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Absence of the discontinuous transition in the one-dimensional triplet creation model
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Although Hinrichsen in his unpublished work theoretically rebutted the possibility of the discontinuous
transition in one-dimensional nonequilibrium systems unless there are additional conservation laws, long-range
interactions, macroscopic currents, or special boundary conditions, we have recently observed the resurrection
of the claim that the triplet creation (TC) model introduced by Dickman and Tomé [Phys. Rev. A 44, 4833
(1991)] would show the discontinuous transition. By extensive simulations, however, we find that the one-
dimensional TC does belong to the directed percolation universality class even for larger diffusion constant
than the suggested tricritical point in the literature. Furthermore, we find that the phase boundary is well
described by the crossover from the mean field to the directed percolation, which supports the claim that the
one-dimensional TC does not exhibit a discontinuous transition.
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I. INTRODUCTION

Although the field theory for the tricritical phenomena in
reaction-diffusion systems was developed more than two de-
cades ago [1,2] (see also Ref. [3]), not many numerical stud-
ies have followed [4,5]. One apparent reason is the numerical
difficulty, but it can be soon overcome by the increasing
computing power. More seriously, it was strongly argued that
no discontinuous transition is possible in one dimension once
there are no additional conservation laws, long-range inter-
actions, macroscopic currents, or special boundary condi-
tions [6], which rebutted the observed discontinuous transi-
tion in one-dimensional triplet creation (TC) model by
Dickman and Tomé [7]. In view of the fact that a large por-
tion of the studies on the absorbing phase transitions (for a
review, see, e.g., Refs. [8-10]) is focused on the systems in
one dimension, this theory presumably has kept researchers
from being into the tricritical phenomena.

Recently, however, numerical studies in favor of the origi-
nal claim by Dickman and Tomé have been reported [ 11-13].
If this claim rather than the theory in Ref. [6] turns out to be
right, we would observe an avalanche of studies on the tric-
ritical phenomena. Unfortunately, however, no theoretical ar-
gument regarding the mechanism to stabilize a domain in
one dimension has been suggested as yet. Moreover, the tri-
critical point of the diffusion rate reported in Refs. [11,12] is
too large to reject the opinion that the system will eventually
crossover to the directed percolation (DP) universality class
after a long transient time. Recent study by Ferreira and Fon-
tanari [ 14], using n-site approximation, alluded to the cross-
over rather than the tricritical behavior, though they did not
strongly put forward such a scenario because of the compu-
tational limitation of their method. Actually, Hinrichsen [6]
numerically showed that the simulation time in Ref. [7] was
too short to see the correct scaling behavior. Interestingly,
Cardozo and Fontanari [12] also refuted the value of the
tricritical point originally suggested. Hence, if the argument
by Hinrichsen [6] is right, it is very probable that more ex-
tensive simulations than those in Ref. [12] would revive the
history.

Indeed, we found the DP scaling over the parameter range
where the tricritical point was located by Cardozo and Fon-
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tanari [12]. This paper is for providing numerical evidences
to support the theory suggested by Hinrichsen [6].

The rest of this paper is organized as follows. Section II
introduces the d-dimensional TC and explains the algorithm
implemented for numerical simulations. The numerical re-
sults showing the DP scaling behavior for larger diffusion
rate than the previously reported tricritical point will be pre-
sented in Sec. III. In Sec. IV, we will argue that there is a
crossover rather than a tricriticality in one dimension by
studying the behavior of the phase boundary. Section V sum-
marizes the work.

II. TRIPLET CREATION MODEL

The TC is an interacting hard-core particles system on a
d-dimensional hypercubic lattice with three processes, hop-
ping (with rate D), spontaneous annihilation (with rate 7),
and creation by a triplet (with rates s) [7]. By hard core is
meant that no two particles can occupy the same site at the
same time. By a suitable time rescaling, we can set D+vy
+s=1 without loss of generality. It is also convenient to in-
troduce the annihilation probability p such that y=(1-D)p
and s=(1-D)(1-p). The detailed dynamics is to be ex-
plained in terms of the algorithm used for simulations.

