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Phase diagram of the Weeks-Chandler-Andersen potential from very low
to high temperatures and pressures
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A combination of two molecular simulation algorithms has been used to determine the solid-liquid coexist-
ence of the Weeks-Chandler-Andersen (WCA) fluid from low temperatures up to very high temperatures.
Values are reported for the coexistence pressure, temperature, energy, enthalpy change, and densities of both
the liquid and solid phases. At very high temperatures, the coexistence pressure approaches the same 12th-
power soft-sphere asymptote as the 12—6 Lennard-Jones potential. However, in contrast to the Lennard-Jones
potential, which shows a discontinuity of pressure at low temperatures, the coexistence pressure of the WCA
potential approaches the zero-temperature limit. Empirical relationships are determined to accurately reproduce
the coexistence pressure and both solid and liquid phase densities from near zero temperature to very high
temperatures. The simulation data are used to improve the accuracy of a WCA equation of state. The validity

of common melting and freezing rules is tested.
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I. INTRODUCTION

The Weeks-Chandler-Andersen [1] (WCA) potential is
commonly used as part of a broader model for molecular
fluids such as polymers [2,3] and dendrimers [4,5]. It can be
applied to both bonded and nonbonded interactions and it
forms the basis of many liquid state theories [6—-8]. The util-
ity of the potential is that it provides a simpler alternative to
the Lennard-Jones (LJ) potential that is more realistic than a
crude hard-sphere potential. It possesses many of the physi-
cal attributes of the Lennard-Jones system. However, a key
difference is that the WCA potential is limited to solid-liquid
equilibria. The absence of vapor-liquid equilibria means that
there are no critical or triple points.

Despite its important role in liquid state theories and mo-
lecular simulation, relatively few data are available for solid-
liquid equilibria for the WCA potential [9,10]. In contrast,
there are extensive simulation data [11-15] for the solid-
liquid coexistence of Lennard-Jones fluids. The two previous
investigations [9,10] of WCA solid-liquid coexistence have
been performed for either a single state point or for a limited
temperature range. de Kuijper ef al. [10] obtained the WCA
melting line from Monte Carlo (MC) simulations, whereas
Hess er al. [9] approximately located the solid-liquid phase
coexistence for one temperature using canonical (NVT) and
isothermal-isobaric (NpT) molecular dynamics (MD) algo-
rithms. The freezing point densities and pressures obtained
for the two MD simulation methods showed discrepancies of
5% and 18.5%, respectively, whereas the different simula-
tions were in good agreement for the melting point proper-
ties. Although the freezing point densities and pressures from
both MC and NVT MD simulations are in agreement, there is
a discrepancy of 5.2% and 15.5% for the melting point den-
sity and pressure, respectively. These discrepancies are
somewhat surprising because, unlike the Lennard-Jones po-
tential, solid-liquid coexistence for the WCA potential is not
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affected by cutoff errors that can contribute as much as 10%
to the properties [13].

The aim of this work is to provide a comprehensive de-
scription of the solid-liquid equilibria of the WCA fluid. We
report data for the phase diagram using the algorithm of Ge
et al. [14] and the Gibbs-Duhem integration (GDI) [15] tech-
nique. The conjecture [16,17] of abnormal behavior at low
temperatures is investigated by examining the melting be-
havior at very low temperatures. We also trace the melting
line of the WCA potential to very high temperatures to test
the hypothesis that it approaches a 12th-power soft-sphere
asymptote. An improved WCA equation of state and three
empirical expressions for the solid-liquid coexistence pres-
sure, freezing density, and melting density are reported.

II. THEORY
A. Weeks-Chandler-Andersen potential

That WCA potential [1] is the LJ potential truncated at the
minimum potential energy at a distance rij:2”60' on the
length scale and shifted upward by the amount & on the
energy scale such that both the energy and force are zero at
or beyond the cutoff distance:

48|:(£)12— (£>6] +e, r=2"%g
“(rij)= Tij rij (1)

0, r>2V0q

where € and o are the characteristic energy and distance
parameters, respectively. Equation (1) is a purely repulsive
potential.

