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In this work, we study the critical behavior of a one-dimensional model that mimics the propagation of an
epidemic process mediated by a density of diffusive individuals which can infect a static population upon
contact. We simulate the above model on linear chains to determine the critical density of the diffusive
population, above which the system achieves a statistically stationary active state, as a function of two relevant
parameters related to the average lifetimes of the diffusive and nondiffusive populations. A finite-size scaling
analysis is employed to determine the order parameter and correlation length critical exponents. For high-
recovery rates, the critical exponents are compatible with the usual directed percolation universality class.
However, in the opposite regime of low-recovery rates, the diffusion is a relevant mechanism responsible for
the propagation of the disease and the absorbing state phase transition is governed by a distinct set of critical
exponents.
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I. INTRODUCTION

Relevant features of several complex systems can be stud-
ied through the analysis of the critical behavior of nonequi-
librium systems �1�. By complex system, we mean a classical
stochastic many-particle system, defined by a given set of
possible configurations, with transition rates governed by a
master equation �2�.The most interesting cases concern sys-
tems that are far away from thermal equilibrium. In equilib-
rium systems, the detailed balance condition is fulfilled, and
the stationary probability distribution function is a uniform
distribution �for isolated systems� or the Boltzmann-Gibbs
distribution �for systems in contact with a thermal bath�.

In this work, we are interested in second order phase tran-
sitions in nonequilibrium systems, mainly in systems pos-
sessing absorbing states, which are configurations that can be
reached by the system, but it cannot be left. The simplest
example of a model presenting a dynamic transition into ab-
sorbing states is the contact process �CP�. It models the com-
petition between two elementary processes in spatially dis-
tributed population. Self-replication is allowed as well as
spontaneous annihilation of the entities. An example is a
Markov process in which each site of a lattice presents two
possible states, named active and inactive. Given a site i of
the lattice, its state is said inactive if Si�t�=0. If Si�t�=1, the
state is active. Depending on Si�t� and the number of active
neighbors, a new value Si�t+dt� is assigned according certain
rates. Also, the active state is not permanent, having a finite
lifetime. Since only active sites at a given time t can activate
sites at t+dt, the state with only inactive sites is an absorbing
state. A short lifetime of active sites results in the whole
system being driven to the absorbing state with only inactive
sites. Above a critical lifetime, the system reaches a station-

ary active state with a fluctuating finite fraction of active
sites �2–4�.

The universality class of the CP is the Directed Percola-
tion �DP� class. The DP universality class has been observed
to describe a large class of models presenting a dynamic
transition into a single absorbing state �5,6�. Even if the ab-
sorbing state presents more than one configuration, as in the
pair contact process �7�, the dynamic transition still belongs
to the DP universality class, provided these configurations
are not related to extra symmetries.

Of great interest in our work are the diffusive epidemic
processes �DEP�, which are reaction-diffusion-decay pro-
cesses where two kinds of particles, say A and B, undergo the
following reactions:

A + B → 2B ,

B → A . �1�

The presence of particle diffusion is an important mecha-
nism that can influence the critical behavior of systems with
absorbing states. This fact makes DEP an interesting model
to study �8�, as deviations from the DP class can be observed.
Usually, A and B particles mimic healthy and sick individu-
als diffusing independently with diffusion constants DA and
DB. Upon contact, sick individuals may infect healthy ones at
a rate k1. They also recover spontaneously at a rate k2. There-
fore, a competition between the contamination process �cre-
ation of B particles� and the recovery process �annihilation of
B particles� takes place. For low concentrations of the aver-
age total population density �, the stationary state is charac-
terized by a global extinction of the epidemics. Above a criti-
cal density �c, there is a stable steady-state regime with a
fluctuating finite density of sick individuals. Near �c, the
system exhibits a phase transition with the average density of*iram@if.ufal.br; iram@pq.cnpq.br
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sick individuals acting as the order parameter. The reaction-
diffusion-decay process of Eq. �1� captures the essence of
this model.

