
Statistical mechanical analysis of the Kronecker channel model for multiple-input
multiple-output wireless communication

Atsushi Hatabu
System IP Core Research Laboratories, NEC Corporation, Kawasaki 211-8666, Japan

and Department of Computer Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan

Koujin Takeda and Yoshiyuki Kabashima
Department of Computer Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan

�Received 18 September 2009; published 17 December 2009�

The Kronecker channel model of wireless communication is analyzed using statistical mechanics methods.
In the model, spatial proximities among transmission/reception antennas are taken into account as certain
correlation matrices, which generally yield nontrivial dependence among symbols to be estimated. This pre-
vents accurate assessment of the communication performance by naively using a previously developed ana-
lytical scheme based on a matrix integration formula. In order to resolve this difficulty, we develop a formalism
that can formally handle the correlations in Kronecker models based on the known scheme. Unfortunately,
direct application of the developed scheme is, in general, practically difficult. However, the formalism is still
useful, indicating that the effect of the correlations generally increase after the fourth order with respect to
correlation strength. Therefore, the known analytical scheme offers a good approximation in performance
evaluation when the correlation strength is sufficiently small. For a class of specific correlation, we show that
the performance analysis can be mapped to the problem of one-dimensional spin systems in random fields,
which can be investigated without approximation by the belief propagation algorithm.
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I. INTRODUCTION

Recently, in the field of information science, techniques
for efficiently handling systems with large amounts of data
are strongly required, and statistical mechanics have attracted
a great deal of attention. The number of applications in in-
formation science to which analytical schemes in statistical
mechanics can be applied is increasing, and such applica-
tions offer a variety of consequences �1�, some of which are
not possible by standard techniques in information science.
Information processing is a notable example.

In the present paper, we investigate wireless communica-
tion systems. Multiple-input multiple-output �MIMO� sys-
tems and code division multiple access �CDMA� systems in
wireless communication have mathematical structures that
are similar to those of disordered spin systems in physics,
and analytical tools in statistical mechanics, such as the rep-
lica method and mean-field approximations, have enabled
performance analysis and improved processing algorithms
for actual communication systems �2–11�. In these studies,
the communication process is described by a linear equation
with transmitted signals b�CK and received signals r�CL

using an L�K channel matrix H= �Hlk��CLK and noise
��CL as

r = Hb + �� , �1�

where �2 describes the noise power �see Fig. 1�A��.
Throughout the present paper, matrices and vectors are de-
noted in bold. In the above equation, the dimension K repre-
sents the number of multiple transmission antennas in the
MIMO system, whereas L corresponds to the number of re-
ception antennas. Clarifying the feature of the above-
mentioned communication channel by the standard method

of information theory is technically difficult because of the
randomness in H and the discreteness of variable b. How-
ever, statistical mechanical analysis enables us to avoid such
difficulties in the limit of infinite system size.

In previous studies based on statistical mechanical meth-
ods, channel matrix H was characterized by a property that
the cross correlation H†H can be handled as a typical sample
from a rotationally invariant matrix ensemble as follows:

H†H = UDU†, �2�

where U is a sample randomly chosen from the uniform
distribution of K-dimensional unitary matrices, and D is a
K-dimensional diagonal matrix. If D has an asymptotic and
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FIG. 1. �a� Schematic picture of the MIMO system. �b� The
MIMO system with correlation. Correlation is propagated through
adjacent transmission antennas. �c� The correlated system with uni-
tary or orthogonal matrix multiplication. Correlations are smeared
by the multiplication of unitary or orthogonal matrix.
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deterministic eigenvalue distribution �D��� with a large ma-
trix size limit L ,K→� while keeping ��K /L finite, the
features of this channel can be characterized by ����, in con-
junction with the replica method, and the performance of the
channel can be assessed �12–14� by a matrix integration for-
mula �15–19�, which is defined for ����.

However, one problem remains. For the simplest case in
which each element of random matrix H is drawn from an
independent and identically distributed �iid� Gaussian distri-
bution, the property of rotational invariance concerning the
cross correlation is satisfied. However, such property does
not necessarily hold for general matrix ensembles of MIMO
systems. For instance, in the Kronecker model �20�, which is
one of the standard models in the theory of wireless commu-
nication, the elements of the channel matrix are not drawn
from an iid Gaussian distribution but are instead drawn from
an L�K-dimensional joint Gaussian distribution. More pre-
cisely, the channel matrix H is described as

H = �Rr��Rt , �3�

where each component of an L�K rectangular matrix �
= ��lk� is drawn from a complex iid Gaussian distribution:
P��lk�=L	−1e−L��lk�2�1
 l
L ,1
k
K�. Rr�CL2

and Rt

�CK2
are L- and K-dimensional deterministic matrices,

which are Hermitian and indicate correlations among recep-
tion antennas and transmission antennas, respectively.
�Square root of a square matrix A is defined by the Cholesky
decomposition A=�A†�A here.� In a previous paper �13�, we
analyzed this system by means of the matrix integration for-
mula. However, for this system, the matrix ensemble is not
rotationally invariant and, accordingly, the result of perfor-
mance analysis via the matrix integration formula may not
hold exactly.

One of the goals of the present paper is to develop a
scheme that can handle the dependence on �Rr and �Rt in
Eq. �3� explicitly. In other words, the method developed
herein relies on the direct integration of each matrix element
in Gaussian random matrix �. The results of analysis for
mutual information indicate that the roles of the determinis-
tic matrices �Rr and �Rt are different. As will be shown later
herein, the dependence on �Rr can be treated using the ma-
trix integration technique, whereas the dependence on �Rt
must be handled more carefully. The developed scheme can
also be used to construct a practical demodulation algorithm.
Another goal is to compare the performance of the Kro-
necker channel �Eq. �3�� via a analysis with the performance
of the matrix integration formula applied to the entire cross-
correlation matrix H†H, as we demonstrated in Ref. �13�.
The two formulations are found to yield different result,
which means that the application of the matrix integration
formula to the cross-correlation matrix H†H, in general, does
not yield correct results. However, when correlation among
transmission antennas or when the off-diagonal element of
the deterministic matrix �Rt is sufficiently small, discrep-
ancy between results of the scheme developed herein and
that based on the matrix integration formula increases only
after the fourth order with respect to correlation strength,
implying that the formulation based on entire matrix integra-

tion yields good approximate results. This suggests that al-
though the matrix-integration technique is generally an ap-
proximation, this technique is practically useful when the
correlation is small because the matrix integration method
enables the system to be characterized using only a few mac-
roscopic variables, which significantly reduces the computa-
tional cost for analysis.