At time ¢, N, particles are distributed on a d-dimensional
hypercube of size L? (N, is a random variable). Each site is
represented by a lattice vector m=(m,,...,m;) (0=m;<L
—1). The unit vector along direction i is denoted by e;(i
=1,...,d). In all simulations in this paper, a fully occupied
initial condition and periodic boundary conditions are as-
sumed.

The algorithm begins with a random selection of a par-
ticle in the system. For convenience, let us refer to the lattice
vector of the site the selected particle resides as m. With
probability D, hopping is attempted to a target site, which is
chosen randomly among 2d nearest neighbors of the site m.
This hopping is successful only if the target site is empty
(hard-core exclusion), otherwise, there is no configuration
change. With probability 1-D, either annihilation (with
probability p) or creation (with probability 1—p) will be at-
tempted. When annihilation is decided, the selected particle
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FIG. 1. (Color online) Plots of p(£)t° vs ¢ with 6=0.1595 (criti-
cal exponent of the DP class) for D=0.95 (lower three curves) and
D=0.98 (upper three curves) in semilogarithmic scales. The values
of p for D=0.95 are 0.089 89, 0.089 895, and 0.0899 from top to
bottom. The values of p for D=0.98 are 0.094 224, 0.094 226, and
0.094 228 from top to bottom.

will be irreversibly removed from the system. If the creation
is to occur, one of the directions i(i=1,...,d) is selected
randomly. Two sites m+e; and m+2e; are checked whether
both sites are occupied or not. If both sites are also occupied,
one of the two sites m+3e; or m—e; is chosen at random as
a target site and a new particle is created at the target site
provided it is empty. If any of the conditions for creation is
not satisfied, nothing happens. After an attempt to change a
configuration, time increases by 1/N, regardless of its suc-
cess. The above procedure iterates until either the system
reaches the absorbing state, where no particle remains, or
time gets larger than the preassigned observation time.

When d=1, the above dynamics is exactly the same as
that in Ref. [12] with p=1/(1+X\). This is because the prob-
ability to find three occupied sites in a row does not depend
on whether two sites m+e; and m+2e; (in this work) or m
+e; and m—e; (in Ref. [12]) are examined.

Although we introduced d-dimensional TC, discussions
from Sec. III will be focused only on the one-dimensional
model. Thus, the dimensionality of the model will not be
mentioned explicitly in the following.

In the simulation, we measure the particle density p(z)
=(N,)/L, where (...) means the average over independent
realizations and the (survival) probability that there is a par-
ticle in the system at time 7. The measurement of the survival
probability is mainly for making sure that the system is large
enough not to be affected by the finite-size effect up to the
observation time.

III. CRITICAL DENSITY DECAY

This section studies the critical behavior of the TC with
D=0.95 and D=0.98. Since the question in this section is
whether the TC shows the discontinuous transition or the
continuous transition governed by the DP fixed point, ob-
serving the DP scaling behavior of a single quantity is
enough for our purpose. Anticipating the conclusion, we only
study how the density decays near criticality.

Figure 1 depicts p(1)¢° as a function of ¢ in semilogarith-
mic scales, where 6=0.1595 is the critical density decay ex-
ponent of the DP class taken from Ref. [15]. The system size

PHYSICAL REVIEW E 80, 061103 (2009)

in the simulations for D=0.95(0.98) is L=2'%(2!7). The num-
ber of independent runs for each data set varies from 16
(D=0.95 and p=0.08989) to 100 (D=0.98 and p
=0.094 226). The system evolves up to t=10° at the longest
and no sample falls into the absorbing state during simula-
tions. For D=0.95, the curve -corresponding to p
=0.089 89(0.0899) veers up (down), which indicates that the
system is in the active (absorbing) phase. At p=0.089 895,
the curve is flat for more than two log-decades. Hence, we
conclude that the TC with D=0.95 belongs to the DP class
with critical point p,=0.089 895(5), where the number in
parentheses indicates the error of the last digit. If we write
the critical point using y=(1-D)p, we get v,
=0.004 4948(3), which should be compared with
0.004 50(1) reported in Ref. [12]. One should note that the
DP scaling is observable from 7= 10°, which is the end point
of the simulation for D=0.95 in Ref. [12] (see Fig. 3(b) of
Ref. [12]). Likewise, the simulation results for D=0.98 show
the similar behavior as those for D=0.95 (see upper three
curves in Fig. 1). The critical point for D=0.98 is found to be
p.=0.094 226(2) or y.=0.001 888 452(4). In Ref. [12], the
critical value vy, for D=0.98 was reported as 0.001 886(2)
and the simulation was terminated around ¢=10" from when
the DP scaling is observable.

