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We revisit the statistical mechanics problem of coarse-graining a system that at a detailed level is described
by an already coarse-grained dynamics. The dynamics at the more detailed level is described by a Fokker-
Planck equation instead of the Liouville equation. The method generalizes Zwanzig theory of projection
operators and produces a friction matrix in terms of a correlation function that is not manifestly an autocor-
relation. Therefore, from this expression, it is not obvious that the friction matrix is definite positive. We show
that the Green-Kubo transport matrix can be written in the Einstein-Helfand form, which is manifestly positive
definite. We also discuss the role of time reversal and detailed balance in the coarse-grained dynamics.
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I. INTRODUCTION

The theory of coarse-graining deals with the art of repre-
senting the dynamics of a system with a number of variables
much smaller that the actual degrees of freedom of its mo-
lecular constituents. This is the central theme of Statistical
Mechanics. In order to understand the general features of the
dynamics of the very large number of molecules involved in
any macroscopic system, it is clearly necessary to identify
gross features of the dynamics and concentrate our attention
on those. In that sense, coarse-graining is the art of pattern
recognition. Previous experience, intuition, and trial and er-
ror are crucial in the process of selecting the few relevant
variables that will capture the gross features that are of our
interest. The good news is that if the relevant variables are
“good” ones, in the sense of being “slow,” then the theory of
coarse-graining acts as a black box by providing the general
dynamic equation for these variables.

The theory of coarse-graining is also known as nonequi-
librium statistical mechanics and was formulated in the midst
of the last century by Kirkwood �1,2�, Green �3�, Zwanzig
�4�, Mori �5�, and many others �6�. In our opinion, its most
elegant and general formulation is that of Zwanzig �4� who,
with the aid of a projection operator technique, derived from
the Liouville equation of the microscopic system the Fokker-
Planck equation �FPE� governing the probability distribution
of the coarse variables. The Fokker-Planck equation was pre-
viously obtained by Green by using stochastic arguments �3�.
The textbook by Grabert presents in great detail this formu-
lation �7� �see also �6,8��.

The problem we address in this paper is the formulation
of a FPE for a set of gross variables, when the detailed dy-
namics of the system is not governed by a Liouville equation
but rather by a detailed FPE. This detailed level will be in
general an already coarse-grained description from the actual
molecular dynamics of the system. Instances where the
coarse-graining of a coarse grained description is necessary
are numerous. For example, a polymer molecule in a solvent
that at a detailed level is described by a FPE with hydrody-
namic interactions may be described at a coarser level with
coarse-grained variables like blobs containing many mono-
mer �9� or other variables describing the overall shape and

orientation. A colloidal suspension described at the level of
fluctuating hydrodynamics �10� needs to be described at the
level of the positions of the colloidal particles alone. A col-
loidal suspension described at the level of Brownian dynam-
ics may be coarsened to the Fickian level of the concentra-
tion field �11�. Very recently, coarse-grained potentials and
frictions have been introduced to describe complex macro-
molecular systems �12� and lipid molecules �13� able to self-
assembly into membranes. One may want to further coarse-
grain these descriptions in favor of hydrodynamics or
membrane elasticity, respectively.

The problem of coarse-graining from a coarse-grained de-
scription has been considered in �11�, and, within the GE-
NERIC framework in �6,14,15�. In the present paper, we give
a look to the derivation of �11� in order to prove that the
friction matrix is positive definite. The phase space expres-
sion that is obtained in the projection operator framework for
the friction matrix has two contributions, a first one that cap-
tures the fluctuations at the detailed stochastic level while the
second contribution has the form of a Green-Kubo formula
�6�. The first contribution is easily seen to be positive definite
but the Green-Kubo expression is not manifestly positive
definite as it is not the time integral of an autocorrelation for
which the Wiener-Kinchine theorem ensures positiveness of
its time integral. This is clearly an issue of concern and our
motivation to revisit the problem. Very recently, Ernst and
Brito have presented general Green-Kubo expressions for
transport coefficients in systems with nonconservative dy-
namics �16,17�. One particular case studied by these authors
is when the system is governed at a detailed level by Lange-
vin equations �17�. In that particular case, the Green-Kubo
expression is an example of those obtained in the general
theory presented in �6,11� and are, therefore, also subject to
the question of whether the transport coefficients are posi-
tive. In the present paper, we show that the friction matrix
admits a representation in terms of the “mean square dis-
placements” of the relevant variables, in a formula that gen-
eralizes the Einstein-Helfand expression for the transport co-
efficients �18�. Being a mean square, the Einstein-Helfand
expression is clearly definite positive.

Finally, we also study what are the consequences on the
coarse FPE of the fact that the underlying dynamics satisfies
detailed balance. One interesting thing about detailed bal-
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ance is that it is a property of the system and not of the level
of description. Therefore, the coarse FPE should satisfy the
usual necessary and sufficient conditions for detailed bal-
ance. The proof that the obtained coarse FPE does indeed
satisfies these conditions gives strong support to the asym-
metric structure of the Green-Kubo expression �6,11,17�, as
opposed to the symmetric structure of some other candidates
�15�.

II. DERIVATION OF THE COARSE-GRAINED DYNAMIC
EQUATION

The coarse FPE when the detailed level is stochastic has
been obtained in Ref. �14,11� For the sake of setting up the
notation, we present in this section a derivation of the coarse
FPE.

A. Dynamics at the detailed level

Let us denote the mesoscopic degrees of freedom of the
system at the detailed level by z= �zi , i=1, . . . ,N�. We as-
sume that the one time probability density �t�z� evolves ac-
cording to a FPE

�t�t�z� = L�t�z� , �1�

where L is an evolution operator of the form

L = −
�

�zi
vi�z� + kB

�

�zi

�

�zj
dij�z� � − �ivi�z� + kB�i� jdij�z� ,

�2�

where kB is the Boltzmann constant, dij =dji is a positive
definite matrix, and summation over repeated indices is im-
plied. Note that the derivatives act on every function on its
right. The case dij =0 corresponds to a deterministic evolu-
tion. The Liouville equation of Classical Mechanics is then a
special case of Eq. �1�, which, in addition, satisfies �ivi=0
�Liouville’s theorem�. This last property ensures that the
Liouville dynamical operator is self-adjoint. We pursue in
this paper a generalization for not self-adjoint dynamical op-
erators.

We assume that the FPE �1� has a steady state solution
�ss�z� that satisfies L�ss=0. We will write this steady state
solution in the form

�ss�z� = exp�S�z�/kB� , �3�

where S�z� will be an “entropy,” a “free energy,” or an “en-
ergy” �Hamiltonian� depending on the context.