The remainder of the present paper is organized as fol-
lows. In Sec. II, we provide basic tools for performance
analysis and propose a approach to analyze the Kronecker
channel model. The analytical results differ from those ob-
tained by matrix integration. In addition, we compare two
results by a method of perturbative expansion with respect to
the correlation parameter, and a discrepancy appears in the
fourth-order coefficient of the correlation parameter, which
indicates that the discrepancy is small when the correlation is
small. In Sec. III, we show that the demodulation algorithm
can be constructed from the minimization scheme of Gibbs
free energy without the combined scheme of matrix integra-
tion and the Thouless-Anderson-Palmer approach as dis-
cussed in �12,13,21–23�. We present the experimental results
of the demodulation algorithm for the Kronecker channel in
Sec. IV. As a special case, we consider a system with a
tridiagonal form of Rt, where the analytical scheme can be
used for the random-field Ising chain. The results of a nu-
merical experiment confirm the validity and usefulness of the
proposed scheme. The final section presents a summary of
the present paper.

II. ANALYSIS

Let us start with the communication channels described
by Eq. �1�. For the noise, we assume that � is drawn from a
white normal complex Gaussian distribution P���
=	−Le−���2. Each component of the transmit vector b is gen-
erated from an iid information source and modulated. For
simplicity, the modulated components or symbols bk are
quantized to one of the elements in a set B. For instance, for
S-phase shift keying modulation B��e2	is/S	�s=0,1 , . . . ,S
−1�. As special and well-known cases, B���1	 for binary-
phase shift keying �BPSK� modulation and B
���1 /�2� i /�2	 for quadrature-phase shift keying �QPSK�
modulation. The prior of the transmit vector is denoted by
P�b�=
k=1

K P�bk�. Here P�bk�=1 / �B� and �B� is the number of
elements in B.

As mentioned in the introduction, we investigate the Kro-
necker model described by the matrix of Eq. �3�. In order to
apply statistical mechanical schemes to the analysis of com-
munication systems, we allow the number of antennas L and
K to be sufficiently large while keeping �=K /L finite. Next,
let us assume that for the matrices Rr and Rt that there exist
deterministic distributions �Rr

��� and �Rt
���, respectively, in

the limit of infinite number of antennas. In addition, we as-
sume that both distributions have compact supports and finite
moments, which affects the applicability of the matrix inte-
gration formula.

In the following, we consider only the case in which the
receivers know the channel matrix H and the noise power �2

in advance. The performance of the communication channels
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can be analyzed by estimating the mutual information be-
tween transmitted signals b and the received signals r, de-
noted by IH. For MIMO systems, we have

IH = −
1

K
�

CL
drZ�r�ln Z�r� −

1

�
ln�	�2� −

1

�
,

where Z�r� � Tr
b

P�b�
1

�	�2�Lexp�−
�r − Hb�2

�2  . �4�

In this paper we use nat unit for mutual information and
entropy, which means that information quantity is measured
in a unit of natural logarithm. In statistical mechanics, Z�r�
serves as a partition function, which depends on quenched
randomness H, and IH is considered to represent the free
energy.

Following the standard technique, we use the replica
method to take the average over the channel matrix H in the
mutual information:

IH = − lim
n→0

�

�n

1

K
ln �

CL
drZn+1�r� −

1

�
ln�	�2� −

1

�
, �5�

where ¯ denotes averaging over the distribution of channel
matrix H. As seen in Appendix A, inserting H in Eq. �3� and
after some calculation we have as the final expression

IH = Extr
�
�Ĝ�†Rr�

��� + IRt
� �

�2�� , �6�

where Ĝ�†Rr�
��� is the Legendre transform of G�†Rr�

���,
Ĝ�†Rr�

����Extr����−G�†Rr�
���	, G�†Rr�

��� is given by

G�†Rr�
�A� � −

1

�
� d��Rr

���ln�I − ��A� , �7�

and IRt
��� is defined as

IRt
��� � −

1

K
�

CK
dr��Tr

b
P�b�� �

	
�K

exp�− ��r� − �Rtb�2��
�ln�Tr

b
P�b�� �

	
�K

exp�− ��r� − �Rtb�2�� − ln�	

�
�

− 1. �8�

Equation �6� is the primary result of the present paper. As we
demonstrate in Sec. IV, it is convenient to use IRt

��� for the
discussion of the performance of the channel.

In the following, we consider three items. First, Eq. �6�
provides a physical meaning for the performance analysis of
the Kronecker channel. The term IRt

of the right-hand side
corresponds to the mutual information of a channel

r� = �Rtb
0 +

�

��
�� �9�

�see Eq. �4��, where �� is a K-dimensional normal complex
Gaussian noise. Here, we let � be a random variable that

obeys probability distribution P����exp�KĜ�†Rr�
����.

Then, Eq. �6� means that, in the K→� limit IH corresponds

to the average of the exponential of the mutual information,
exp�KIRt

�� /�2�� over �. The extremization of Eq. �6� implies

that the balance of the two �-dependent functions Ĝ�†Rr�
���

and IRt
�� /�2�, which are dependent on correlations among

reception antennas and among transmit antennas, respec-
tively, is significant in the determination of IH.

Second, IRt
��� can be evaluated using the following ap-

proximation method. After performing unitary transforma-
tion of the matrix Rt to U†RtU, we take the average of
IU†RtU

��� over unitary matrix U �denoted by IU†RtU
��� in the

following� as in the case for the matrix �Rr�
†. In a manner

similar to the evaluation of IH, we have

IU†RtU
��� = Extr

�
�ĜRt

��� + II����	 , �10�

where II��� is the mutual information of Eq. �8� after the
substitution of Rt=I, which can be decomposed to the mu-
tual information of multiple single-output single-input chan-
nels.

