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Intensity statistics of random signals in Gaussian noise
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The intensity statistics of random signals in the presence of Gaussian noise is obtained by considering the
model of a random signal plus a random phasor sum. The additive Gaussian noise is shown to result in a Bessel
transform of the probability density of signal intensity. The transformation of the intensity statistics can
generally be applied to mixtures of independent random signals, one of which being a complex-valued Gauss-
ian random process. It is used to retrieve intensity statistics of microwave pulsed transmission from Gaussian

noise at long time delays.
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I. INTRODUCTION

The signal available at the output of a radio measurement
system is never an entirely accurate indicator of the quantity
to be measured. The accuracy of the measurement depends
on the amount of noise compared to the level of signal, or the
signal-to-noise ratio. Signal noise can result from a variety of
causes, both man made and natural. In most cases, however,
it is the natural additive noise which is the limiting factor for
signal detection. This may include noise radiation from the
sky picked up at the antenna, Johnson-Nyquist and shot
noise generated in the circuitry of the receiver, etc. Usually
the natural additive noise can be represented mathematically
as a Gaussian random process, hence the term Gaussian
noise. The problems of detecting signals in Gaussian noise
and of estimating parameters of signals in Gaussian noise
have been studied by means of detection theory. There exists
an extensive literature on this subject (see, for example, [1]
for review).

Our interest in the statistics of random signals in Gaussian
noise arose from measurements of electromagnetic waves
transmitted through random media. Wave transport in the
presence of disorder can be characterized by the degree of
nonlocal intensity correlation, which reflects the closeness to
the Anderson localization transition (see, for example, [2,3]).
The presence of long-range correlation of intensity within a
sample leads to enhanced fluctuations of total transmission
over the value predicted if the correlation of intensity were
short range, as is the correlation of the field. The occurrence
of enhanced transmission fluctuations can be seen in an en-
semble of quasi-one-dimensional random samples, in which
the sample length is much greater than the diameter of its
cross section [4]. In pulsed transmission measurements, the
variance of transmission fluctuations normalized to the
ensemble-averaged transmission increases with time delay
from an exciting pulse [5] while the decay rate of the average
intensity within the sample decreases [6], reflecting two re-
lated effects: the increasing impact of localization and the
growing weight of long-lived electromagnetic quasimodes.
At long times, however, the decaying transmitted intensity
becomes comparable to Gaussian noise then affecting the
intensity statistics so that the measured variance of total
transmission is no longer the localization parameter. To study
the dynamics of transport at long time delays, the impact of
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Gaussian noise must therefore be determined.

To solve this problem, we consider the model of a random
signal plus noise in which noise is represented by a random
phasor sum with circular Gaussian statistics. We find that the
addition of complex-valued Gaussian noise results in a
Bessel transform of the probability density of the signal in-
tensity. Depending on the physical problem under consider-
ation, the solution found can be used to find the intensity
statistics of signal in the presence of Gaussian noise to re-
trieve the intensity statistics of signal from Gaussian noise
given the noise intensity or to determine the noise intensity
given the intensity distribution of the signal. We shall use it
to determine the probability density of the pulsed transmitted
intensity in Gaussian noise at long time delays. More gener-
ally, the solution can be applied to mixtures of independent
random signals, one of which being a complex-valued
Gaussian random process. An important example is the sta-
tionary field of a disordered cavity coupled to the environ-
ment, which can be represented by the superposition of a
standing wave (an eigenstate) and a traveling wave associ-
ated with the energy leaking out of the system [11], with the
former playing the role of “signal” and the latter playing the
role of “Gaussian noise.”

II. STATISTICAL MODEL OF A RANDOM SIGNAL PLUS
GAUSSIAN NOISE

We consider the model of a random signal plus Gaussian
noise, E=Eg+Ey, in which Gaussian noise E is represented
by a random phasor sum with circular Gaussian statistics [7],
Ey=E;. The probability density of the real and imaginary
parts of E, r; and ig, respectively, is a Gaussian with width
g,

) 1 rzG+i2G
PEG(”GJG): 2770267(]3 - 202 ) (1)
and the moments,
; " 1 X3X5---(n—=1)0", n even
<rG>=<lc = (2)

0, n odd,

where (---) represents the average over an ensemble of real-
izations. Because Eg and E; are statistically independent, the
probability density of the resultant field E is simply the con-
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volution, Pp=Pg *Pg . Finding statistics of the intensity of
the resultant field, I=|E|?, however, is more involved.