To conclude this section, the TC up to D=0.98 belongs to
the DP class and previous claim of the existence of the tric-
ritical point below D=0.98 is refuted. Our results also ex-
plain why Cardozo and Fontanari [12] observed continuously
varying exponents as well as the compact growth; the system
was analyzed before the correct scaling behavior was de-
tected.

IV. CROSSOVER FROM THE MEAN FIELD TO THE
DIRECTED PERCOLATION

In Sec. III, we numerically confirmed that up to D=0.98
the TC does show continuous transition governed by the DP
fixed point. Although this refuted the previous claim [11,12]
that the transition nature changes at a certain D smaller than
0.98, the possibility of the discontinuous transition at 0.98
<D< is still open. To provide an evidence that the DP
fixed point governs the critical behavior beyond D=0.98,
this section studies the phase boundary near D=1 with the
focus on a possible crossover.

The investigation of the phase boundary to settle a con-
troversy is not without precedent. The present author and his
collaborator tried to resolve the controversy around the pair
contact process with diffusion (for a review, see, e.g., Refs.
[16,17]) by studying the phase boundary of the crossover
models [18]. Although this study could not elicit a full con-
sensus, it certainly gives a hint about the system. So we think
it is worthwhile to investigate the phase boundary of the TC.
But, in Sec. III, we have presented the simulation results
only for D=0.95 and D=0.98, which is certainly not enough
to see the structure of the phase boundary. For a better bird’s-
eye view, we will include some other critical points for D
<0.95 even though we will not be presenting details.

Before directly analyzing the phase boundary, we will dis-
cuss some features of it which can be inferred without resort-
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ing to the nature of the transition. First, the transition point
p.(D) is argued to be an increasing function of D. Second,
p.(D) is expected to approach to the transition point of the
mean-field (MF) theory as D— 1. By the MF theory in this
paper is exclusively meant the one-site approximation (for a
detail, one may consult Sec. 3 of Ref. [14])

Z_p=—Pp+(1—p)p3(1—p), (1)
T

which exhibits a discontinuous transition with the transition
point py= 34—1.

To argue that p.(D) increases with D, it is convenient to
modify the TC by rescaling time 7=(1-D)z. Note that for
D <1, however, close D is to 1, the steady-state property of
the modified model is identical to the original one. In this
modified model, a single particle dies out with rate p and a
triplet attempts to branch an offspring with rate 1—p. Obvi-
ously, these rates are not dependent on D. The diffusion rate

is now D=D/(1 —D), which is an increasing function of D.
Since the annihilation occurs regardless of the environment
of a to-be-annihilated particle, the diffusion cannot directly
affect the particle number fluctuation due to the annihilation.
On the other hand, the branching is influenced by the diffu-
sion since a triplet can be either broken or newly formed by
the movement of particles. Hence, whether the diffusion en-
hances or reduces the activity of the system for given p can
be answered by understanding if the diffusion will increase
or decrease the number of active triplets, namely, triplets
with a vacant neighbor.

Due to the hard-core exclusion, a cluster of particles will
lose one by the diffusion only at boundaries. However, even
if a cluster loses a single particle at a boundary, the number
of active triplets does not decrease if the size of the cluster is
larger than 3 (it can even increase the number of active trip-
lets if the configuration change due to the diffusion is like
01101111 —01110111, where 1 stands for a particle and 0
for a vacancy). Thus, the reduction in the number of active
triplets by the diffusion occurs in very restricted situations.
On the other hand, the diffusion can mediate the formation of
(active) triplets in the bulk of region where none exists. To
sum up, the diffusion tends to enhance the activity, which
entails that the transition point should increase with D.