Third, if the correlation among transmission antennas is
sufficiently small, we can perform a perturbative expansion
of IRt

. Let us consider the case in which the matrix Rt is
expressed as Rt=I+�R with a real small parameter � and
K-dimensional matrix R, the diagonal elements of which are
all zero. After expansion, we have

II+�R��� = II��� −
����2

2

Tr�R2�
K

�II����	2

+
����3

3

Tr�R3�
K

�II����	3 + ¯ , �11�

where II���� is the derivative of II��� with respect to �. Simi-
larly, expanding the approximate mutual information
II+�U†RU���, we obtain the same result up to the third order of
�. However, a discrepancy appears starting from the fourth-
order coefficient. In the case of QPSK modulation, this dis-
crepancy is expressed as �see Appendix B�

II+�R��� − II+�U†RU��� = −
����4

2

1

K
�

i
��R2�ii −

Tr�R2�
K

2

��− II���� − II����2��II�����2

−
����4

4

1

K��ij �Re�Rij�4 + Im�Rij�4��
���− II���� − II����2�2 +

C���2

6
�

+ O��5� , �12�

where C��� is a function that depends on P�b� as well as �.
This indicates that the approximate evaluation of mutual in-
formation by matrix integration yields a good result if the
perturbation parameter � is sufficiently small. Under this
condition, the evaluation using matrix integration described
in �13� has an advantage in that it provides a good approxi-
mate solution that is more convenient than the exact evalua-
tion of mutual information for the channel r=Hb+�.
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As described in Appendix B, we can prove that �−II����
− II����2	0, and accordingly, the right-hand side of Eq. �12�
becomes nonpositive for a wide class of P�b�, including
QPSK modulation, which means that approximate evaluation
by II+�U†RU��� gives an upper bound of II+�R��� up to the
fourth order of the correlation parameter �.

III. DEMODULATION ALGORITHM

For practical communication, it is also significant to con-
struct a computationally feasible demodulation algorithm.
For inference of original signal b from received signal r and
channel matrix H, it is necessary to evaluate the following
quantity:

m = �
b�BK

bP�b�r,H� . �13�

However, it is computationally difficult to numerically evalu-
ate m from this expression. Key to the practical solution of
this problem is the use of the Gibbs free energy for the com-
munication channel:

��m� = Extr
h

�− lnTr
b

P�b�r,H�exp�Re�h†�b − m��	� ,

�14�

and the quantity m can be estimated as the argument of the
extremized Gibbs free energy. Substituting P�b �r ,H�
= P�b�exp�−�r−Hb�2 /�2� /Z, with Z being the normalization
and H=�Rr��Rt, we have

��m� = Extr
h
� �r − Hm�2

�2 − lnTr
b
�P�b�

�exp�−
��Rr��Rt�b − m��2

�2 + Re�h†�b − m�����
+ ln Z . �15�

Note that the extremization argument h is shifted as h
+2�H†r−H†Hm� /�2→h for making the calculation simpler.
Although this distribution of the vector �Rt�b−m� is not iso-
tropic but rather is biased by the matrix �Rt, the multiplica-
tion by the rectangular random matrix � ensures the follow-
ing approximation under the constraints �= ��Rt�b−m��2 /K
and �=Re�h†�b−m�� /K, where we introduce the auxiliary
variables � and �, as follows:

Tr
b

P�b�exp�− ��Rr��Rt�b − m��2/�2 + Re�h†�b − m��	

� � d�� d� exp�K�G�†Rr�
�− �/�2� + �	�

�Tr
b

�P�b�����Rt�b − m��2 − K����Re�h†�b − m��

− K�		 , �16�

where G�†Rr�
�x� is given by Eq. �7�. Saddle point evaluation

with respect to � and � yields the following approximate
expression of the Gibbs free energy:

��m� � Extr
�,�̂
� �r − Hm�2

�2 − KG�†Rr�
�−

�

�2� − K�̂�

+ �t�m;�̂�� + ln Z ,

where �t�m;�̂� = Extr
h

�− lnTr
b

�exp�− �̂��Rt�b − m��2

+ Re�h†�b − m��	�	 . �17�

From the Gibbs free energy we obtain a set of equations
for estimating m, and using these equations, we construct the
demodulation algorithm or the method for finding the mini-
mization argument m for the Gibbs free energy. In the fol-
lowing, we summarize the procedure for the minimization of
��m�.

�i� �Step 0� Initialize variables as ��0�=1,m�0�=0 ,h�0�=0
for step t=0 and set the number of steps as t=1.

�ii� �Step 1� For the tth step, update �̂ and h as

�̂�t� =
1

�2G��−
��t−1�

�2 � ,

h�t� = h�t−1� + �2�̂�t��2
H†r − H†Hm�t−1�

�2 − h�t−1�� .

�iii� �Step 2� Update m as

m�t� = �b�t,

��t� =
1

K
��b†Rtb�t − m�t�†Rtm

�t�	 ,

where � · �t denotes the expectation

�f�b��t �
TrbP�b�exp�− �̂�t���Rt�b − m��2 + Re�h†b��f�b�

TrbP�b�exp�− �̂�t���Rt�b − m��2 + Re�h†b��
.

�iv� �Step 3� Update the number of recursion steps t→ t
+1. Return to step 1 unless these variables converge, other-
wise stop.

After termination of the above procedure, the transmit

signal is estimated as b̂=argminb��b−m�t��	.
The computational cost of step 1 is O�KL� and is suffi-

ciently small. In general, the cost of step 2 is not so small.
However, we can reduce the cost of step 2 for the special
forms of matrix Rt. For instance, when Rt is a matrix of
tridiagonal form, as considered in the next section, step 2 can
be executed using the transfer matrix method. In such a case,
the cost is O�K�, which is smaller than the cost of step 1.