B. Adjoint operators

In this subsection, we present the two dynamic operators
L+ and L− that play a crucial role in what follows. The op-
erator L+ is the adjoint operator of L with respect to the unit
measure, this is,

L+ � vi�z��i + kBdij�z��i� j , �4�

which satisfies

tr�FLG� = tr�GL+F� , �5�

where F ,G are arbitrary functions and tr�¯ � denotes an
integration over the space of detailed variables z. The opera-
tor L− is defined as

L− � �vi�z� −
2kB

�ss�z�
� j�dij�

ss�z��	�i − kBdij�z��i� j , �6�

and it satisfies

LF�ss = − �ssL−F , �7�

as can be shown by an explicit calculation that uses L�ss=0.
The property in Eq. �7� allows one to “drag” the steady state
ensemble to the left in the following calculations. Note that,
the operators L+ ,L− are antiadjoint of each other with respect
to the steady state measure, in the following sense:

tr��ssFL+G� = − tr��ssGL−F� , �8�

as can be seen by noting that each side of Eq. �8� equals
tr�GL�ssF�. For future reference, we note that Eq. �8� implies
the following identity:

tr��ssF exp�L+t�G� = tr��ssG exp�− L−t�F� , �9�

where the exponential operator is defined through the formal
series expansion of the exponential,

exp�Lt� = 1 + Lt +
1

2!
L2t2 + ¯ . �10�

The formal solution of the FPE �1� is

�t�z� = exp�Lt��0�z� , �11�

where �0�z� is the distribution function at the initial time.
Now, consider an arbitrary function F�z� of the state vari-
ables z. The time-dependent average computed with the so-
lution of Eq. �1� is


F�t = tr��tF� = tr�F exp�Lt��0� = tr��0 exp�L+t�F� .

�12�

This equation allows one to give an intuitive interpretation to
the operator exp�L+t� as a dynamic operator that evolves for-
ward in time the function F�z�, allowing the averages to be
computed as a averages over initial conditions.

C. Coarse-grained level

At a coarse-grained level, the system is described by a
collection of relevant variables A�z�= �A��z� , �=1, . . . ,M�,
where M is the number of relevant variables, which in gen-
eral is much smaller than the number N of variables z used to
describe the system at the detailed level. Note the use of
Greek indices for labeling variables at the coarse level and
Latin indices for labeling those at the detailed level. The
probability density p�� , t� for the set of coarse functions A�z�
taking values � at time t is related to the actual probability
density of z by the usual relation
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p��,t� � � �t�z���A�z� − ��dz = tr��t��� , �13�

where ���z����A�z�−��.
The objective of the theory of coarse-graining is to derive

a dynamical equation for the probability p�� , t�. If this dy-
namic equation is a Fokker-Planck equation, then p�� , t�
contains all the necessary information to describe the system
at the coarse-grained level �19�.

D. Relevant ensemble

Consider the relative entropy functional

S��t� = − kB� dz�t�z�ln
 �t�z�
�ss�z�

� , �14�

where �ss�z� is the steady state solution of the FPE �1�. By
using Eq. �1�, it is a standard calculation to show that
�tS��t��0 and that the maximum occurs at �t=�ss, provided
that the diffusion tensor dij is positive definite �7�, a fact that
we will always assume. Therefore, any initial distribution
relaxes towards the steady state distribution. The entropy
functional serves also for the purpose to define the relevant
ensemble �̄t�z�, which is a coarse-grained probability density
in the detailed space of z that captures the macroscopic be-
havior. The relevant ensemble is defined as the ensemble that
maximizes the entropy functional �14� subject to produce the
distribution function �13�. Therefore, we maximize without
restriction the functional

I��� = S��� +� d�	��,t�p��,t� + �� dz��z� , �15�

where 	�� , t� is a set of Lagrange multipliers, p�� , t� is the
functional of �t�z� given in Eq. �13�, and � is another
Lagrange multiplier used to describe the restriction of nor-
malized densities. By equating to zero the functional deriva-
tive of I���, we obtain the relevant ensemble

�̄t�z� =� p��,t����z�d� , �16�

where the steady state constrained ensemble is defined as

���z� �
1


���
�ss�z���A�z� − �� . �17�

Here, 
���= pss��� is the steady state probability density that
the functions A�z� take values �, this is


��� � � ��A�z� − ���ss�z�dz . �18�

Note that 
��� is a measure of the submanifold A�z�=� of
the detailed state space, and it can be intuitively understood
as the “number of microstates z that are compatible with the
macrostate �.”

The relevant ensemble �16� satisfies

p��,t� = tr��̄t��� �19�

to be compared with Eq. �13�. In this way, the relevant en-
semble �̄t reproduces the same coarse-grained information

p�� , t� as the actual ensemble �t. Therefore, by constructing
a closed dynamic equation for the relevant ensemble we will
have the equation of motion for the distribution p�� , t� of
coarse variables.

It is interesting to note that by evaluating the entropy
functional �14� at the relevant ensemble �16�, we get the
entropy functional at the coarse-grained level. It is given by

S�p��,t�� = − kB� d�p��,t�ln� p��,t�

��� � . �20�

This entropy functional at the coarse-grained level plays a
crucial role in the demonstration of an H theorem at the
coarse-grained level, as shown in Eq. �86� below.

E. Projection operator

We present now a projection operator P+ such that when
applied to the actual ensemble �t�z� it gives the relevant en-
semble, this is

�̄t = P+�t. �21�

An appropriate definition for this projector is the following:

P+F�z� � � d����z�tr���F� , �22�

where F is an arbitrary function. We also present the adjoint
projector P with respect to the unit measure

tr�GP+F� = tr�FPG� , �23�

which has the form

PF =� 
F����d� , �24�

where the constrained average over the submanifold A�z�
=� is defined by


F�� �� ���z�F�z�dz . �25�

The projector P projects any function onto a linear combina-
tion of ��. In particular,

P�� = ��. �26�

The projector operator �24� is self-adjoint with respect to
both measures �ss�z� and �̄t�z�, i.e.,

tr��ssFPG� = tr��ssGPF�

tr��̄tFPG� = tr��̄tGPF� , �27�

where F and G are arbitrary functions.
The complementary projection operator Q is defined as

Q � 1 − P �28�

that satisfies QQ=Q and QP=0.

F. Closed exact dynamic equation at the coarse-grained level

Following Zwanzig �4�, we may now decompose the so-
lution of the FPE at the detailed level, Eq. �1�, into a relevant
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P+�t= �̄t and irrelevant Q+�t��1− P+��t parts, write a set of
two coupled equations for each part and solve the irrelevant
part in terms of the relevant part. By substituting back into
the equation for the relevant part one obtains

�t�̄t = P+L�̄t + �
0

t

duP+L exp�Q+L�t − u��Q+L�̄u, �29�

where, as usual, we have assumed that the distribution func-
tion �t at the initial time is of the relevant form �16� �20�.

