran-
domly remove particles from the slice by NL− N̂L�NR− N̂R�. If
NL�NR� is less than N̂L�N̂R�, we add particles at random po-
sitions in the slices. Velocities of the added particles are cho-
sen randomly from a Maxwell distribution of temperature
T=1. Every particle colliding with the boundaries x=0 and
Lx elastically bounces back. Here, it may be confusing that
we put walls at the ends when we compare our model with
previous lattice-based models in which diffusion �hopping� is
asymmetric, i.e., reactants prefer to move to a specific direc-
tion �11,12�. In such cases, periodic boundaries in the x di-
rection are used to realize a flow. But in the bulk of our
system, we do not include any asymmetry and as explained
later, it is the difference between the fixed densities which
originates the flow of particles.

Now we explain reaction processes. To implement reac-
tion processes, we assume that each particle belongs to a
species A, B, C, and D. We implement the processes A+B
→C+D by considering that every collision event of reac-
tants A and B is reactive and instantaneous so that their iden-
tities change to C and D. We assume that C and D are inert
so that they will not be involved in reactions, however, they
will collide with the remaining reactants A and B. In previ-
ous lattice-based models considering the case A+B→0 �3,5�,
the motion of A and B is hopping �diffusion� between sites so
that, neglecting the existence of the inert products, the reac-
tants can continue the diffusive motion as before. However,
in our hard sphere system, collisions with other particles re-
alize diffusive motions of reactants. If we neglect the prod-
ucts, reactants would only change their velocities at reactive
collisions and the situation would be close to ballistic anni-
hilations. However, by considering C and D, the reactants
experience nonreactive collisions. Since these products are
produced by reactions their densities increase which may
cause some effects on the diffusions. However, as we will
show later, in the asymptotic region, the densities of products
are ten to hundred times greater than that of reactants so that
the relative increase is small and the effect is not relevant to
the macroscopic behavior. We assume that in the left high-
density slice, the added particles are reactants A and B with
equal probabilities. In the right slice, they have products C
and D in the same manner. Using these boundary conditions,
we consider how reactants distribute between the high-
density reactants’ and low-density products’ reservoirs.

We start our simulations from initial conditions in which
particles of A and B are randomly distributed in equal pro-
portion. The system attains a steady state when inflow and
outflow of particles balance.

III. RESULTS

In Fig. 1, we show the average density of reactants in the
steady state. When particles move in this geometry without
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reactions, they show constant profiles �labeled as total in the
figure�. The profile depends on the density differences �̄L
− �̄R and does not depend on the system size Lx. The left end
x=5�=�x� of the figure corresponds to a boundary between
the left high-density slice and the bulk of the system. As we
can see, the reactants A and B asymptotically decay as �A
=�B�x−1/2 and x−3/4 in two and three dimensions, respec-
tively. In the inset, we show a zoom from x=5 to 40 in which
we can see that the decrease in the reactants produces an
increase in C.

Although the velocities of the particles added in the two
slices are given by the isotropic Maxwell distribution, par-
ticles flow in the x direction with a constant average velocity
due to the pressure difference between the slices. In fact, we
confirmed in the bulk that the velocity distribution in the x
direction follows the Maxwell distribution around a nonzero
value. If particles are constantly flowing in the x direction,
mean-field solutions of �A and �B will approach x−1 because
reactants will decay as t−1 while particles move as x�vt,
where v denotes their velocity. However, in reality they de-
cay slower, suggesting the appearance of fluctuations, i.e.,
the segregation of reactants.

To see clear segregation in this geometry, we study larger
systems and show several snapshots of the reactants at dif-
ferent times in Fig. 2. The left end is the high-density side.
Black and white circles denote A and B, respectively. We can
see that the mixed reactants near the left side start to flow
separately to the right. We note that although for different
setups, segregation effects have been also observed in other
systems �5,9�. We also note here that the exponent is calcu-
lated from clearer data obtained in smaller system in Fig. 1
since the data are averaged in the steady state it is possible to
take more averages in smaller systems with the same com-
puter efforts.

To confirm this segregation of reactants, we calculate the
particle-particle correlation function of species A−A and A
−B. We define the function gAA

x �r� and gBA
x �r� as

gAA
x �r� =

1

�A

nAA�r�
2	r

, gBA
x �r� =

1

�B

nBA�r�
2	r

, �1�

where �A and �B denote average densities of A and B and
nAA�r� and nBA�r� denote the number of A and B particles at
distance r from a reference particle A, respectively. In Fig. 3,
we show gAA

x �r� for x=5,6 , . . . ,13 arranged in the direction
of the arrow. The gBA

x �r� follow gBA
x �r�=2−gAA

x �r� because
�A=�B so that gAA

x +gBA
x =2. If reactants A and B distribute

homogeneously, the values of gAA and gBA should be equal to
1. Thus the result gAA�1 directly shows that correlations
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FIG. 1. �Color online� Log-log plot of spatial distributions of
reactants of the reaction A+B→C+D in two and three dimensions.
The parameters are fixed as �̄L=0.155 and �̄R=0.111, Lx=100, and
Ly =Lz=10. The lines x−1/2 and x−3/4 are also shown. In the inset, we
show a zoom of the profile in which we can see the decrease in
reactants and an increase in products.