The Gaussian statistics of r; and i results into the expo-
nential probability density of the Gaussian noise intensity,
Ig=|EcP=rg+ig,

1
PIG(IG) <IG>CXP< <]z>>, (3)

where (I;)=20>=D is the average noise intensity that we
shall denote by D. The moments of the noise intensity follow
from Eq. (3) as (I§;)=n!D". The signal intensity I can be
written as Ig= |ES|2—rs+zS, where rg and ig are the real and
imaginary parts of Eg, respectively. The moments of I are
given by

<I§>=f dlslgpls(ls), (4)
0

where P, (I5) is the probability density of the signal inten-
sity.

To find the probability density of the intensity I of the
resultant field, we first calculate its moments {I"). Expressing
I" in terms of the real and imaginary parts of the signal and
noise, taking the average, and using Eq. (2), we arrive at

n n— k

("= kEO(k, )<S>D (5)

From Eq. (5), for example, the average and the variance are

(I)=(Is)+D and var[I]=var[Is]+2(Is)D+D?, respectively.
From the moments (I") the characteristic function M, and

the probability density P; can be obtained [7]. Here, these are

derived using the characteristic function M I of the signal

intensity /g,

Cm.
n

MIS(P) = (exp(-pls)) = 2
n=0

The moments (/§) can be deduced from Eq. (5) and are writ-
ten as

where L, is the Laguerre polynomial of order n. Substituting
Eq. (7) into Eq. (6) and by making use of a generating func-
tion of Laguerre polynomials [8], we obtain

1
Mzs(p)=1_pD<exp(—1f);D)>, lpD|<1. (8)

By changing variables, pD=sD/(1+sD), Eq. (8) can be writ-
ten as

1
1+sD

MIS< - D) = (exp(=sD) = M/(s). (9

where M,(s) is the characteristic function of the intensity I.
P,(1) is related to M(s) in the usual way,
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Substituting M ,(s) of Eq. (9) into Eq. (10), we obtain

“ods (7 dI
P/ =J .eslf P,
_iw2m Jy 14+sD S

Changing the order of integration and integrating over s, we
arrive at

(Is)e—sls/(lﬂD)_ (1 1)

1 * B 2\/175
P(I) = l_)e HDJ; dIsP1S(Is)6’ IS/DIO( D ) (12)

where 7, is a modified Bessel function of the first kind of
zero order. Equation (12) is the main result of the paper and
represents the transformation of the probability density Py of
the signal intensity in the presence of Gaussian noise with
the average intensity D. Some examples are in order. For a
constant signal of the intensity /s=A, for which P, (Is)
=58(Ig—A), we obtain from Eq. (12)

_
”A)IO(M), (13

P/(D)= _CXP< D D

which is in agreement with the result of the model of a
constant phasor plus a random phasor sum [7,9,10]. In the
case when Eg is itself a circular Gaussian random variable,
P,S(IS)=exp(—IS/(IS))/<IS). Then, as may be expected,
Eq. (12) yields P,(I)=exp(=1/{I))/{I), where {I)=(Is)+D.
Finally, in the case of a disordered cavity in the absence of
nonproportional damping [12], Py (Is)=exp(~Is/2(Is))/
\2aI(Is), which is the Porter-Thomas distribution. We then
obtain from Eq. (12) the probability density, P,(x=1/{I)), in
the crossover from closed to open system,

-5
%)I‘)(m P ) (14

where 6=(2D({Is)+D?)/({I)+D)? in agreement with Ref.
[11].

Equation (12) can be inverted to yield the probability den-
sity of the signal intensity,

1
P/(x) = —=ex (—
1 /s p

2\115) 15)

1 ee]
P,S(Is)zge’S/D f arp,(- I)e‘”DJO<

However, Eq. (15) is not particularly useful to retrieve Py
from Gaussian noise with the average intensity D, because it
requires a continuation of P; to negative I, which is not avail-
able from the measurement. Instead, P can be found by
solving Eq. (12). In the next section, we determine the prob-
ability density of pulsed transmitted intensity in Gaussian
noise at long time delays.

III. INTENSITY STATISTICS OF PULSED TRANSMISSION
IN GAUSSIAN NOISE

Here, the results of statistical model of the previous sec-
tion are used to retrieve the intensity statistics of pulsed mi-
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FIG. 1. (Color online) Measurements of the time-resolved sta-
tistics of pulsed microwave transmission in an ensemble of random
dielectric samples. (a) The average and (b) the variance normalized
to the average of the measured intensity /(¢) (black solid lines) and
the transmitted intensity I5(7) (blue dashed lines) deduced from Eq.