IV. SIMPLE EXAMPLE

A. One-dimensional chain model

In Sec. II we have already discussed the discrepancy be-
tween two mutual information of the Kronecker model, the
one by the rigorous evaluation and the one by the approxi-
mate evaluation averaging multiplied unitary matrix. For nu-
merically validating the results obtained analytically, we per-
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formed numerical experiments for a simple but nontrivial
example of Kronecker channel model H=�Rr��Rt, for
which Rr and Rt are given as identity and tridiagonal matri-
ces, respectively. More precisely, the correlation matrix of
the transmission antennas is provided as

Rt � I + �R =�
1 � 0 0 ¯

� 1 � 0 ¯

0 � 1 � ¯

0 0 � 1 ¯

] ] ] ] �

� , �18�

R =�
0 1 0 0 ¯

1 0 1 0 ¯

0 1 0 1 ¯

0 0 1 0 ¯

] ] ] ] �

� ,

which implies that correlations are taken into account only
for pairs of adjacent transmission antennas. This model is
referred to as the one-dimensional chain model because it
can be mapped to a one-dimensional random-field Ising
chain model as we see later. For simplicity, we analyze the
real channel, and accordingly, all variables are set to be real.
Here, � represents the L�K-dimensional iid Gaussian ran-
dom matrix N�0,1 /L�KL, b= �bk��RK is a BPSK-modulated
transmit signal �bk� ��1	�, and ��RL is a normalized real
Gaussian-distributed random vector N�0,1�. The formula-
tion so far for the complex channel can be reconstructed
without difficultly for the real channel just by the replace-
ment of unitary matrix U with orthogonal matrix O.

In the following we analyze how different the conditional
entropy and the bit error rate �BER� are between the system
with tridiagonal transmission correlation matrix Rt=I+�R,
which describes the correlation propagating through adjacent
transmission antennas �Fig. 1�B��, and the one with Rt
=OT�I+�R�O=I+�OTRO representing the system whose
correlations are smeared by the multiplication of orthogonal
matrix �Fig. 1�C��, which corresponds to the system evalu-
ated by averaging over multiplied orthogonal matrix. As we
see in Sec. II, there is no difference for Rr-dependent part in
the mutual information between two evaluations, namely, the
rigorous one and the one by averaging over multiplied uni-
tary matrix. This is why we are allowed to set Rr=I for
convenience of the analysis.

B. Analysis

Before the analysis of the entire Kronecker model, let us
evaluate three pieces of mutual information, namely, I1���,
II+�OTRO���, and II+�R��� �24�, that appear as the partial mu-
tual information in the expression of the mutual information
of the entire system IH, as described in Sec. II. For the
BPSK modulation, the mutual information of the single-
input single-output channel I1��� is given by

I1��� = � −� Dz ln�cosh�� + ��z�� , �19�

where Dz�exp�−z2 /2� /�2	. For mutual information
II+�OTRO���, substitution of the tridiagonal form of R yields

II+�OTRO��� = Extr
�

�ĜI+�OTRO��� + I1����	 . �20�

Here, ĜI+�OTRO���=−�1 /2�ln�1− ��−1�2 /4�2�, which is
evaluated using the Stieltjes inversion formula for the func-
tion G��� �see Ref. �12�� and the relation �Rt

���
=lim�→0�	N�−1�� Im ln det�Rt− ��− i��I�. As described ear-
lier, the discrepancy between II+�R��� and II+�OTRO��� ap-
pears starting from the fourth-order term, which is expressed
as the tridiagonal form of R, as follows:

II+�R��� = II+�OTRO��� −
����4

4

���− 2I1���� − �2I1�����2	2 +
Ĉ���2

6
� + O��5� ,

�21�

where

Ĉ��� � − 2� Dz�1 − tanh2�� + ��z�	�1 – 3 tanh2�� + ��z�	 .

�22�

For the tridiagonal form of R, we can evaluate II+�R���
exactly using the transfer matrix method for the Ising chain
in random fields. In order to demonstrate how this is accom-
plished, we transform the mutual information as follows:

II+�R��� = −
1

K
�

RK
dr��Tr

b

1

2K� �

2	
�K/2

�exp�−
�

2
�r� − �I + �Rb�2�

�ln�Tr
b

1

2K� �

2	
�K/2

exp�−
�

2
�r� − �I + �Rb�2�

−
1

2
ln�2	

�
� −

1

2

� −
1

2KK
�

RK
D�Tr

b
ln

��Tr
b


k=1

K−1

��bk,bk+1�b̄k, b̄k+1,�k��
= −

1

2KK
�

RK
D�Tr

�
ln�Tr

�


k=1

K−1

���k,�k+1��̄k,�k�� ,

�23�

where a trivial constant is neglected in the second and the
third lines. Note that gauge transformation as b→� and b
→�, where �k=bkb̄k and �̄k= b̄k+1b̄k, and redefinition of � are
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used for simplification of the expression. Matrix elements

��bk ,bk+1 � b̄k , b̄k+1 ,�k� and ���k ,�k+1 � �̄k ,�k� are defined as
follows:

��bk,bk+1�b̄k, b̄k+1,�k� =
1

2
exp�−

�

2
�l0�bk − b̄k� + l1�bk+1

− b̄k+1��2 + ���k�l0bk + l1bk+1� ,

���k,�k+1��̄k,�k� =
1

2
exp�−

�

2
�l0��k − 1� + l1�̄k��k+1 − 1��2

+ ���k�l0�k + l1�̄k�k+1� , �24�

where l0 and l1 are real constants that are obtained by
Cholesky decomposition, i.e., I+�R=�T�, where �kk
= l0 ,��k+1�k= l1, and zero otherwise;

Rt � I + �R =�
� ] ] ] ] ¯

¯ 1 � 0 0 ¯

¯ � 1 � 0 ¯

¯ 0 � 1 � ¯

¯ 0 0 � 1 ¯

] ] ] ] ] �

� = �T�

��
� ] ] ] ] ¯

¯ l0 0 0 0 ¯

¯ l1 l0 0 0 ¯

¯ 0 l1 l0 0 ¯

¯ 0 0 l1 l0 ¯

] ] ] ] ] �

��
� ] ] ] ] ¯

¯ l0 l1 0 0 ¯

¯ 0 l0 l1 0 ¯

¯ 0 0 l0 l1 ¯

¯ 0 0 0 l0 ¯

] ] ] ] ] �

� .