The intermolecular parameters are used to define the re-
duced density (p*=po”), reduced temperature (T*=kT/¢),
reduced energy (E*=E/¢), reduced pressure (p*=po’/e),
and reduced time (7*=[e/mo?]"*7). All quantities quoted in
this work are in terms of these reduced quantities and the
asterisk superscript and the prefix “reduced” will be omitted
in the rest of the paper.
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B. Simulation details

Since our simulations covered a wide range of tempera-
tures and densities we had to carefully choose the integration
time step for different state points such that the time step was
small enough to solve the equations of motion correctly and
large enough to sample phase space adequately [18]. To do
this we carried out short simulations to approximately locate
solid-liquid phase coexistence for selected temperatures us-
ing the same integration time step of 0.001. Thereafter, to
determine the appropriate time step for any given tempera-
ture, we performed NVE simulations at ten random densities
around the approximate phase coexistence density to observe
the conservation of total energy. An order of 107 fluctua-
tions in total energy ensures the correct choice of time step
[18].

All simulation trajectories were typically run for 2 X 10°
time steps. The first 5X 10* time steps of each trajectory
were used either to equilibrate zero-shearing field equilib-
rium molecular dynamics (EMD) or to achieve nonequilib-
rium steady state after the shearing field is switched on. The
rest of the time steps in each trajectory were used to accu-
mulate the average values of thermodynamic variables and
standard deviations.

To obtain the most accurate results for any given tempera-
ture, different simulation algorithms were used for different
ranges of temperature. It is convenient to identify three dif-
ferent ranges of temperature. The low temperature region is
from T— 0 to the Lennard-Jones triple point temperature of
T=0.68. Intermediate temperatures are 0.68<T7<<2.74,
whereas T>2.74 are high temperatures.

1. Simulations at low and intermediate temperatures

At low and intermediate temperatures, the solid-liquid
phase coexistence properties were obtained using the algo-
rithm reported by Ge er al. [14] that combines the techniques
of both EMD and nonequilibrium molecular dynamics
(NEMD) simulations. As discussed elsewhere [14,19]
NEMD was used to determine the pressure at different strain
rates for a common temperature and density. The algorithm
is based on an empirical observation of the strain-rate behav-
ior of pressure. At densities equal to or greater than the freez-
ing point, there is an abrupt change in pressure between the
zero strain-rate case and the first nonzero strain rate, which
allows us to accurately identify the freezing density and pres-
sure. Having identified the freezing point, EMD calculations
are performed to obtain the isothermal pressure-density be-
havior of the solid curve. The density of the melting point is
the point at which the constant pressure tie line touches the
solid curve. The algorithm has been extensively investigated
[20] for Lennard-Jones fluids.

The initial configuration in all the simulations was a face-
centered-cubic (fcc) lattice structure. The isothermal isoch-
oric NEMD simulations were performed by applying the
standard sllod equations [21] of motion for planer Couette
flow coupled with Lees-Edwards [14,21] periodic boundary
conditions. If the applied strain rate is switched off in the
sllod algorithm it behaves like Newton’s equations of motion
and NEMD converts to EMD. The NVT EMD simulations
were performed using conventional cubic periodic boundary
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conditions. In these molecular dynamics simulations a
Gaussian thermostat multiplier [22] was used to keep the
kinetic temperature of the fluid constant. The equations of
motion were integrated with a five-value Gear predictor-
corrector scheme [23].

We performed a wide rage of simulations for locating the
solid-liquid phase transitions with a 0.01 increment in densi-
ties. For each state point we have carried out three simula-
tions, one for zero strain-rate equilibrium molecular dynam-
ics and normally two for strain rates of 0.1 and 0.2. In
principle, only the difference between the 0 and 0.1 strain-
rate isothermal-isochoric simulation is sufficient to detect the
phase transitions. To clarify the issue of solidlike and liquid-
like metastable states we performed additional simulations
for the 0.2 strain rate.

For temperatures 0.0001 <7=0.01 we used a density in-
terval 0.01 and strain rates of 0.01 and 0.02. At these very
low temperatures, the higher strain rates of 0.1 and 0.2 did
not exhibit the necessary pressure jump for locating the
solid-liquid phase transition. We conducted test runs on
WCA liquid at low temperatures with different strain rates to
check for strain rate independent Couette flow behavior. Al-
ternatively, the choice of strain rates could be obtained from
a stability analysis at a given temperature and density [24].
The melting point density is accurate to within the limit of
the density change, whereas the accuracy of the freezing
point density is 0.01.