By multiplying Eq. �29� with respect to ���z� and inte-
grating over z, we obtain a closed equation for p�� , t�. This
equation can be cast into the form

�tp��,t� =� d��V��,���p���,t�

+ �
0

t

du� d��K��,��;t − u�p���,u� , �30�

where we define

V��,��� �
1


����
tr��ss���L

+��� ,

K��,��;t − u� � −
1


����
tr��ss�exp�QL−u�QL−����

��exp�QL+t��QL+����� . �31�

In order to write K�� ,�� ; t−u� as in Eq. �31�, we have used
an equation similar to Eq. �9�, i.e.,

tr��ssF exp�QL+t�G� = tr��ssG exp�− QL−t�F� , �32�

which can be proved by using the series expansion of the
exponential operator and using the antiadjointness of L� in
Eq. �8� and the self-adjointness of P and Q in Eq. �27�. We
can work out a more explicit expression of these objects �31�
by making use of the following results:

L+�� = − v+
����� + kBd�
���
��,

L−�� = − v−
����� − kBd�
���
��,

QL+�� = − �����v+
��� − kB�
��d�
��� ,

QL−��� = − �������v−
����� + kB�
����d

��
����� , �33�

where ���� /��� and we have made use of the chain rule in

�i�� = − �iA
�����. �34�

In Eqs. �33�, we have defined the following functions:

v�
� � L�A�

d�
 � dij��iA
���� jA


�

��v�
� � v�

� − 
v�
� ��

��d�
 � d�
 − 
d�
��. �35�

Equations �33� follow from a direct calculation by using the
explicit expressions �4�, �6�, �24�, and �28�.

With the first equation in Eq. �33�, we can write the exact
result

V��,��� = − ������ − ���
v+
��� − kB�
��� − ���
d�
���

�36�

and, therefore, the first term in Eq. �30� becomes

� d��V��,���p��,t� = − ��
v+
���p��,t�

+ kB���

d�
��p��,t� . �37�

By using the objects defined in Eq. �33�, we can write the
kernel K�� ,�� , t−u� in Eq. �31� in the following form:

K��,��,t − u� = −
1


����
����� tr��ss�exp�QL−u����v−

�������exp�QL+t���v+
����� +

kB


����
���
��� tr��ss�exp�QL−u����v−

������

��exp�QL+t���d�
���� −
kB


����
������
� tr��ss�exp�QL−u����d

��
������exp�QL+u���v+
�����

+
kB

2


����
���
����
�tr��

ss�exp�QL−u����d
��
������exp�QL+t���d�
���� . �38�

By inserting Eqs. �37� and �38� into the dynamic equation �30�, we arrive at the following exact equation for p�� , t�:

�tp��,t� = − ��
v+
���p��,t� + kB���

d�
��p��,t� + kB��� d���

0

t

duK0
�����,��,t − u�
�������

p���,u�

����

− kB
2���
� d���

0

t

duK−
�
����,��,t − u�
�������

p���,u�

����

− kB
2��� d���

0

t

duK+
���
���,��,t − u�
��������
�

p���,u�

����

+ kB
3���
� d���

0

t

duK�
��
���,��,t − u�
��������
�
p���,u�

����

, �39�
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where we have defined the following memory kernels:

K0
�����,��,t − u� �

1

kB

1


����
tr��ss�exp�QL−u����v−

������

��exp�QL+t���v+
�����

K−
�
����,��,t − u� �

1

kB

1


����
tr��ss�exp�QL−u����v−

������

��exp�QL+t���d�
����

K+
���
���,��,t − u� �

1

kB

1


����
tr��ss�exp�QL−u����d

��
�����

��exp�QL+t���v+
�����

K�
��
���,��,t − u�

�
1

kB

1


����
tr��ss�exp�QL−u����d

��
�����

��exp�QL+t���d�
���� . �40�

The reason for introducing the factors kB
−1 in these definitions

will be discussed later. In order to obtain a more explicit
expression for K�� ,�� , t�, we need to make several approxi-
mations as detailed in the next subsection.

Due to the fact that Eq. �39� is exact, it must happen that

��� is, actually, its stationary solution, see Eq. �18�. Actu-
ally, from the definition �31� we have

� d��V��,���
��� =� d�� tr��ss���L
+���

= tr��ssL+��� = 0. �41�

This implies

− ��
v+
���
��� + kB���

d�
��
��� = 0. �42�

This equation ensures that 
��� is the steady state solution
of Eq. �39�, as it should.

G. Markovian approximation of the coarse-grained dynamic
equation

Equation �39� is a closed and exact equation for the dis-
tribution function p�� , t� at the coarse-grained level. It is a
complicated linear integro-differential equation for p�� , t�
and, as such, it contains exactly the same information as the
original Fokker-Planck equation �1� at the detailed level. Of
course, the usefulness of Eq. �39� comes from the fact that it
admits, in certain circumstances, a Markovian approximation
that renders it into the form of a usual FPE.

The Markovian approximation states that, if the selected
relevant variables are slow in the time scale in which the
correlation kernel K�� ,�� ; t−u� decays, then we can ap-
proximate the memory term in Eq. �33� as

�
0

t

du� d��K��,��;t − u�p���,u� =� d��K��,���p���,t� ,

�43�

where we have introduced the Green-Kubo type integral op-
erator

K��,��� = �
0

�

duK��,��;u� . �44�

Here, � is a time large enough for the kernel to have decayed,
but small in terms of the time scale of evolution of the prob-
ability of the relevant variables. This time � exists, given the
assumed separation of time scales between the kernel time
scale and the time scale of macroscopic variables. This cru-
cial approximation renders the memory equation into the
form of a local in time integro-differential equation.

Of course, an integro-differential equation is still a com-
plex mathematical object and we seek now additional ap-
proximations that transforms the resulting dynamical equa-
tion into a partial differential equation. To this end, we will
take the additional approximations

exp�L+Qt�F�� � �� exp�L+Qt�F � �� exp�L+t�QF

exp�L−Qu�F�� � �� exp�L−Qu�F � �� exp�L−u�QF ,

�45�

where F is any of the functions that appear in the kernel. The
rational for this approximation is that the projected evolution
operator exp�L+Q�t−u�� has no effect, during the short time
scale in which the kernel decays, on the relevant variables A�

appearing inside ��. The relevant variables are slow if the
Markovian approximation is valid. We have also assumed
that the effect of the projection operator on the dynamics is
irrelevant, as far as short time dynamics is concerned. This is
a usual assumption in the derivation of Green-Kubo expres-
sions for transport coefficients in Classical Statistical Me-
chanics �7�. There is no other justification of these approxi-
mations apart from this intuitive idea of separation of time
scales between the kernel and the coarse-grained variables. A
more rigorous approach along the lines of Ref. �12� would be
certainly desirable in the present situation. However, we ex-
pect that the above approximation will be simply confirmed
by such a more rigorous approach.