�25�

These constants satisfy l0
2+ l1

2=1, l0l1=�, and l0 l1 �25�. The
matrix element of Eq. �24� corresponds to the Boltzmann
weight of the Ising chain coupled with bimodal ��� and
Gaussian ��� random fields and consequently the BER for

the demodulation b̂k�arg maxbk
�Trb\bk

P�b �r�	, whose defi-

nition is given by BER��k�1−bkb̂k� /2K, is evaluated ana-
lytically for the random-field Ising chain.

Several methods of analysis have been developed for han-
dling the random-field Ising chain �26,27�, and in the present
study, we use the technique of belief propagation, which is
equivalent to the transfer matrix method. After parametriza-
tion of the belief from site k to site k+1 by cavity field h→k+1
as ���k+1�=eh→k+1�k+1 /2 cosh�h→k+1�, the propagation process
from h→k to h→k+1 is written as

h→k+1 = arctanh��
�k+1

���k+1��k+1
= arctanh���k�k+1

���k,�k+1��̄k�k�exp�h→k�k��k+1

��k�k+1
���k,�k+1��̄k�k�exp�h→k�k�


= �l1

2 + ���k + ��l1�̄k�k

− �̄k arctanh�tanh����tanh�h→k + �l0
2 + ���̄k

+ ��l0�k�� . �26�

Similarly, for the opposite direction, denoted by hk←,

hk← = arctanh���k�k+1
���k,�k+1��̄k�k�exp�hk+1←�k+1��k

��k�k+1
���k,�k+1��̄k�k�exp�hk+1←�k+1� 

= �l0
2 + ���k + ��l0�k − �̄k arctanh�tanh����

�tanh�hk+1← + �l1
2 + ���̄k + ��l1�̄k�k�� . �27�

The stationary distributions of beliefs for the numerically
increasing and decreasing directions, denoted by 	+ and 	−,
respectively, satisfy the following conditions:

	+�h→k+1� =� 	+�h→k�dh→k� D� �
�̄=�1

1

2
��h→k+1

− ��l1
2 + ���̄ + ��l1�̄��

+ �̄ arctanh�tanh����tanh�h→k + �l0
2 + ���̄

+ ��l0���	 , �28�
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FIG. 2. Conditional entropy hI+�R�b �r� for chainlike system �Eq. �1��. Entropy vs SNR ��a� �=0.2 and �b� �=0.5�. The solid lines show
the results obtained by exact analysis, the broken lines show the results obtained by matrix integration, and the dotted lines show the results
for iid channel.
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	−�hk←� =� 	−�hk+1←�dhk+1←� D� �
�̄=�1

1

2
��hk←

− ��l0
2 + ���̄ + ��l0��

+ �̄ arctanh�tanh����tanh�hk+1← + �l1
2 + ���̄

+ ��l1�̄���	 , �29�

where �	+�h→�dh→=�	−�h←�dh←=1. �Absence of the site
index means arbitrary site.� The functions 	+�h→� and
	−�h←� can be obtained numerically by the Monte Carlo
method for a one-dimensional system. The bit error rate Pb is
represented by Pb=�	+�h→�dh→�	−�h←�dh←�1−sgn�h→
+h←�� /2.

C. Result

In order to investigate the performance of communication
channels, conditional entropy h�b �r�=h�b�−IH, where h�b�
denotes entropy, is a favorable measure because h�b �r� de-

creases to zero under smaller noise power. Figures 2 and 3
show the exact conditional entropy hI+�R�b �r� estimated by
the Monte Carlo method, the approximate entropy
hI+�OTRO�b �r� obtained by matrix integration, and the entropy
of the iid channel hI�b �r�. In both graphs, the entropy ob-
tained by matrix integration, i.e., hI+�OTRO�b �r�, does not ex-
ceed the entropy obtained by exact evaluation hI+�R�b �r�,
which implies the inequality II+�R�b ,r�
 II+�OTRO�b ,r�,
which is given up to the fourth order of perturbation in Sec.
II. The analysis indicates that the deviation of the approxi-
mate result from the exact result depends on the signal-to-
noise ratio �SNR�, defined in the present case by SNR
�10 log10�1 /2�2� �decibel=dB unit�, and the correlation pa-
rameter �. For a small SNR and small correlation �
=small�� the deviation is small, which means that the en-
tropy, hI+�OTRO�b �r� obtained by matrix integration gives a
good approximation of the exact entropy, hI+�R�b �r�, while
the deviation becomes greater in the case of a large SNR or
large correlation.

0.14

0.15

0.16

0.17

0.18

0.19

0 0.1 0.2 0.3 0.4 0.5

En
tro
py
[n
at
s/
sy
m
bo
l]

ρ

0.010

0.012

0.014

0.016

0 0.1 0.2 0.3 0.4 0.5

En
tro
py
[n
at
s/
sy
m
bo
l]

ρ(b)(a)

FIG. 3. Conditional entropy hI+�R�b �r� for chainlike system �Eq. �2��. Entropy vs correlation parameter � ��a� SNR=2 dB and �b�
SNR=6 dB�. The solid lines show the results obtained by exact analysis, the broken lines show the results obtained by matrix integration
with correction from the fourth order, and the dotted lines show the results obtained by matrix integration without correction.
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FIG. 4. Performance by the replica analysis and the result of demodulation experiment �Eq. �1��. BER vs SNR ��a� �=0.2 and �b� �
=0.5�. We set the parameters K=4400 and L=4000 and take the average of the results over 128 samples with various input signals b,
matrices �, and noises �. We also varied the orthogonal matrix O for the model with orthogonal-matrix multiplication. The lines depict the
results of the replica analysis for two models, the chainlike model Rt=I+�R with tridiagonal R �solid� and the model with orthogonal-matrix
multiplication Rt=I+�OTRO �dotted�. The symbols in the figure denote the results of demodulations, namely, demodulation for the chainlike
model �� �, demodulation for the model with orthogonal-matrix multiplication �� �, inappropriate choice of the demodulation algorithm, i.e.,
the demodulation algorithm for the orthogonal-matrix multiplication model applied to the chainlike model �+�.
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As we have discussed earlier, the approximate evaluation
with matrix integration is useful because this simplifies the
analysis. However, as shown by the numerical results for
conditional entropy, this method is only valid when the cor-
relation is small.