Next, we will discuss the limiting value of p.(D) as D
— 1, which will be denoted by p. To find p, we start from
arguing that the TC under the D — 1 limit is deeply related to
the MF theory. This connection makes sense only when time
is suitably rescaled as before. With this time scale, the diffu-

sion rate D grows indefinitely as D — 1, but the annihilation
and creation rates remain finite. From now on, we will call
the limit D— 1 the fast-diffusion limit and the modified TC
with rescaled time is always assumed when we are discuss-
ing the fast-diffusion limit.

A finite system under the fast-diffusion limit can be inter-
preted as follows. Right after any reaction (either annihila-
tion or creation), the system arrives at the steady state of the
diffusion process in no time and remains there until another
reaction occurs. In the steady state of the diffusion-only sys-
tem, all possible configurations for a given number of par-
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FIG. 2. (Color online) Comparison of the numerical solutions of
Eq. (2) with the simulation results of the TC with 1-D=10"*. As
explained in the text, the time is rescaled as 7=(1-D)t. The sys-
tems sizes are L=2% (two below curves, though indiscernible) and
28 (two above curves). p is fixed at é. For L=2°, no difference is
detectable between simulation and the MF solution. On the other
hand, the system with L=283 is distinct from the MF solution after
7=50 (MF solution is slightly above the simulation results).

ticles have equal probability. Hence, the probability that a
site is vacant and its three consecutive neighbors are occu-
pied at time 7 is (L—n)(n);/(L)4, where L is the system size
and n is the number of particles in the system at time 7, and
(m)y=m(m-1)...(m—k+1). Of course, the probability that
a site is occupied at time 7 is n/L. Since these probabilities
do not depend on where the site is located, the probability
distribution is fully specified by the number of particles and
the master equation of the TC under the fast-diffusion limit is
reduced to

aTPn = an+1Pn+1 + Cn—IPn—l - (an + Cn)Pn’ (2)

where a,=pn, c,=(1-p)(L-n)(n);/(L-1);, and P,,
though the argument of it is not written explicitly, is the
probability that there are n particles at time 7. For conve-
nience, we set P; . ,=P_;=0.

The meaning of a, and ¢, in Eq. (2) can be interpreted as
follows: a, means each particle (there are n particles) dies
with rate p and ¢, means that each vacant site (there are
L—n vacant sites) becomes occupied with rate (1-p)(n)s/
(L—-1)3, which is the dynamic rule of the TC on a fully
connected graph. Hence, the master equation of the TC on a
fully connected graph is exactly Eq. (2). If we take the ther-
modynamic limit (L — ) to Eq. (2), the law of large num-
bers makes the density follow Eq. (1), that is, the MF theory.
Now it is clear why we used 7in Eq. (1) as a time parameter.
For convenience and because of an obvious reason, we will
refer to the TC on a fully connected graph with finite size as
the MF model.

Although the fast-diffusion limit was taken to arrive at the
MF model in the above discussion, one can observe the be-
havior of the MF model even for nonzero 1-D once
(1-D)L?><1 [7]. In Fig. 2, we compare the simulations of
the TC for 1-D=10"* to the (numerical) solutions of the MF
model at p= % The system sizes are L=2%and L=28. For the
solutions of the MF model, we numerically integrate Eq. (2)
with the initial condition P,(7=0)=3,; (6 here is the Kro-
necker delta symbol). The simulation results are not
discernible from the behavior of the MF model for L
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FIG. 3. (Color online) Comparison of the numerical solutions of
Eq. (1) with the simulation results of the TC with 1-D=10"3 and
1-D=10"%at p=0.094 226. As in Fig. 2, 7 is the rescaled time. The
system’s size for simulations is L=2!7. As 1-D decreases, the den-
sity approaches to the MF solution.

=26[8(1—D)L2~0.4], but clear deviation is observed when
L=2°

In the above discussion, the thermodynamic limit, when
necessary, is preceded by the fast-diffusion limit. However,
what we are interested in is the behavior of the TC with
infinite size under the fast-diffusion limit. That is, the ther-
modynamic limit should be taken before the fast-diffusion
limit. When two limits are involved in the calculation, one
should be careful about which limit is taken first. Fortu-
nately, the order of two limits are irrelevant in most cases.
What is meant by most cases will become clear in due
course.