Above the critical dimension dc=4, fluctuations in the
particle densities are irrelevant and the system is well-
described by a mean-field approach. For lower dimensions
corrections to the mean-field picture must be considered �2�.
The critical properties of the stationary state for the special
case of DA=DB falls in the same universality class studied by
Kree et al. in the context of a population density in a polluted
environment �9�. Kree et al. computed the critical exponents
to be �=−� /8 in first order of �=4−d, and �=2 /d and z
=2 for all orders in �. This process can also be characterized
by the coupling between the fluctuations in the total density
and the density of the species that is trying to survive. If
fluctuations in the total density are suppressed, the transition
falls in the universality class of DP. In a later work, van
Wijland et al. �10� have shown that for DA�DB, the critical
behavior is governed by a new fixed point. Within a Wilson
renormalization group approach, they found that the transi-
tion falls in a new universality class with exponents given by
�=2 /d, �=0, �=��d+�� /2=1, and z=2 �in all orders in ��.
In the opposite case of DA�DB, the renormalization group
equations do not have a fixed point and they have conjec-
tured the possible existence of a fluctuation-induced first-
order transition in this regime. Numerical simulations in one-
dimension, however, showed a continuous phase transition
�11�.

A generalized version of the pair contact process �PCP�
with diffusion was investigated �12�. The authors presented a
parameter related to the effect of memory, without which the
model falls into the DP class. Long-term memory effects
produce a distinct critical behavior that do not belong to the
DP class. The critical exponents vary continuously with the
parameter controlling the memory strength. In �13�, a gener-
alization of the bond directed percolation was studied, the
infection rates decaying with 1 /rd+�, where d is the spatial
dimension. It was observed that the critical exponents vary
continuously with �. The authors obtained results in good
agreement with field theory, although the predicted transition
to the DP class �when �=2� was not confirmed from the
numerical simulations. A crossover from the directed perco-
lation to the mean-field behavior has also been reported to
occur in the diffusive contact process �14,15�.

In previous works �16,17�, some of the authors analyzed
the critical behavior of one-dimensional DEP models with
coupled static and diffusive populations. In �16�, it was
found that the dynamic transition of the considered model
does not belong to the usual DP class. The results obtained
are in agreement with previous field theoretical calculations
showing that diffusion is an important mechanism that can
influence the critical behavior of absorbing states phase tran-
sitions �9,10�. In �17�, the role played by the static and dif-
fusive populations was interchanged. The results obtained
also strongly deviate from the DP class. The presence of
coupled diffusive and nondiffusive populations thus offers a
rich scenario that we explore in this work.

Within the above scenario, the main motivation of the
present work is to analyze the role of diffusion in stochastic
models with coupled diffusive and static populations. We

study the critical behavior of a model that simulates the
propagation of an epidemic process over a population medi-
ated by a density of diffusive individuals which can infect a
static population upon contact. We will employ a finite-size
scaling scheme to locate the critical density and the relevant
critical exponents for distinct regimes of the reaction rates. In
particular, we will investigate the possible influence of the
reaction rates on the critical behavior.

The paper is organized as follows: Sec. II presents our
model and brings the mean-field result for the critical point.
In Sec. III, we present our results for the critical behavior
based on the finite-size scaling of data obtained from simu-
lations in linear chains. Finally, we summarize and discuss
our main results in Sec. IV.

II. MODEL

In what follows, we consider a model with two interacting
species. One of the species corresponds to the individuals of
a population that can be either in an inactive �noninfected�
state or in an active �infected� state. These individuals oc-
cupy all sites of a one-dimensional lattice and are not al-
lowed to diffuse. Sites in the active state have a finite life-
time, becoming inactive at a rate 	p.

There is no direct contamination by contact between indi-
viduals. Therefore, without any mechanism to spread the in-
fection, the population naturally evolves toward the vacuum
state with no active sites. The spread of the disease will be
considered to be mediated by a population of vectors which
can be either in an active �infective� state or in an inactive
�noninfective� state. The individuals of the vector population
describe a random walk on the lattice. Vectors become non-
infective at a rate 	v. Active states are transmitted only be-
tween species whenever an inactive individual of one popu-
lation occupies the same site of an active individual of the
other population. The dynamics of the above described
model can be represented by reaction-rate equation as

Pa + Vi→
k1

Pa + Va,

Pi + Va→
k2

Pa + Va,

Pa→
	p

Pi,

Va→
	v

Vi, �2�

where Pi, Pa, Vi, and Va are the population densities of indi-
viduals and vectors in the inactive and active states. k1 gives
the infection rate of Vi upon contact with the active individu-
als Pa and k2 stands for the rate at which the Pi population
becomes infected by the vectors Va. In the mean-field ap-
proach with uniformly distributed populations, the dynamics
of the model is captured by the following set of ordinary
differential equations:

�Pa

�t
= k2PiVa − 	pPa,
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�Va

�t
= k1PaVi − 	vVa,

Pa + Pi = 1,

Va + Vi = � , �3�

where � is the total density of the diffusive V population �V
and P denote densities�. In the above equations, the popula-
tion of vector individuals are considered to be uniformly
distributed over the lattice. Under this condition, the terms
corresponding to the diffusion of the vector individuals do
not influence the time evolution of the average population
densities �D�2Va=D�2Vi=0�. Both Pa and Va recover spon-
taneously with rates 	p and 	v, respectively. For the station-
ary solution of Eq. �3�, we obtain

Pa =
k1k2� − 	p	v

	pk1 + k1k2�
, �4�

from which the critical density of the vector population is
given by

�c =
	p	v

k1k2
, �5�

which, for 	p=	v�	MF and k1=k2=k, results in

�c = �	MF

k
�2

. �6�

Defining 	 as the probability per unit time that the active
state Pa becomes inactive, one can relate 	 with the mean-
field reaction-rate 	MF

P�a → i� = 	 � 1 − e−	MF �7�

or, equivalently,

	MF = ln� 1

1 − 	
� , �8�

which can be used to compare simulation results on a dis-
crete time scale with the mean-field prediction. For small 	

�low-recovery rates�, the critical density for the spreading of
the epidemic is low and one expect diffusion to be the main
mechanism responsible for the propagation of the disease
�since there will be few vector individuals on the lattice�.
Increasing 	 will bring the system to a pure CP process,
since in this case the critical vector density will be large and
the disease will spread effectively by contact. In this sense,
the transition may present features similar to the usual DP
transition.

III. SIMULATIONS IN ONE DIMENSION

The above mean-field description, although giving a good
qualitative description of the critical density dependence on
the relevant reaction rates, is not able to capture the correct
critical behavior of the absorbing state phase transition in
low dimensions at which fluctuations in the population den-
sities play a major role. In what follows, we are going to
show results from simulations on finite linear chains of size
L with periodic boundary conditions, thus discretizing both
space and time. In each lattice sweep �considered as the time
unit�, each vector diffuses to one of its neighboring sites. No
excluded volume interaction is considered. Therefore, a
given site can support any number of vector individuals. In-
fective and noninfective vectors will be assumed to diffuse
with the same diffusion rate. If a given vector individual is
inactive, it becomes active whenever the site on which it is
located is occupied by an individual in state Pa. On other
hand, an active vector becomes inactive with probability 
.
Within the same lattice sweep, each inactive individual be-
comes active if its site is occupied by at least one active
vector. Active individuals become inactive with probability
	. Furthermore, since any finite system eventually becomes
trapped in the vacuum state, we activate an individual chosen
at random whenever the system becomes trapped. Note that
	 and 
 are related to 	p and 	v through Eqs. �7� and �8� and
k1=k2=1.

In the following, we will mainly report simulation data
obtained from two sets of decay probabilities representing
the regimes of low and high-recovery rates. In Fig. 1, we

(b)(a)

FIG. 1. Time evolution of the average number of infected individuals near criticality. Data are from a chain of 1000 sites. All individuals
are considered to be initially in the active state. Time is measured in units of lattice sweeps. The relaxation time is estimated as the time
needed for the system to reach the plateau region �typically 106 lattice sweeps for this system size�. �a� Case 
=	=0.1, �c=0.116, averaged
over 100 independent runs. �b� Case 
=	=0.7, �c=25.89, averaged over 20 runs.
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show the temporal evolution of the average number of active
individuals for �a� 
=	=0.1 �low-recovery rates� and �b�

=	=0.7 �high-recovery rates�. Data are averages over 100
distinct runs. These data were obtained using chains with
1000 sites and for vector densities near the absorbing state
transitions, starting from a configuration with all individuals
and vectors in the active state. This is the case on which the
convergence to the stationary state becomes slower. In both
cases, the stationary state is reached roughly after L2 lattice
sweeps. In the following, we disregarded the first 10L2 lattice
sweeps for all chain sizes and vector’s density to evaluate the
average value of the order parameter density which is the
average density of active individuals �= 	n�Pa�
 /L in the sta-
tionary regime as a function of the total density of vectors �.
In order to start even closer to the stationary state, active and
inactive individuals were initially distributed at random on
the lattice sites.

In Fig. 2�a� �
=	=0.1� and Fig. 2�b� �
=	=0.7�, we
show the average stationary density of active individuals as a
function of the total density � of vectors �average number of
vector individuals per site�, as obtained from simulations on
lattices of distinct sizes. As L→�, a transition from the
vacuum to the active state takes place by increasing the vec-
tors concentration. Notice that the critical vector density

grows substantially with the recovery rate, in agreement with
mean-field result.