Next, we examine whether the proposed demodulation al-
gorithm is practical. In Figs. 4 and 5, the results of demodu-
lation for the Kronecker channels are depicted. These figures
show two BER curves, namely, the BER obtained by exact
analysis of the model Rt=I+�R with tridiagonal R, as de-
scribed in the previous subsection, and the BER obtained by
the correlation matrix multiplied by an arbitrary orthogonal
matrix, Rt=I+�OTRO and averaged over the orthogonal ma-
trix O. For the latter model, matrix integration analysis can
be applied due to multiplication of the orthogonal matrix. We
have proposed an appropriate demodulation algorithm for
each evaluation. For the former model, without the orthogo-
nal matrix multiplication, we can use the belief propagation
algorithm proposed in the previous subsection. For the latter
model, with orthogonal matrix multiplication, the demodula-
tion algorithm we proposed in �12,13� based on matrix inte-
gration and the Thouless-Anderson-Palmer method �21–23�
is applicable.

The results of demodulation for each case show good
agreement with the results obtained by replica analysis. For
large noise power and large � �Figs. 4�B� and 5�B��, the BER
of the model without orthogonal-matrix multiplication be-
comes larger than that with orthogonal-matrix multiplication,
which reflects the discrepancy of mutual information from
higher-order values of �, as mentioned in Sec. II. Therefore,
in designing the demodulation algorithm for such correlated
channels, appropriate treatment of the correlation matrix
should be taken into consideration. We also examined the
convergence speed of the algorithm. The proposed algorithm
in the previous subsection requires the O�K2� matrix opera-
tion and the O�K� belief propagation process in each step,

and convergence of this algorithm requires dozens of itera-
tions. Therefore, we conclude that this algorithm is compu-
tationally feasible.

V. SUMMARY

In the present paper, we proposed a performance analysis
scheme and a demodulation algorithm for the Kronecker
channel model in MIMO wireless communication systems.
For a more exact evaluation than that of our previous paper
using the matrix integration formula, we demonstrated that
two separated manipulation steps for the product form of the
channel matrix, i.e., Gaussian integration for the channel ma-
trix and an appropriate scheme for dealing with transmitter
correlation, are important for the correlated MIMO system.
The numerical result for the tridiagonal correlation matrix
model shows that the proposed scheme and algorithm are
useful for performance analysis and for the construction of a
practical demodulation algorithm.
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APPENDIX A: MUTUAL INFORMATION

We start from the expression in Eq. �5�. For n
=0,1 ,2 , . . ., we have
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FIG. 5. Performance by the replica analysis and the results of demodulation experiment �Eq. �2��. BER vs correlation parameter � ��a�
SNR=5 dB and �b� SNR=7 dB’. We set the parameter K=4400 and L=4000 and take the average over 1024 samples for various values of
b, �, �, and O. The lines depict the results of the replica analysis for two models, the chainlike model Rt=I+�R with tridiagonal R �solid�
and the model with orthogonal-matrix multiplication Rt=I+�OTRO �dotted�. The symbols in the figure denote the results of demodulations,
namely, demodulation for the chainlike model �� �, demodulation for the model with orthogonal-matrix multiplication �� �, inappropriate
choice of the demodulation algorithm, i.e., the demodulation algorithm for the orthogonal-matrix multiplication model applied to the
chain-like model �+�.
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�
CL

drZn+1�r� = �
CL

dr

a=0

n �Tr
ba

P�ba�
1

�	�2�L

�exp�−
�r − Hba�2

�2 �
= � 	�2

n + 1�L�

a=0

n

Tr
ba

P�ba�
1

�	�2�L�
�exp�−

1

�2Tr�H†HL� , �A1�

where the K-dimensional square matrix L is defined by
Lkk���a=0

n bk
abk�

a�−�abbk
abk�

b� / �n+1�. This can be rewritten as
Lkk�=�abbk

aPabbk�
b� by introducing the �n+1�-dimensional

projection matrix Pab��ab−1 / �n+1�. Substituting channel
matrix H, given in Eq. �3�, for the Kronecker model and
integrating with respect to �, we obtain

�
CL

drZn+1�r� � �

a=0

n

Tr
ba

P�ba�
��det�ILK +

1

�2L
Rr � �RtL�Rt

†�−1

= �

a=0

n

Tr
ba

P�ba�exp�− L� d��Rr
���

�Tr ln�IK +
�

�2L
�RtL�Rt

†�
= �


a=0

n

Tr
ba

P�ba�exp�K Tr G�†Rr�

��−
1

�2K
�RtL�Rt

†�
=� dQ exp�K Tr G�†Rr�

�−
1

�2PQ� + ln ��n�

��Q� , �A2�

where ID is the D-dimensional identity matrix, Q is an �n
+1�-dimensional matrix, and � represents the Kronecker or
direct product. Note that the trace in Eq. �A2� is K dimen-
sional in the second and third lines and is �n+1� dimensional
in the last line. In the equation above, the following func-
tions are defined:

��n��Q� � �

a=0

n

Tr
ba

P�ba���

a=0

n

��ba†Rtb
a − KQaa��

��

a�b

n

��ba†Rtb
b − KQab�� . �A3�

Note that the function G�†Rr�
is the same function obtained

from the matrix integration formula over unitary matrix Haar
measure dU �15–17�,

� dU exp�Tr �†Rr�A� � exp�K Tr G�†Rr�
�A/K�� .