With the approximation �45�, the time integral of the ker-
nels in Eq. �40� becomes local in the space of coarse vari-
ables

�
0

�

duK0
�����,��,u� = ��� − ���K0

������

�
0

�

duK−
�
����,��,u� = ��� − ���K−

�
�����

�
0

�

duK+
���
���,��,u� = ��� − ���K+

���
����
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�
0

�

duK�
��
���,��,u� = ��� − ���K�
��
���� , �46�

where the Green-Kubo transport coefficients K��� are intro-
duced as

K0
������ �

1

kB
�

0

�

du
�exp�L−u���v−
����exp�L+����v+

����

K−
�
����� �

1

kB
�

0

�

du
�exp�L−u���v−
����exp�L+����d�
���

K+
���
���� �

1

kB
�

0

�

du
�exp�L−u���d��
���exp�L+����v+
����

K�
��
���� �
1

kB
�

0

�

du
�exp�L−u���d��
���exp�L+����d�
���.

�47�

We justify now the reason for introducing the factor kB
−1 in

the definitions �40� and �47�. The overall magnitude of the
integrand of K��� in Eq. �47� can be estimated by consider-
ing its value at time t=0. For example, the integrand of

K0
������ at zero time is 
���v−

������v+
����. This object is a

constrained average of a covariance of the steady state solu-
tion in Eq. �1�. The factor kB

−1 in Eq. �3� is introduced as a
reminder that the width of �ss�z� is on the order of kB. Stated
in less precise but illustrative words, “thermal fluctuations
are on the order of kB.” Therefore, the overall magnitude of


���v−
������v+

���� is on the order of kB. We have introduced a
factor kB

−1 in the definition of K��� in Eq. �47� in such a way
that the expected order of magnitude of K��� is kB

0 .
By using Eqs. �43� and �46� in the dynamic equation �39�,

we arrive at a local in time partial differential equation for
p�� , t�,

�tp��,t� = − ��
v+
���p��,t� + kB���

d�
��p��,t�

+ kB��K0
������
������

p��,t�

���

− kB
2���
K−

�
�����
������
p��,t�

���

− kB
2��K+

���
����
�������
�
p��,t�

���

+ kB
3���
K�
��
����
�������
�

p��,t�

���

. �48�

In what follows, we will assume that the terms of order kB
2

and kB
3 are negligible in front of the terms of order kB. Note

that Eq. �48� is not a FPE because it contains third and fourth
order derivatives of the probability density. From Pawula’s
theorem �21� it is known that the only meaningful equation
for the probability density of a Markov process with only
finite-order derivatives is the usual Fokker-Planck equation.
By neglecting the terms of order higher than kB

2 we obtain a

proper Fokker-Planck equation involving only second de-
rivatives. While kB has physical dimensions, it should be
taken as an indicator of a dimensionless reciprocal of the
“system size.” This is apparent from Eq. �3� where the en-
tropy scales as the system size, leading to the standard result
in equilibrium Statistical Mechanics that fluctuations scale as
the inverse of the square root of the volume. While neglect-
ing terms of high order in kB is appropriate in Eq. �48�, one
should not neglect the first order terms in kB within the evo-
lution operator exp�L�t�, as this would change the stochastic
nature of this evolution. The neglect of higher order terms
allows us to retain fluctuation effects to first order in kB, but
not higher.

The final coarse Fokker-Planck equation can be cast in the
form

�tp��,t� = − ���V���� + M�
����
S����p��,t�

+ kB��M�
����
p��,t� , �49�

where we have introduced the entropy S���, the drift V����,
and the friction matrix M�
��� through

S��� = kB ln 
��� ,

V���� � 
v+
��� − d�
����
S��� − kB��d�
��� ,

M�
��� � 
d�
�� + K0
�
��� . �50�

In Appendix A, we show that the drift can be written as

V���� = 
V��z���, �51�

where

V��z� � �vi − kB
1

�ss� jdij�
ss��iA

�. �52�

Note that, thanks to Eq. �42�, ��V����
���=0 and, there-
fore, 
��� is still the steady state solution of the approximate
FPE �49�. In other words, the dynamics at the detailed level
and at the coarse level lead to steady state distribution func-
tions �ss�z� and pss���, respectively, which are consistent
with each other.

The FPE �49� is the desired dynamic equation for the
coarse-grained level of description. Under slightly different
notation, it has been obtained in Ref. �11�. If the detailed
level of description is given by a purely reversible dynamics,
as it happens when we are coarse-graining from the detailed
atomistic dynamics, then d�
=0 and L+=L−=L, the Liouville
operator. In this case, the friction matrix has the usual Green-
Kubo expression and the resulting FPE is the one first ob-
tained by Zwanzig �4�.

III. EINSTEIN-HELFAND FORM FOR M��

The friction matrix M in Eq. �50� contains the term
K0

�
��� that has a Green-Kubo form involving a time integral
as shown in the first Eq. �47�. Perhaps the simplest example
of a Green-Kubo formula is the one that expresses the diffu-
sion coefficient D of a Brownian particle in terms of the time
integral of the autocorrelation of the velocity of the Brown-
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ian particle. An alternative expression for D is given by the
Einstein’s result D= 
�r�t�−r�0��2� /2t. Generalizations of the
connection between the Green-Kubo form and the Einstein
form for other transport coefficients have been given by Hel-
fand �18�. The starting point in Helfand derivation is the
deterministic equations of classical mechanics. In this sec-
tion, we give the Einstein-Helfand form for the matrix M
when the detailed level is stochastic. In this way, the matrix
M is shown to be manifestly positive definite.

As a previous step, we show that for a system described
with a FPE with a well-defined stationary solution, there is a
theorem that allows to express mean square “displacements”
in terms of integrals of correlation functions.