In order to precisely locate the critical vector concentra-
tion, we measured the ratio between two moments of the
density of infected individuals, defined as

mL��� =
	�n�Pa��2

�	n�Pa�
�2 . �9�

The moment ratio mL��� of large systems is known to be
independent of the system size at the critical point �18,19�. In
Fig. 3, we plot mL��� as obtained from distinct lattice sizes,
which allowed us to estimate the critical concentration �c
=0.116�1� for 
=	=0.1 and �c=25.89�2� for 
=	=0.7.
The critical moment ratio in the regime of high-recovery
rates �m�=1.105�15�� is close to best estimated value found
for the usual contact process transition �18�. The critical mo-
ment ratio for low-recovery rates is somewhat larger �m�

=1.182�8��. It is interesting to stress that this value is similar
to the one reported to hold for the case of the contact process
transition with equally diffusing active and inactive particles
�8�.

ψ
,ρ

ρ (b)(a)

FIG. 2. Average stationary density of individuals in the active state versus the total density of vector particles � for distinct lattice sites.
The stationary regime was considered to be achieved after 10L2 lattice sweeps. The average was performed considering 2
105 distinct
configurations taken at each L lattice sweeps. Data were obtained from simulations with �a� 
=	=0.1 and �b� 
=	=0.7

(b)(a)

FIG. 3. �a� The moment ratio mL���= 	�n�Pa��2
 / �	n�Pa�
�2 as a function of the total density of vectors � for distinct lattice sizes. The
scale invariance at the critical point allowed us to precisely estimate the critical vector density. �a� Case 
=	=0.1 for which our best
estimate gives �c=0.116�1�, mL��c=0.116�=1.105�15�. �b� Case 
=	=0.7 for which we obtained �c=25.89�2�, mL��c=25.89�=1.182�8�.
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Once having located the critical concentration, finite-size
scaling relations were used to compute the critical exponents
characterizing such nonequilibrium phase transition. In par-
ticular, the critical order parameter density shall scale as
��L ,�c��L−�/�, while its logarithmic derivative scales as
� ln ��L ,�� /�� ��c

�L1/�. These scaling laws are depicted in
Figs. 4 and 5, respectively, from which we estimate � /�
=0.20�2�, �=1.99�11� for 
=	=0.1 and � /�=0.27�2�, �
=1.05�5� for case 
=	=0.7. We note that, although the ex-
ponent ratio � /� is just weakly dependent of the recovery
rate, the difference on � is quite out of the error bar, indicat-
ing that the critical behaviors on these two regimes are dis-
tinct. In Fig. 6, we present data collapse of the order param-
eter density computed from different lattice sizes, using the
estimated values of �c , � /� and �. All data fall in a single
curve in both cases of low and high-recovery rates, signaling
the accuracy of the estimated critical parameters.

In Table I, we collect our estimates of �c , � /�, �, and m�

for the two representative values of the recovery rate 	=

considered. For high-recovery rates, our estimated exponents
are similar to the ones exhibited by the usual contact process
in one dimension. These correspond to the exponents of the
directed percolation universality class in �1+1�D. In the
limit of low-recovery rates, our results are consistent with the

renormalization group prediction of �=2 /d=2 for the diffu-
sive epidemic process with equally diffusing active and in-
active particles �10�. Although the renormalization group
theory did not provide the exact value for � /�, numerical
simulations in one dimension have indeed estimated that this
exponent ratio is smaller than the usual directed percolation
value �8�. Furthermore, our estimate of the moment ratio in
the case of low-recovery rates is consistent with the recently
reported one for the diffusive epidemic process �8�.

In order to understand the emergence of the diffusive epi-
demic process universality class, one shall notice that in the
regime of low-recovery rates, individuals and vectors stay in
the active state for a long time. In this case, the critical den-
sity necessary to sustain the epidemic is low and diffusion is,
indeed, the relevant mechanism for the spreading of the dis-
ease. The observed continuous phase transition is in agree-
ment with the renormalization group analysis of Ref. �10�. In
the opposite case of high-recovery rates, the exponents are
those of the standard directed percolation. In this regime, the
density of vectors at the critical point is quite large but they
stay a very short time in the active state. Therefore, the ac-
tive state of a given individual can only be transmitted to
neighboring individuals as it is the case in the direct contact
process.