�A4�

Here, unitary matrix U to be integrated is defined as a
K-dimensional unitary matrix that diagonalizes the random
matrix product as �†Rr�=U†DU, where D is a diagonal
matrix and A is an arbitrary K-dimensional matrix. The re-
sult, given by Eq. �A2�, indicates that the entire set of unitary
matrices that appear in the diagonalization of all possible
random matrix products �†Rr� coincides with the entire set
of unitary matrices, which guarantees that the matrix integra-
tion formula over the unitary matrix is applicable only to the
�†Rr� part of the entire cross-correlation matrix H†H. This
is because the multiplication of the matrix � serves as a
unitary transformation. Note that we cannot apply the same
argument to the entire cross-correlation matrix H†H

=�Rt

†
�†Rr��Rt because the transmitter correlation matrix

Rt breaks rotational invariance, and more careful treatment is
required as described below.

By using the saddle-point method and assuming replica
symmetry as q=Qab for a�b and q+�=Qaa, we can evalu-
ate the replicated partition function in Eq. �A2� after intro-
ducing auxiliary variables q̂+ �̂ and −2q̂ for the delta func-
tions of the diagonal and off-diagonal matrix elements,
respectively,

1

K
ln ��n��Q� = Extr

q̂,�̂
�n��̂ + ��̂ − �n + 1�q̂��� + �n + 1�q�

+
1

K
ln��


a=0

n

Tr
ba

P�ba�exp�− �̂�
a=0

n

ba†Rtb
a

+ q̂�
ab

n

ba†Rtb
b�� . �A5�

The saddle-point condition for q yields q̂= �̂ / �n+1�. After
performing Hubbard-Stratonovich transformation,

exp�− �̂�
a=0

n

ba†Rtb
a +

�̂

n + 1�
ab

n

ba†Rtb
b

= � �n + 1��̂
	

�K�
CK

dr� exp�− �̂�
a=0

n

�r� − �Rtb
a�2 ,

�A6�

we have

1

K
ln ��n��Q� = Extr

�̂
�n��̂ +

1

K
ln�

CK
dr��Tr

b
P�b�� �̂

	
�K

�exp�− �̂�r� − �Rtb�2��n+1

+ n ln�	

�̂
�

+ ln�n + 1�� . �A7�

Combining this equation with the remainder of the replicated
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partition function and noting that the matrix PQ has a single
zero eigenvalue and n-degenerate � under the replica-
symmetric condition, we arrive at the final expression of the
mutual information,

IH = Extr
�,�̂
�− G�†Rr�

�−
�

�2� −
�

�n

1

K
ln ��n��Q��n=0�

= Extr
�
�Ĝ�†Rr�

��� + IRt
� �

�2�� . �A8�

APPENDIX B: PERTURBATIVE EXPANSION OF MUTUAL
INFORMATION

In this appendix, we derive the perturbative expressions
of free energies from two evaluations, namely, matrix inte-
gration and exact analysis. For convenience, we introduce
the constant � into the channel definition �see also Eqs. �8�
and �9�� as follows:

r = ��Hb + � , �B1�

where we set �=1 in Eq. �1�. Taking QPSK modulation into
account, let us assume the probability distribution P�bk�,
which satisfies the following conditions:

�1� P�bk� can be factorized into the same distributions for
the real and the imaginary parts: P�bk�
= P̃�Re�bk��P̃�Im�bk��.

�2� Reflection symmetry: P̃�x�= P̃�−x�.
�3� Signal power condition: �bk

P̃�Re�bk��Re�bk�2

=�bk
P̃�Im�bk��Im�bk�2=1 /2.

From these conditions, we have �bk
P�bk�bk

2l−1

=0,�bk
P�bk��bk�2lbk=0,�bk

P�bk��bk�2=1�l�N� and so on.
Quadrature-phase shift keying modulation is included in this
case. As mentioned in the text, we also assume that the cross-
correlation matrix H†H can be written as H†H=I+�R with
zero diagonal elements of R ,Rkk=0 and convergence of the
eigenvalue distribution of the cross-correlation matrix for K
→�.

1. Expansion of mutual information via matrix integration

As shown in Sec. II, mutual information is obtained via
matrix integration as follows:

II+�U†RU��� = Extr
�,�̂

�II��̂�� + ��̂ − GI+�R���	 . �B2�

The function GI+�R�z� can be decomposed to obtain

GI+�R�z� = z + GR��z� . �B3�

Let us define �n�Tr�Rn� /K. The function GR�z� can be ex-
pressed in terms of �n as follows:

GR�z� =
1

2
�2z2 +

1

3
�3z3 +

1

4
��4 − 2�22�z4 + ¯ , �B4�

from the formula G�z�=�0
zdx�f�x�−x−1� so that x

=�d������f�x�−��−1. Note that �̄=0 for R and G�0�=0.

Substitution into mutual information after redefinition of �̂
yields the following:

II+�U†RU��� = Extr
�,�̂

�II�� + �̂�� + ��̂ − GR����	 = Extr
�,�̂

�II���

+ �̂�II���� +
��̂��2

2
II���� + ¯ + ��̂ −

�2

2
����2

−
�3

3
����3 −

�4 − 2�22

4
����4 + ¯� . �B5�

From the saddle-point conditions with respect to � , �̂, we
have

� = −
�

� �̂
II�� + �̂�� = − �II���� + c�2 + O��3� ,

�̂ = �GR� ���� = �GR� �− ��II���� + c�3� = �GR� �− ��II�����

+ c�4GR� �− ��II����� + O��7� = − �2�2�II����

+ �3�3�2�II�����2 − �4��4 − 2�22��3�II�����3 + c�4�2

+ O��5� �B6�

for � up to the fourth order �c is an O�1� constant�. Substi-
tuting these equations into the original expression for the
mutual information, we obtain

II+�U†RU��� = II��� −
����2

2
�2�II����	2 +

����3

3
�3�II����	3

−
����4

4
��4 − 2�22��II����	4 +

����4

2
�22�II����	

��II����	2 + O��5� . �B7�

2. Expansion of rigorous mutual information

Before studying perturbative expansion of the complex
channel, let us start with the real channel for which mutual
communication is given by

I
R̃t

real��� = −
1

K
�

RK
dr̃�Tr

b̃

P̃�b̃�� �

2	�K/2
exp�−

�

2
�r̃

− �R̃tb̃�2���lnTr
b̃

P̃�b̃�� �

2	�K/2
exp�−

�

2
�r̃

− �R̃tb̃�2�� −
1

2
ln�2	

� � −
1

2
, �B8�

where all variables and matrices are real and denoted with
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tilde for discrimination between the real and the complex
channels in this subsection. By substituting R̃t=I+�R̃ into

the above equation, where R̃ is a symmetric matrix with zero

diagonal elements, expanding with respect to �, and then
performing some algebraic manipulation, we obtain the
following:

I
I+�R̃

real ��� = II
real��� + �

k=1

4 � �k

k!
��

kI
I+�R̃

real ����
�=0

+ O��5� = II
real��� −

����2

2!