A. Theorem about diffusion processes

The two-time correlation function 
FG�tt� of two arbitrary
functions F�z� ,G�z� is defined as


FG�tt� � F�t�G�t�� , �53�

where F�t�=F�z�t�� and G�t�=G�z�t�� are the functions
evaluated at the stochastic realization of the process z�t�, and

the average ¯̄ is over realizations of this stochastic process.
An alternative but equivalent form of the correlation function
in terms of the two-time probability ��z , t ,z� , t�� is the fol-
lowing:


FG�tt� �� dz� dz�F�z�G�z����z,t,z�,t�� . �54�

In terms of the conditional probability ��z� , t� �z , t� of finding
z� at time t�, given that at time t the state was z, we have
��z , t ,z� , t��=��z , t���z� , t� �z , t� with t�� t. Note that the con-
ditional probability also satisfies the FPE �1� �19�, this is

�t���z�,t��z,t� = L���z�,t��z,t� �55�

with initial condition ��z� , t �z , t�=��z�−z�. The prime in the
operator L denotes that the derivatives in this differential
operator are with respect to z�. Note that the ordering t�� t is
crucial in the definition of the conditional probability and the
use of Eq. �55�. The formal solution of Eq. �55� for the
conditional probability is, therefore,

��z�,t��z,t� = exp�L��t� − t����z − z�� . �56�

By substitution of this solution into Eq. �54�, we obtain


FG�tt� =� dzF�z���z,t�exp�L+�t� − t��G�z� . �57�

In the steady state, when ��z , t�=�ss�z�, the correlation in Eq.
�57� is stationary �it only depends on the time difference�. In
this case, and after using Eq. �9�, we have,


FG�tt�
ss = 
�exp�L−t�F��exp�L+t��G��ss t� � t , �58�

where we have introduced the steady state average


 ¯ �ss =� dz�ss�z� ¯ . �59�

Note that both functions in Eq. �58� are “evolved” in a dif-
ferent way with the dynamic operators involving L+ or L−.

The origin of the asymmetry in the evolution of F and G is
just the ordering t�� t. In the opposite case t�� t we have the
phase space expression


FG�tt� = 
�exp�L+t�F��exp�L−t��G��ss t� � t . �60�

Eqs. �58� and �60� are the phase space expression of the
correlation function.

We introduce now the matrix of stationary autocorrelation
function of a set of variables A��z�, this is

C�
�t,t�� � � dz� dz�A��z�A
�z���ss�z,t,z�,t��

= 
�exp�L−t�A���exp�L+t��A
��ss if t� � t

= 
�exp�L+t�A���exp�L−t��A
��ss if t� � t ,

�61�

and also the matrix of its derivatives

B�
�t,t�� �
d

dt

d

dt�
C�
�t,t�� . �62�

For t�� t, Eqs. �62� and �61� lead to

B�
�t,t�� =� dz�ss�z��exp�L−t�L−A��z���exp�L+t��L+A
�z�� .

�63�

We have a similar expression for the case t�� t. The combi-
nation of both cases can be written as

B�
�t,t�� = b�
�t� − t� for t� � t

B�
�t,t�� = b
��t − t�� for t� � t , �64�

where

b�
�u� � � dz�ss�z��L−A��z���exp�L+u�L+A
�z�� u � 0.

�65�

We have discussed separately the cases t�� t and t�� t, and
the question arises about what happens when t�= t. It turns
out that the correlation matrix C�
�t , t�� has a discontinuous
first time derivative at t= t� and, therefore, the matrix
B�
�t , t�� will have a delta function contribution that repre-
sents the derivative of the discontinuity, as schematically
shown in Fig. 1. Let us see how this arises.

If t�� t, we have, from Eq. �61�,

c(t) c(t) c(t)

t t t

FIG. 1. Cartoon of the correlation function and its time deriva-
tives. If the correlation has a cusp at the origin, its second time
derivative has a Dirac delta function at the origin.
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d

dt�
C�
�t,t�� = 
A��exp�L+�t� − t��L+A
��ss. �66�

When t→ t�, with t�� t, this leads to

lim
t→t�

t��t

d

dt�
C�
�t,t�� = 
A�L+A
�ss. �67�

On the other hand, if t�� t we have, from Eq. �61�,

d

dt�
C�
�t,t�� = 
L−A
�exp�L+�t − t���A���ss. �68�

When t→ t�, with t�� t, this leads to

lim
t→t�

t��t

d

dt�
C�
�t,t�� = 
A�L−A
�ss. �69�

We observe that, as a function of t, the first derivative is
discontinuous at t= t�, in general. Therefore, in the second
derivative in Eq. �62�, we must account for this discontinuity
by adding the term

��t − t��
A��L− − L+�A
�ss = ��t − t��2kB
d�
�ss, �70�

where the equality follows from the use of Eqs. �4� and �6�,
the definition �35�, and some integration by parts.

Now, consider the following double time integral:

B�
��� � �
0

�

dt�
0

�

dt�B�
�t,t�� = �
0

�

dt�
0

t

dt�b
��t − t��

+ �
0

�

dt�
t

�

dt�b�
�t� − t� + �2kB
d�
�ss, �71�

where we have taken into account the Dirac delta function
contribution in Eq. �70� giving the last term in Eq. �71�. By
the change in variables u= t− t� in the first integral and u
= t�− t in the second, we have

B�
��� = �
0

�

dt�
0

t

dub
��u� + �
0

�

dt�
0

�−t

dub�
�u�

= �
0

�

dub
��u��
u

�

dt + �
0

�

dub�
�u��
0

�−u

dt

+ �2kB
d�
�ss = �
0

�

du�� − u��b
��u� + b�
�u��

+ �2kB
d�
�ss. �72�

Now, let us consider the convergence properties of these in-
tegrals. In principle, we expect that when u→� the two
variables L+A
 and L−A� in Eq. �65� become uncorrelated,
this is

lim
u→�

b�
�u� = �� dz�ss�z�L−A��z���� dz�ss�z�L+A
�z�� = 0,

�73�

where the last identity comes from the fact that L�ss=0.
Therefore, b�
�u� tends to zero as u increases. We will as-
sume that this decay is sufficiently strong in order for both
integrals

�
0

�

du�b
��u� + b�
�u��

�
0

�

duu�b
��u� + b�
�u�� �74�

to exist in the limit �→�. In this case, for sufficiently large
�, we can neglect in Eq. �72� the second integral in Eq. �74�
in front of the first one, this is

B�
��� � ��
0

�

du�b
��u� + b�
�u�� + �2kB
d�
�ss. �75�

On the other hand, by using Eq. �62�, we can perform the
time integrals of the time derivatives in Eq. �71�,

B�
��� = �
0

�

dt�
0

�

dt�
d

dt

d

dt�
C�
�t,t��

= C�
��,�� − C�
�0,�� + C�
�0,0� − C�
��,0� .

�76�

By using that, the correlation can be written in terms of
averages over realizations of the stochastic process, i.e.,

C�
�t,t�� = A��t�A
�t�� , �77�

we have from Eqs. �76� and �77� that

B�
��� = �A���� − A��0���A
��� − A
�0�� . �78�

In summary, for sufficiently large � we have, from Eqs. �75�
and �78�, the following relationship:

1

2�
�A���� − A��0���A
��� − A
�0�� = kB
d�
�ss

+
1

2
�

0

�

du�b
��u� + b�
�u�� . �79�

This formula is a general expression that relates the mean
square “displacements” of a set of phase functions A� with
the time integral of the stationary correlation function b�
�u�
defined in Eq. �65�. Note that this correlation function b�
�u�
has not a symmetric appearance in that both operators L+ ,L−

occur in the definition of the correlation. This is clearly a
consequence of the general structure of a correlation function
in Eqs. �58� and �60�.