FIG. 2. Snapshots in our geometry. The parameters of the simu-
lation are Lx=800 and Ly =100. Black and white circles denote A
and B, respectively. The left end corresponds to the high-density
side. Radii of the reactants are shown enlarged to make the presen-
tation clearer.
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FIG. 3. �Color online� Particle-particle correlation functions
gAA

x �r�. In the direction of the arrow, gAA
x for x=5,6 , . . . ,13 are

shown. The right end r=5 is equal to Ly /2. In the inset, we show
the values at r=Ly /2 as a function of x. They are fitted by f�x�
=1+

C1

�x
exp�−C2 /x� with C1=11.4 and C2=31.6.
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between the same kind of reactants are stronger, i.e., a seg-
regation. We can also see that the correlation length increases
as x increases. The right end r=5 is equal to Ly /2 in the
figure. In the inset, we show the values of gAA

x at the end as
a function of x. The plots can be fitted by a function f�x�
=1+

C1
�x

exp�−C2 /x�, where C1 and C2 are parameters. This
function describes one dimensional diffusion. Diffusion in
one dimensional systems is given by g�y , t�= 1

�t
exp�−y2 / t� so

that at a fixed point y=const and x� t, it depends on x as
g�x�= 1

�x
exp�−1 /x�. Therefore the correlation length grows

by diffusion.
The power-law decays of −1 /2 and −3 /4 are explained as

follows. As particles flow in the x direction with a constant
average velocity v, particles diffuse as in the isotropic case if
we observe the system from a reference frame which moves
in the x direction. In d-dimensional isotropic systems, par-
ticles A and B will diffuse in volume V� td/2 during time t.
After time t, the number of remaining particles A or B is of
the order �V� td/4. Therefore, the density decays as �V /V
� t−d/4. In our system, particles move in the x direction by
x�vt. Therefore, the densities decay as �A=�B=x−d/4.

So far, we considered irreversible reactions, however, in
general a reaction will proceed in both directions. The reac-
tion is approximately one directional as A+B→C+D if the
energy barrier from C+D to A+B is sufficiently high com-
pared to the opposite direction. In reality, such a condition is
realized when the internal energy state of reactants A and B
is high and the reactions are exothermic. Our model does not
include internal information of particles; however, we can
include the energy release as follows. In our reaction pro-
cesses, we release energy Q as KA+KB+Q=KC+KD, where
Ki denotes a kinetic energy of species i in the center of mass
reference frame. In Fig. 4, we show the distributions of re-
actants when the reaction is exothermic in two dimensions.
As we can see, the densities asymptotically decay as x−1/2.

We also confirm that the segregation changes the average
distribution of reactants by simulating a system of reaction
2A→2C in two dimensions. In the same manner as in the
A+B case, particles of reactants A and products C are con-
trolled in the left and right slices, respectively. In Fig. 5, we
show distributions of reactants A in the steady state. As we

can see, the distribution approaches log�x� /x. The reactant of
the 2A reaction decays faster than that of A+B and it appears
to decay slightly slower than the mean-field solution x−1.
This logarithmic correction is observed in isolated systems
using hard spheres �9� as log�t� / t and it is due to the mar-
ginal behavior of two dimensional diffusion in which deple-
tion of reactants occur. In our geometry, we confirm that the
correction is observed in the flow.

By using our geometry, we also directly observe anoma-
lous behavior of the diffusion constant in the two dimen-
sional system. We fix �̄L= �̄R= �̄ in the particle reservoirs and
switch off the reaction processes. Let us consider a case in
which A and C particles are added at the left and right slices,
respectively. Here, we do not consider reactions so that col-
lisions of A particles do not change them into C particles.
Further, the densities for left and right slices are identical so
that no macroscopic flow appears in this case; particles just
diffuse by collisions with other particles. In Fig. 6, we show
the results. As seen in the inset, we confirm that the average
density of A particles, �A�x� decreases linearly from x=0
while that of C particles, �C�x� increases keeping �A�x�
+�C�x�= �̄. The diffusion flux JA=�A�x�vx for A particles has
a constant positive value in the x direction while that of C
has a negative one fulfilling JA+JC=0. We confirm that the
diffusion constant Dx=−JA /��A shows logarithmic depen-
dence on the system size Lx in two dimensions. This behav-
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ferent Q. The densities asymptotically approach x−1/2.
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ior is explained using the Green-Kubo formula �14� and
long-time tail behavior t−d/2 of the autocorrelation function of
velocities �15�. The density of A particles in our system
shows linear profiles so that the macroscopic transport coef-
ficient is written as an integral of velocity autocorrelation
functions over time t, which is commonly known as the
Green-Kubo formula. In a finite system, the upper limit of
the integral is proportional to the system size Lx. Conse-
quently, the integral of the autocorrelation function, t−d/2 de-
pends on Lx as log�Lx� in two dimensions. In three dimen-
sions, the diffusion constant converges to a constant as
confirmed in our simulations.

IV. SUMMARY

In this paper, we have shown that fluctuations are relevant
to chemical reactions in flows producing anomalous spatial
distributions. By attaching particle reservoirs, we simulate
open systems with inflow and outflow of particles in two and
three dimensions. In the case of A+B, segregations of reac-
tants are observed and spatial distributions of reactants show
power-law decay. In the case of 2A, a logarithmic correction
to the distribution is found. The logarithmic divergence of
the diffusion constant is also confirmed.

In flowing stream, a power-law spatial distribution is ob-
served and the power sensitively depends on the spatial di-
mension and the type of the reactions. In practical applica-
tions, the distribution is relevant to the efficiency of
collecting products and the design of reactors, especially in
the reaction miniaturizations to smaller scales. Our study
presents essential behavior of flowing reaction-diffusion sys-
tems especially at nanoscale and microscale and gives fun-
damental guidelines for accurate measurement and control of
such systems.

We remark that for the system studied in this paper peri-
odic boundary conditions are imposed in the perpendicular
directions to the stream. In chemical channels, walls in the
short directions �y ,z� produce more restricted situations, i.e.,
quasi-one-dimensional geometry. In fact, studies on lattice-
based models show crossover behavior in the scaling �5�, and
it will be the next step to examine these effects.
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