1

2K
�

i1i2j1j2

R̃i1j1
R̃i2j2

���b̃i1
b̃i2

�c�b̃j1
b̃j2

�c� −
����3

3!

1

2K
�

i1i2i3j1j2j3

R̃i1j1
R̃i2j2

R̃i3j3
���b̃i1

b̃i2
b̃i3

�c�b̃j1
b̃j2

b̃j3
�c� − 2��b̃i1

b̃j2
�c�b̃i2

b̃j3
�c�b̃i3

b̃j1
�c��

−
����4

4!

1

2K
�

i1i2i3i4j1j2j3j4

R̃i1j1
R̃i2j2

R̃i3j3
R̃i4j4

� ���b̃i1
b̃i2

b̃i3
b̃i4

�c�b̃j1
b̃j2

b̃j3
b̃j4

�c� − 12��b̃i1
b̃i2
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�c�b̃i3
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�c�
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�c�b̃i2
b̃j3

�c�b̃i3
b̃j4

�c�b̃i4
b̃j1

�c�� + O��5� = II
real��� −

����2

4

TrR̃2

K
��b̃2�c�2 +

����3

6

TrR̃3

K
��b̃2�c�3

−
����4

48

�
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4
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��b̃4�c�2 −
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−
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K
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��b̃2�c
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real��� −

����2

4
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����3

6
�3��b̃2�c�3 −

����4

8
�4��b̃2�c�4
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2
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�
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4

K
����b̃2�c

2� − ��b̃2�c�2�2 +
��b̃4�c�2

6
�� + O��5� . �B9�

Here, �f�b̃���Trb̃P̃�b̃�f�b̃�exp�−��r̃− b̃�2 /2� /Trb̃P̃�b̃�
�exp�−��r̃− b̃�2 /2� and �f�b̃��c is its cumulant. In addition,

�f�b̃�� is a function of r̃ and is always accompanied by the

average �F�r̃����� /2	�K/2�dr̃Trb̃P̃�b̃�F�r̃�exp�−��r̃− b̃�2 /2�,
where b without a subscript denoted the signal at an arbitrary
antenna. The expression in the third line of Eq. �B9� is ob-
tained by repeatedly performing integration by parts with

respect to r̃. We can also show that ��b̃2�c�=2II�
real��� and

��b̃2�c
2�=−2II�

real���, from which we have

2I
I+�R̃

real ��� = 2II
real��� −

����2

2
�2�2II�

real����2

+
����3

3
�3�2II�

real����3 −
����4

4
�4�2II�

real����4

−
����4

4
� 2�

i

�R̃2�ii
2

K
�− 2II�

real��� − �2II�
real����2	

��2II�
real����2 +

�
ij

R̃ij
4

K
��− 2II�

real���

− �2II�
real����2	2 +

��b̃4�c�2

6
�� + O��5� . �B10�

Next, we convert this result into the result for a complex
channel, the mutual information of which is given by Eq. �6�.
We can easily show that the complex channel described by
r=���Rtb+z is equivalent to the real channel of double size

r̃=���R̃tb̃+ z̃, where

z̃ = �2�Re�z�
Im�z�

�, r̃ = �2�Re�r�
Im�r�

�, b̃ = �2�Re�b�
Im�b�

� ,

�R̃t = �Re��Rt� − Im��Rt�

Im��Rt� Re��Rt�
, P�b�

= 2P̃��2 Re�b��P̃��2 Im�b�� . �B11�

For such a system, we can show that II���=2II
real��� and

IRt���=2I
R̃t

real���. Since the eigenvalue distributions of Rt=I

+�R and the corresponding R̃t are the same, from the rela-
tionship between the real and complex channels, we have
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II+�R��� = 2I
I+�R̃

real ��� = II��� −
����2

2
�2�II�����2

+
����3

3
�3�II�����3 −

����4

4
�4�II�����4

−
����4

4
� 2�

i

�R2�ii
2

K
�− II���� − II����2��II�����2

+

�
ij

�Re�Rij�4 + Im�Rij�4�

K
��− II���� − II����2�2

+
C���2

6
�� + O��5� . �B12�

The function C��� is given by

C��� � 2��/	�K� drTr
b

P�b��Re�b�4 + Im�b�4�c
cmp

�exp�− ��r − b�2� ,

where �f�b��cmp � Tr
b

P�b�f�b�exp�− ��r − b�2�/Tr
b

P�b�

�exp�− ��r − b�2� , �B13�

and the subscript of the angular bracket c denotes the cumu-
lant. Substituting the definitions of �2 and �4, the discrep-
ancy between the two results is obtained as

II+�R��� − II+�U†RU��� = −
����4

2

1

K
�

i
��R2�ii −

Tr�R2�
K

2

��− II���� − II����2��II�����2

−
����4

4

1

K��ij �Re�Rij�4 + Im�Rij�4��
���− II���� − II����2�2 +

C���2

6
�

+ O��5� , �B14�

that is, the dominant term of the discrepancy is of the order
�4. The factor −II����− �II����	2=−2II�

real���− �2II�
real���	2

= ��b̃2�c
2�− ��b̃2�c�2 is non-negative, and the inequality

II+�U†RU��� II+�R��� holds up to the fourth order.
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