(7).

crowave transmission through random media from Gaussian
noise at long delay times [5,6]. Accurate measurements of
the time-resolved statistics of pulsed transmission are abso-
lutely essential for a systematic study of wave transport in
the presence of disorder. Spectral measurements of the field
transmission coefficient of microwave radiation were made
in an ensemble of random dielectric samples, as described in
[5,6]. The response to a pulse with a Gaussian temporal en-
velope at carrier frequency v, is obtained by Fourier trans-
forming the product of the field transmission spectrum and a
Gaussian spectral function of width o,. The field of the tem-
poral response is squared to give the intensity I(z) for each
sample configuration. The average intensity (I()) is found by
averaging over the ensemble of realizations. The result is
shown on a logarithmic scale as the black solid line in Fig.
1(a). The noise in the transmitted field manifests itself as a
constant background in Fig. 1(a). The analysis of the prob-
ability density Pg(r,i) in the negative time before the pulse,
i.e., when E=E, shows that PEN is a circular Gaussian. The
average pulsed transmitted intensity (I(r)) is then (Ig(z))
=(I(t))-D, where D is the constant background in Fig. 1(a).
Once this background is subtracted, the dynamic range is
significantly enhanced [Fig. 1(a), blue dashed line].

The variance of normalized intensity, var[I(z)/{I(z))], is
shown as the black solid line in Fig. 1(b). In the pulsed
measurement, the variance of the normalized transmitted in-
tensity is expected to increase with time delay from an ex-
citing pulse [5] as increasingly more of energy within the
medium is stored in long-lived localized modes. In Fig. 1(b),
in contrast, the variance of the normalized intensity falls at
long times to a value of unity, reflecting the increasing im-
pact of Gaussian noise. The variance of transmitted intensity
follows from Eq. (7) as var[/s(t)]=var[I(¢)]-2(I())D+D>.
The evolution with time of the normalized variance,
var[I(¢)]/{Is(1))?, is shown as the blue dashed line in Fig.
1(b).
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FIG. 2. (Color online) Probability densities of the pulsed trans-
mitted intensities at the time delays r=338, 364, and 389 ns and in
the negative time (r=—224 ns), indicated by the vertical dashed
lines in Fig. 1. The black solid curves are the measured probability
densities P;(1/{I)). The blue dashed curves are the probability den-
sities P,S(IS/(IS>), deduced from Eq. (16) using the corresponding
values of var[Is(#)]/{I(¢))* found from Fig. 1(b). The red dotted
curves shown through the data are P;(I/{I)) deduced from Eq. (12).

As it follows from Fig. 1, the probability distribution of
the transmitted intensity is increasingly affected by Gaussian
noise at long times. The probability densities P;(x=1/{I))
for the time delays r=338, 364, and 389 ns, indicated by
vertical dashed lines in Fig. 1, are shown as the black solid
curves in Fig. 2. At these time delays, the relative amount of
noise is D/{I)=0.30, 0.51, and 0.72, respectively. Also
shown in Fig. 2 is the (exponential) distribution of the noise
intensity found in the negative time (¢1=-224 ns). Apart
from the uppermost curve, each of the curves is displaced by
a multiple of 2 decades for clarity of presentation. In order to
find the probability density P, Eq. (12) is to be solved.
However, the form of P,S is already known [4,5,13,14],

o0 dZ
Py =IsKly) = f -, P@exp(=y/2), (16)
0
with
P(z) =f —v.eXp[vz— d(v)], (17)
joo 27T
where
D (v) = (2/31)In>(V1 + 3uk/2 + 3vk/2), (18)

and x=(var[y]-1)/2, that is, the probability density of the
normalized transmitted intensity is given in terms of a single
parameter: its variance. The values of var[Is(#)]/{Is())* cor-
responding to the three time delays are 2.48, 2.82, and 3.42,
respectively, as found from Fig. 1(b). The respective prob-
ability densities P,S(y) are deduced from Eq. (16) and shown
as the blue dashed curves in Fig. 2. Thus, we found P,S
without solving Eq. (12). To check the validity of the P; , we
use Eq. (12) to deduce P,(x) and compare it to the measure-
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ment. The calculated P,(x) are shown as the red dotted
curves in Fig. 2 and are in excellent agreement with the
measured densities.

IV. CONCLUSIONS

In conclusion, we have found the transformation of the
intensity statistics of random signals in the presence of addi-
tive Gaussian noise. The transformation of the intensity
probability density is given by the Bessel transform of Eq.
(12). This can be solved to retrieve the intensity statistics of
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signal from Gaussian noise, given the average noise inten-
sity. We used Eq. (12) to determine the intensity statistics of
pulsed microwave transmission through random media from
Gaussian noise at long delay times. More generally, the re-
sults of this work can be applied to mixtures of independent
random signals, one of which is a complex-valued Gaussian
random process.
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