B. Einstein-Helfand version of the friction matrix

The friction matrix M defined in Eq. �50� can be decom-
posed into a symmetric part plus an antisymmetric part. Only
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the symmetric part contributes to the second derivative terms
in the Fokker-Planck equation �49�. The antisymmetric part
may contribute to the irreversible drift term M�
�
S in Eq.
�49� but it will not produce any entropy production �see Sec.
III C�. Note that a general symmetry property of K0


���� is
not obvious from its microscopic expression �46� and the
possibility of having irreversible transport that does not pro-
duce entropy increase is not excluded �6�.

The symmetric part of the matrix M in Eq. �50� can be
written as

1

2
�M�
 + M
�� = 
d�
�� +

1

2
�

0

�

du�m�
��,u� + m
���,u�� ,

�80�

where, from the definition of K0
�
 in Eq. �47�, we have intro-

duced m�
�� ,u� as

m�
��,u� �
1

kB

�exp�L−u�L−A
 − 
L−A
����exp�L+��L+A�

− 
L+A������. �81�

Note that, in principle, m�
�� ,u� depends on both time argu-
ments. However, within the spirit of the approximation �45�,
we may safely assume that the constrained ensemble ���z�
defined in Eq. �17� is, within the time span �, a stationary
ensemble, because it depends on the slow variables A�z�,
which hardly change during � under the assumption of a
clear separation of time scales. Under this assumption, we
have that 
L+A����0. In this way, the matrix m�
�� ,u� can
be further approximated by

m�
��,u� =
1

kB

�exp�L−u�L−A
��exp�L+��L+A����. �82�

We see, therefore, that if we keep assuming consistently that
the constrained ensemble is an approximate stationary en-
semble of the dynamics generated by L, then m�
�� ,u� can
be approximated by b�
�� ,u� defined in Eq. �65�. As a con-
sequence, Eqs. �80�, �75�, and �78� show that, for sufficiently
large �, we have

M�
 =
1

2kB�
�A���� − A��0���A
��� − A
�0�� . �83�

This is one of the main results of this paper. Expression �83�
is a generalization of the Einstein-Helfand form of the trans-
port coefficients to the case that the original detailed level of
description is stochastic. In principle we can use this expres-
sion to compute the transport matrix from a stochastic simu-
lation of the detailed level, in the same way as it is used for
ordinary molecular dynamics �22�.

Note that in the Einstein form, the matrix M�
 is mani-
festly positive definite. Just left and right multiply Eq. �83�
with an arbitrary vector u� to get

1

2kB���� u��A���� − A��0��	2
, �84�

which is always a positive quantity.

The usual argument in order to prove that a Green-Kubo
friction matrix is positive definite for the case that the de-
tailed level is Classical Mechanics is the Wiener-Kinchine
theorem �7�. This theorem states that the time integral of a
stationary autocorrelation matrix is always positive definite.
Note, however, that Eq. �81� is not an obvious autocorrela-
tion in general, due to the asymmetry in the appearance of
the operators L+ and L−. Even though the matrix d�
 is defi-
nite positive by its very definition in Eq. �35� �and the fact
that dij is itself positive definite�, it is not obvious that the
time integral of the correlation b�
�� ,u� is positive definite.
The above derivation of the Einstein-Helfand form of the
transport matrix M is valid for both, deterministic and sto-
chastic detailed dynamics and is, therefore, an alternative
demonstration that the transport matrix is positive definite.

C. H theorem

It is possible to show that, as any other Fokker-Planck
equation �19�, the FPE �49� has an H theorem. The role of
the H function is played by the entropy functional introduced
in Eq. �20�. The time derivative of S�p�� , t�� is given by

�

�t
S�p��,t�� = − kB� d�

�S�p��,t��
�p��,t�

�

�t
p��,t�

= − kB� d��ln
p��,t�
pss���

− 1� �

�t
p��,t� . �85�

By using the FPE �49�, the fact that p�� , t� is normalized to
1 for all t, and a suitable integration by parts with neglect of
surface terms, one is led to

�

�t
S�p��,t��

=
1

2
� d�p��,t����ln

p��,t�
pss��� �M�
����
�ln

p��,t�
pss��� � � 0,

�86�

where the inequality is due to the fact that the matrix M���
�or rather its symmetric part� is positive definite. The entropy
functional is an strictly increasing function of time. It takes
the maximum value �zero� at the steady state distribution
function. This proves, then, that any initial distribution func-
tion obeying the Fokker-Planck equation �49� relaxes to-
wards the steady state distribution pss���, which is, therefore,
unique.

IV. TIME REVERSAL AND DETAILED BALANCE

In this section, we discuss the consequences of having a
detailed level of description that satisfies the property of de-
tailed balance. Under time reversal the detailed state z
changes to z̄=�z, where � is a diagonal matrix that has �1 in
the diagonal depending on the time reversal character of each
component of z. The condition of detailed balance states that
the two-time steady state probability satisfies �19�

�ss�z,t + �,z�,t� = �ss��z�,t + �,�z,t� . �87�

This implies that under time reversal, the steady state distri-
bution behaves as �ss��z�=�ss�z�.
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A remarkable property about detailed balance is that it is a
feature of the system and not of the level of description con-
sidered. In other words, if the system is described at its most
detailed level by a Fokker-Planck equation satisfying de-
tailed balance, then, any coarse-grained FPE obtained from
this one will also satisfy detailed balance. In particular, any
FPE that is derived from Hamilton’s equations of motion
satisfies detailed balance.

In order to see how this remarkable property arises, let us
assume that the relevant variables A��z� have a well-defined
parity under time reversal of z, this is

A��z� = �A�z� , �88�

where � is a diagonal matrix that has �1 in the diagonal
depending on the time reversal character of each relevant
variable.

The two time probability distribution p�� , t ,�� , t�� that
gives the probability density that the relevant variables take
values � at time t and �� at time t� is defined in a similar
way to the one time probability in Eq. �13�, this is

p��,t,��,t�� � � dz� dz���z,t,z�,t��

���A�z� − ����A�z�� − ��� , �89�

where ��z , t ,z� , t�� is the two time probability at the detailed
level. By using the detailed balance property �87� in Eq. �89�,
performing the change in variables x=�z ,x�=�z�, and using
the parity properties in Eq. �88�, one obtains that the coarse
distribution also satisfies detailed balance, this is,

pss��,t + �,��,t� = pss����,t + �,��,t� . �90�

Therefore, the detailed balance property is a property of the
system and not of the level of description used.