Our discussion commences with the limiting behavior of
the TC in the active phase (p <p). Let the critical diffusion
probability for given p be denoted by D.(p). Since p.(D) is a
monotonous function, D.(p), if exists, is uniquely deter-
mined. If 1>D>D,, where D, is an arbitrary number
strictly larger than D.(p), the system is in the active phase
and the correlation length is bounded for all D in this regime.
If the system size is much larger than the bound of the cor-
relation lengths in this regime, the behavior in the thermody-
namic limit is observable for any Dy<<D <1 even though the
system is finite. Since we can always choose D such that
(1-D)L><1 for given L, the TC under the fast-diffusion
limit preceded by the thermodynamic limit is identical to the
MF theory at the same value of p.

To support this argument, Fig. 3 compares the MF theory
with simulations of the TC for D=0.999 and D=0.9999 at
p=0.094 226, which is the critical point for D=0.98. Obvi-
ously, the density of the TC obtained from simulations ap-
proaches to the MF theory as D— 1.

The above consideration reveals that p should not be
larger than p, otherwise, the steady-state density for po<<p
<p would decrease with D, which is contradictory to the
role of the diffusion as a enhancer of the branching.

If p>p, where the TC as well as the MF model is in the
absorbing phase, we can arrive at the same conclusion as
above; that is, the behavior of the TC under the fast-diffusion
limit is not affected by whether before or after the thermo-
dynamic limit is taken.

To complete our discussion, we first have to figure out if p
can be strictly smaller than p,. Actually, this possibility was
suggested by Fiore and de Oliveira [11] by extrapolating the
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FIG. 4. (Color online) Schematic representation of three sce-
narios regarding the limiting value of p. as D— 1. p, indicated by
the open circle is the mean-field transition point and scales in this
figure are arbitrary. The broken lines depict the anticipated phase
boundaries of each scenarios with known transition points depicted
by the solid curve. The limiting value p of each scenario is the point
where the broken line meets the vertical line with p, on it. The first
scenario (S1) is not acceptable because the steady-state density
should increase as D increases (see the text). The second scenario
(S2) which was proposed in Ref. [11] is possible only when there is
a line of critical points (see the text), which does not seem plau-
sible. Hence, the last scenario (S3) is concluded to be the right one.

phase boundary which was obtained numerically. Note that
the discontinuity of a phase boundary per se is not an unre-
alistic conclusion. One can even find another report which,
though in a different context, shows the discontinuity of the
phase boundary [19].

However, this scenario does not seem plausible. To dem-
onstrate why it is not likely, let us think about the situation,
where p<p<p,, (1-D)L*><1, and L is much larger than
the correlation length for given p and D. As shown before,
the system with (1-D)L?><1 is well described by the MF
model. Since L is assumed very large and this value of p
corresponds to the active phase of the MF theory, the MF
model, and accordingly the TC itself with above-mentioned
parameters, stays at the steady state of the MF theory with
nonzero density for long time on the order of O[exp(L)]
(note that time in this context is the rescaled time 7). On the
other hand, the system size is assumed much larger than the
correlation length and the system is in the absorbing phase
by assumption, so the density should decay exponentially
after time of the order of O(L’), which is contradictory to the
previous consideration. Of course, if the correlation length in
this regime diverges faster than (1-D)~"? as D— 1, the as-
sumption (1-D)L?><1 with L larger than the correlation
length is not valid. However, this scenario of the diverging
correlation length in this regime also does not seem plausible
because it suggests that the correlation length should diverge
for p<p<p, and should become finite as soon as p>p,.
Hence, we conclude that p is equal to p,. The above discus-
sion is summarized in Fig. 4.