(b)(a)

FIG. 4. �a� Finite-size scaling of the order parameter near the critical point. From the best fit to power laws, we estimate the critical
exponents ratio � /�. �a� Case 
=	=0.1 for which our estimate provided � /�=0.20�2�. �b� Case 
=	=0.7 for which � /�=0.27�2�. The
error bar includes the error in the estimate of the critical density.

(b)(a)

FIG. 5. Finite-size scaling of the logarithmic derivative of the order parameter at the critical point. From the best fit to power laws, we
estimate the correlation length critical exponent. �a� 
=	=0.1 for which we obtained �=1.99�11�. �b� 
=	=0.7 for which �=1.05�5�. The
error bars include the possible error in the estimates of the critical density.
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In Fig. 7, we show our results for the critical vector den-
sity for a series of additional intermediate values of the re-
covery rate 	=
, together with the mean-field prediction
�Eq. �6� with k=1�. The estimated critical densities are sub-
stantially larger than the mean-field ones due to the relevant
role played by order parameter fluctuations when the absorb-
ing state transition takes place in low-dimensional systems.
Concerning the critical behavior, our results indicate that,
within the range of system sizes explored in our simulations,
the exponents are compatible with the diffusive epidemic
class universality class whenever the critical density is
smaller or on the order of unity �
=	�0.4�. On the other
hand, the usual directed percolation universality class pre-
dominates for large critical densities �
=	�0.7�. In the re-
gime of intermediate critical densities, the simulation data
exhibit a crossover between these two universality classes, as
illustrated in Fig. 8. However, simulations on much larger
system sizes would be required in order to precisely locate
the crossover point and to determine its properties. The case
previously reported in Ref. �16� falls within this crossover
regime. The lattice sizes considered in such preliminary
work were much smaller than the presently reported ones,
thus leading to less accurate estimates of the critical point

and exponents. In particular, the order parameter exponent is
known to be quite sensitive to the precise location of the
critical point. This feature would explain the previously re-
ported value of �=0.34 to be somewhat out of the interval
here proposed. On the other hand, the correlation exponent �
is more robust and the reported value of �=1.75 seems to
reflect the here reported crossover phenomenon.

IV. CONCLUSIONS

We have investigated the critical behavior of an interact-
ing two-species diffusion-limited reaction model which mim-
ics the propagation of a disease in a static population medi-
ated by a population of diffusive vectors. We showed that the
proposed model presents a transition from an absorbing to an
active state at a critical density of vectors. Using finite-size
scaling, we computed some relevant critical exponents gov-
erning this nonequilibrium phase transition from simulations
of this dynamical model in linear chains. We obtained that,
for the parameters set employed, the scaling relations pro-
vided that the exponent ratio � /� are just weakly dependent

TABLE I. Estimated critical density, critical exponents, and
critical moment ratio for the cases of low- �	=
=0.1� and high-
�	=
=0.7� recovery rates considered. The critical exponents and
moment ratio of the usual one-dimensional contact process �CP-
1D�, as well as those for the diffusive epidemic process �DEP-1D�,
are also shown �Ref. �8,18�. These are compatible with our esti-
mates for the high- and low-recovery rates regimes, respectively.


=	 �c � /� � m�

0.1 0.116�1� 0.20�2� 1.99�11� 1.105�15�
0.7 25.89�2� 0.27�2� 1.05�5� 1.182�8�
CP-1Da,b 0.252 1.09 1.1736�2�
DEP-1Dc 0.192�4� 2.0�2� 1.093�10�
aReference �20�.
bReference �18�.
cReference �8�.

FIG. 7. Critical vector density versus 1−	. The corresponding
mean-field values �Eq. �6� with k=1� are shown for comparison.
The critical density obtained in the one-dimensional simulation ex-
hibits a stronger divergence than the mean-field one as 	→1.

(b)(a)

FIG. 6. Data collapse of the order parameter density computed from different linear lattice sizes L. �a� 
=	=0.1; �b� 
=	=0.7. Data
from distinct chain sizes fall onto a single curve signaling the accuracy of the estimated critical quantities.
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of the characteristic transition rate from the active to the
inactive state. On the other hand, the correlation length ex-
ponent � was found to vary from the diffusive contact pro-
cess universality class value for low-recovery rates to the
direct percolation value for large recovery rates. The present
results bring additional evidences that nonuniversal behavior
can be a common feature of nonequilibrium phase transitions
occurring in systems with diffusive populations. We hope the
present work will stimulate larger scale simulations on mod-
els incorporating diffusive and nondiffusive populations that
could probe the regime of intermediate reaction rates for
which a crossover between the above universality classes
shall take place.
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