A. Coarse FPE with detailed balance

The necessary and sufficient conditions in order that the
FPE �1� satisfies detailed balance are �19�

�ivi��z� = − vi�z� +
2kB

�ss�z�
� jdij�z��ss�z�

dij��z� = �i� jdij�z� . �91�

In this and subsequent expressions, repeated indices are
summed over except those involving �i. Because we know
from Eq. �90� that detailed balance is also satisfied at the
coarse level, we should be able to demonstrate that the ob-
jects introduced in Eq. �50� for the coarse FPE �49� also
satisfy the set of properties analogous to Eq. �91�. The pur-
pose of the present section is to demonstrate explicitly that
this is actually the case. This should give further confidence
on the obtained microscopic expressions and, in particular, to
the, at first sight, counterintuitive asymmetric appearance of
the L+ ,L− operators in the Green-Kubo expression.

We introduce the reversible drift vi
R and the irreversible

drift vi
I through

vi = vi
R + vi

I

vi
R�z� �

1

2
�vi�z� − �ivi��z�� = − �ivi

R��z�

vi
I�z� �

1

2
�vi�z� + �ivi��z�� = �ivi

I��z� , �92�

and then the first condition of detailed balance in Eq. �91�
translates into

�ssvi
I = kB� jdij�

ss, �93�

or equivalently

vi
I = dij� jS + kB� jdij , �94�

where the entropy S�z� is defined in Eq. �3�.
By using the detailed balance condition �94�, we can write

the original FPE �1� in the form

�t�t = −
�

�zi
�vi

R + dij

�S
�zj

��t + kB
�

�zi
dij

�

�zj
�t. �95�

As a consequence, if we insert Eq. �3� into Eq. �95�, we get
that the reversible drift satisfies

�ivi
R�ss�z� = 0. �96�

Under the detailed balance conditions, the operators L+ ,L−

defined in Eqs. �4� and �6� adopt a particularly symmetric
form

L+ = vi
R�z��i + vi

I�z��i + kBdij�z��i� j ,

L− = vi
R�z��i − vi

I�z��i − kBdij�z��i� j . �97�

By using these forms for the operators, we observe that v�
� in

Eq. �35�, can be expressed as

v�
� = vR

� � vI
�

vR
� � vi

R�iA
�

vI
� � vi

I�iA
� + kBdij�i� jA

�. �98�

As we will show later, vR
� is a macroscopic reversible drift

while vI
� is a macroscopic irreversible drift.

B. Detailed balance at the coarser level

The Fokker-Planck equation �49� can be written in the
form

�tp��,t� = − ��A����p��,t� +
1

2
���
B�
���p��,t�

A���� = 
vR
��� + M�
����
S��� + kB��M�
���

B�
��� = 2kBM�
��� . �99�

We have used that V����= 
vR
��� as it is shown in the Appen-

dix B.
The Green-Kubo matrix K0

�
���, as introduced in Eq.
�47�, has no particular symmetry and, therefore, the matrix
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M�
��� in Eq. �50� has no symmetry either. It is convenient,
therefore, to introduce the symmetric M�
S���= �M�
���
+M
����� /2 and antisymmetric M�
A���= �M�
���
−M
����� /2 parts of the friction matrix M�
���. In this way,

A���� = 
vR
��� + M�
A����
S��� +

kB


���
��M�
S���
���

B�
��� = 2kBM�
S��� . �100�

The necessary and sufficient conditions for detailed balance
take the following form in terms of A���� and B�
��� �19�:

��A����� = − A���� +
1


���
�
B�

���

B�
���� = ���
B��� . �101�

Eqs. �101� are analogous to Eqs. �91� at the coarse level.
We want to prove that the properties �101� are indeed

satisfied, provided that the corresponding properties �91� are
satisfied too. In this way, we ensure that the detailed balance
property is satisfied at both levels of descriptions, as it
should.

To this end, we analyze what are the effects of the time
reversal symmetry on the different objects of the FPE �49�
when detailed balance holds. The parity properties of the
relevant variables Eq. �88� translate into the following prop-
erties for the derivatives of the relevant variables

�A�

�zi
��z� = ���i

�A�

�zi
�z�

�2A�

�zi � zj
��z� = ���i� j

�2A�

�zi � zj
�z� . �102�

By using the definitions �35� and the above properties, we
easily arrive at the following behavior under time reversal

vR
���z� = − ��vR

��z�

vI
���z� = ��vI

��z�

v+
���z� = − ��v−

��z�

d�
��z� = ���
d�
�z� . �103�

These properties justify to call vR
� the reversible drift and vI

�

the irreversible drift. The steady state distribution behaves as


���� = 
��� , �104�

as can be easily shown from the definition �18� and a simple
change in variables z�=�z. This equation implies that the
entropy �50� satisfies

S���� = S��� , �105�

and, therefore,

��S���� = ����S��� . �106�

Let us consider now the time reversal behavior of the con-
strained averages of Eq. �103�. They are


vR
���� = − ��
vR

���


vI
���� = ��
vI

���


v+
���� = − ��
v−

���


d�
��� = ���

d�
��. �107�

Eqs. �103� and �107� imply for the fluctuations

���vR
���z� = − ����vR

��z�

���vI
���z� = ����vI

��z�

���v+
���z� = − ����v−

��z� . �108�

Next, we focus on the effect of time reversal on the dynamic
operators. Consider

L+�F��z�� = �vi
R �

�zi
+ vi

I �

�zi
+ kBdij

�

�zi

�

�zj
�F��z�

= �− vi
R��z�

�

��zi
+ vi

I��z�
�

��zi

+ kBdij��z�
�

��zi

�

��zj
�F��z�

= − �L−F���z� . �109�

where in the second equality we have used the time reversal
properties �92�. In a similar way, we obtain

L−�F��z�� = − �L+F���z� . �110�

Consider now L−�vR
���z��. On one hand, this term is equal to

−��L−�vR
��z��, where we have used Eq. �103�. On the other

hand, Eq. �110� shows that it is also equal to −�L+vR
����z�.

Therefore, we conclude

�L+vR
����z� = ���L−vR

���z� . �111�

Apply L− to this equation and use Eq. �110� to arrive

�L+L+vR
����z� = − ���L−L−vR

���z�

�L+L+L+vR
����z� = ���L−L−L−vR

���z� . �112�

By induction and the series expansion of the exponential, we
can finally conclude

�exp�L+t�vR
����z� = − ���exp�− L−t�vR

���z� . �113�

Next, consider L−�vI
���z��. On one hand, this term is, by Eq.