Up to now, we have not resorted to any assumptions about
the transition nature. If we assume that the transition is al-
ways continuous, what can we say about the limiting behav-
ior of the TC at p=p=p,. In this case, the correlation length
diverges as (1-D)7", where v, =1.09 is the critical expo-
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FIG. 5. (Color online) Plot of p, as a function of D for the TC.
The MF transition point p is indicated by an arrow. Inset: plots of
In(po—p.) vs In(1-D) and its fitting function (see text). Symbols
are from the simulations and the straight line is from the fitting.

nent of the DP class. Accordingly, it is not possible to think
about the system size, which is much larger than the corre-
lation length but (1-D)L?><1 when D is very close to 1.
That is, the fast-diffusion and thermodynamic limit do not
commute at p=p,. However, even if we assume that there is
a discontinuous transition for finite D, the noncommutability
of two limits at p=p, is still applicable because the steady-
state density for p=p, is zero for any value of D <1, though
the MF theory has a finite density at p=p,. In a sense, this
noncommutability is originated from the fact that the MF
theory exhibits the discontinuous transition which is charac-
terized by the discontinuity of the density at stationarity. At
any rate, the thermodynamic limit commutes with the fast-
diffusion limit in most cases except at p=p,.

Although the above consideration reveals that the phase
boundary should approach to the MF transition point, it does
not give any information about the transition nature. To get a
nontrivial conclusion, the numerically obtained phase bound-
ary will be examined.

Figure 5 depicts the phase boundary in D—p plane. As
argued before, the transition point increases with D. In the
range 0=D=0.8, where no controversy has ever been
raised, the critical points do not change much, compared to
the change from D=0.8 to D=0.98. It is likely that the phase
boundary approaches to the MF transition point with infinite
slope. If we fit the phase boundary using the fitting function

In(py - po) = ému D)+, 3)

with two fitting parameters ¢ and b, we get p.=p,
—-0.057(1-D)*'?"(¢p=8) from last three points [without p,
and with p,.=0.086 30(1) for D=0.9; see the inset of Fig. 5].
Although the accuracy of the fitting should not be exagger-
ated, the clean power-law behavior shown in the inset of Fig.
5 strongly suggests that the phase boundary approaches to
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the MF transition point with infinite slope. Note that this
infinite slope is the characteristic of the crossover behavior
[20]. Also note that a “crossover” within a single universality
class, which is actually not a crossover at all, does not show
such a singular behavior [19]. Although we are considering
the discontinuous transition, it is a natural generalization of
the claim in Ref. [19] that no singularity can appear in the
phase boundary along which only discontinuous transitions
occur. Thus, the singular behavior of the phase boundary
near D=1 supports that no discontinuous transition exists for
D<1.

V. SUMMARY AND DISCUSSION

In summary, we investigated the TC model in one dimen-
sion. By extensive numerical simulations, we refuted the pre-
vious estimation of the tricritical point [11,12]. We only ob-
served the directed percolation scaling up to D=0.98, which
is larger than the tricritical point suggested in Refs. [11,12].
To go further beyond D>0.98, we analyzed the phase
boundary near D=1. At first, we argued that the phase
boundary should approach to the mean-field transition point
as D— 1. Using this information, the phase boundary was
analyzed using the power-law fitting function (3) to find ¢
=§, which, according to the general theory of the crossover
[20], strongly suggests the absence of discontinuous transi-
tions in one dimension.

As a final remark, we would like to comment on the con-
served ensemble of the TC. In Ref. [11], Fiore and de Ol-
iveira studied the conserved ensemble of the TC. They con-
vincingly argued that the conserved version is equivalent to
the TC studied in this paper, based on the proof in Refs.
[21,22]. This argument also embraces the limiting case
(D—1) (see Sec. IIT in Ref. [11]). Actually, the equivalence
becomes trivially true for the MF model under the thermo-
dynamic limit because the equivalence criterion, which is
Eq. (30) of Ref. [22], becomes identical to the steady-state
condition of Eq. (1). Thus, the direct comparison of the re-
sults in this paper with those in Ref. [11] is fully legitimate
although we studied the different ensemble. In this respect,
this work clearly suggests a caveat. Unlike the belief regard-
ing the merit of the conserved ensemble (for example, see
Sec. V in Ref. [11]), one should study the conserved version
with caution even if the discontinuous transition is the main
interest.
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