�103�, equal to ���L−vI
���z�. On the other hand, Eq. �110�

implies that it is equal to −�L+vI
����z�. Therefore,

�L+vI
����z� = − ���L−vI

���z� . �114�

Apply L− to this equation in succession and use Eq. �110� to
obtain

�L+L+vI
����z� = ���L−L−vI

���z�

�L+L+L+vI
����z� = − ���L−L−L−vI

���z� . �115�

By induction, we conclude
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�exp�L+t�vI
����z� = ���exp�− L−t�vI

���z� . �116�

Eqs. �113� and �116� imply

�exp�L+t�v+
����z� = − ���exp�− L−t�v−

���z� . �117�

Now, we have all the ingredients to discuss the time reversal
of K0

�
, which is one of the contributions to the friction ma-
trix in Eq. �50� and it is defined in Eq. �47�

K0
�
���� =

1


����kB
�

0

�

dt� dz��ss�z���A�z� − ����v−

�z�

− 
v−

����exp�L+t��v+

��z� − 
v+
������ . �118�

Use ��A�z�−���=��A��z�−�� and perform the change in
variables z�=�z. This leads to

K0
�
���� =

1


���kB
�

0

�

dt� dz���ss��z����A�z�� − ���v−

��z��

− 
v−

���� � exp�L+t��v+

���z�� − 
v+
������ . �119�

Next, use the properties �104�, �108�, and �113� to write

K0
�
���� =

1


���kB
�

0

�

dt� dz���ss�z����A�z�� − ��

��− �
�v+

�z�� − 
v+


���� � �− �� exp�− L−t��

��v−
��z�� − 
v−

����� . �120�

Now, under the assumptions used in Eq. �45� �stating that the
constrained average is approximately stationary within the
time span �� and by using Eq. �9�, we obtain

K0
�
���� = �
�� 1


���kB
�

0

�

dt� dz���ss�z����A�z�� − ��

��v−
��z�� − 
v−

���� � �exp�L+t���v+

�z�� − 
v+


���� .

�121�

Therefore, from the very definition of K0
�
��� in Eq. �47�

K0
�
���� = �
��K0


���� . �122�

This time reversal property implies the following transforms
for the symmetric and antisymmetric parts of the friction
matrix M:

M�
A���� = − �
��M�
A���

M�
S���� = �
��M�
S��� . �123�

By collecting Eq. �106�, the first equation of Eq. �107�, and
Eq. �123�, and using them in the definitions �99�, we can
write

��A����� = − vR
���� − M�
A����
S���

+
kB


���
�
�M�
S���
���� = − A����

+
1


���
�
B�
���
��� , �124�

which is precisely the first condition in Eq. �101�. The sec-

ond condition of Eq. �101� is just the second equation in Eq.
�123�.

In summary, in this section, we have shown from the
phase space definitions of the different objects appearing in
the coarse-grained FPE �49� that their time reversal proper-
ties are exactly the same as those of the original detailed FPE
�95�. This implies that the detailed balance conditions in Eq.
�101� are satisfied for the coarse FPE �49�. This is quite
reassuring and gives confidence to the particular asymmetric
structure of the Green-Kubo formula for the friction matrix.

V. CONCLUSIONS

We have presented a derivation of the FPE that governs
the coarse-grained behavior of a system that is described at a
more detailed level by another FPE. The coarse FPE has
been obtained previously in Refs. �14,11�. The main result of
the present paper is the proof that the transport matrix of the
coarse FPE is positive definite, which is a necessary require-
ment for the FPE to make sense. Also, we have shown that
the coarse FPE satisfies the necessary and sufficient condi-
tions for detailed balance provided that the detailed FPE also
satisfies them. Finally, we have elucidated the different
reversible/irreversible nature of the objects in the coarse
FPE. In this doing, it becomes apparent that the structure of
the Green-Kubo expression for the friction matrix contains
two contributions, one that can be interpreted as the direct
transfer of the detailed fluctuations to the coarse level, and a
second contribution consisting of a time integral of a corre-
lation function. This last contribution can be interpreted as
the additional friction that emerges at the coarse time scale
out of the evolution that at a detailed level is not seen as
fluctuations but that can be regarded indeed as fluctuations
on the coarse time scale �6�. The present work shows that the
Einstein-Helfand form for the transport coefficients can now
be used also for the case that the underlying dynamics is
stochastic.

A last word on the issue of transitive coarse graining
�14,23� is in order. We have considered in the present paper
the coarse-graining of an already coarse-grained system. It is
possible to iterate once more the process in order to obtain an
even more coarse-description of the system. In that case, the
effect of going from the more detailed level to the coarsest
level, directly or through the passage through an intermediate
level, should give the same answer. The transitivity property
has been considered in Refs. �6,14�, and it would be interest-
ing to show that the Einstein-Helfand forms at each level are
consistently recovered. We plan to address this issue in the
future.
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APPENDIX A

In this appendix, we prove Eq. �51�. Consider

V����
��� = 
v+
���
��� − kB�
d�
���
��� , �A1�

where we have used the definitions �50�. Now, use the mi-
croscopic definitions �35� and the chain rule �34� to write

V����
��� = tr��ss���vi�iA
� + kBdij�i� jA

���

+ kB tr��ss�iA
�dij� j���

= tr��ss��vi�iA
�� + kB tr��ssdij�� j���iA

��� bf

= tr��ss��
vi −
kB

�ss� jdij�
ss��iA

�� . �A2�

By dividing with 
���, we obtain Eq. �51� in the text.

APPENDIX B

In this appendix, we show that V����= 
vR
���, which has

been used in Eq. �99�. First, we show that


vI
���
��� = kB�

d�
��
��� . �B1�

This identity can be proved as follows. By using the defini-
tions �35� and the detailed balance condition �94�, we can
write


vI
���
��� = tr��ss���dij� jS + kB� j�dij�iA

���� . �B2�

Integration by parts in the second equation and using Eq.
�34�, we finally arrive at Eq. �B1�. This equation can also be
written as


vI
��� = 
d�
���
S��� + kB�

d�
��, �B3�

which is the equivalent of Eq. �94� at the more coarse level.
The identity �B3� allows one to obtain the drift of the coarse
FPE in the very simple form

V���� = 
vR
���. �B4�

It is worth checking that the equilibrium distribution function

��� is still a solution of the FPE �99� with the drift �B4�.
Indeed, we need to prove that

���
vR
���
���� = 0, �B5�

which is the analogous of Eq. �96� at the more coarse level.
By the definition of the constrained average, we have

���
vR
���
���� = �� tr��ss��vi

R�iA
�� . �B6�

By using Eq. �34� and an integration by parts, we get

���
vR
���
���� = − tr��i��ssvi

R���� = 0, �B7�

where in the last identity, we have used Eq. �96�.
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