2. Simulations at high temperatures

The solid-liquid coexistence properties at high tempera-
tures were obtained using the GDI algorithm. The GDI algo-
rithm is not self-starting. The starting point required by the
GDI method was obtained from the results at intermediate
temperatures described above. The Clapeyron equation used
in the evaluation of the GDI series is related to the stability
of the integration at a given temperature [15]. For the
Lennard-Jones potential, it has been reported [15] that two
different versions of the Clapeyron equation must be used
below and above 7=2.74 to maintain the stability of the
integration. The starting point of 7=2.74 was used for the
high temperature GDI simulations without any further rigor-
ous testing of the GDI series for the WCA potential.

At the beginning of the simulation 932 atoms were dis-
tributed between boxes to represent solid and liquid phases.
The box in the liquid phase contained 432 atoms while the
box in the solid phase contained 500 atoms in the face-
centered-cubic lattice structure. The simulations were per-
formed in cycles. A simulation period of 20 000 was used to
accumulate the simulation averages followed by an equili-
bration period of 20 000 cycles. In all the GDI series of
simulations, the temperature change per step in the decreas-
ing direction was AB=0.03, where B is the reciprocal of the
temperature.

3. Finite-size effects

The system size dependency of the solid-liquid phase co-
existence pressure, temperature, and densities for the WCA
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TABLE I. Coexistence pressures and melting and freezing den-
sities of a WCA fluid at 7"=1.00 for different numbers of particles.

N P’ P;Fiq Psor
108 11.195 0.93 0.99
256 12.014 0.94 1.01
864 13.127 0.96 1.03
2048 12.577 0.95 1.016
4000 12.576 0.95 1.016
13500 13.097 0.96 1.03
32000 13.058 0.96 1.03
62500 13.061 0.96 1.03

system are not known. For the Lennard-Jones potential ther-
modynamic variables can vary from 3% to 6% depending on
the system size [13,25] and we can also expect similar size
effects for the WCA system. To test for the effect of system
size on our results, we performed simulations at temperatures
of T=1.00 for N=108, 256, 864, 2048, 4000, 13 500, and
62 500 and the results are summarized in Table I. The maxi-
mum variation of the coexistence pressure is 14.3%, whereas
a maximum variation of 3.1% is observed for the coexistence
densities. The effect of system size does not appear to scale
with 1/N. Using N=4000 represents a reasonable compro-
mise between maintaining accuracy and minimizing compu-
tational effort.

III. RESULTS AND DISCUSSION

A. Solid-liquid coexistence

The WCA simulation data for low to intermediate tem-
peratures and high temperatures are summarized in Tables II
and III, respectively. Solid-liquid coexistence data for the
WCA potential have only been reported previously [10] at
T=0.5,0.75, 1.0, 1.25, 1.5, 2.0, and 5.0. A comparison of our
data with literature data for the pressure and coexisting liquid
and solid densities is given in Fig. 1. The relative difference
between our calculations and literature data is quantified in
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TABLE II. Solid-liquid phase coexistence properties of the
WCA potential at low to intermediate temperatures. Values in pa-
rentheses represent the uncertainty in the last digit.

T P’ P;}q E?iq P:ol Ejal Ah*

0.001 0.0063(3) 0.65 6.5E-5(4) 0.7 5.9E-5(4) 0.00076
0.003 0.0217(7) 0.66 3.4E-4(1) 0.72 3.1E-4(1) 0.00278
0.006 0.045(1) 0.67 9.8E-4(4) 0.735 8.8E-4(4) 0.00607
0.009 0.069(1) 0.68 18.1E-4(7) 0.744 16.2E-4(6) 0.00904
0.01 0.077(1) 0.68 21.1E-4(8) 0.74 18.5E-4(7) 0.00954
0.05 0.439(6) 0.73 22.7E-3(5) 0.8 0.0201(5) 0.05534
0.1 0.94(1) 0.76  0.062(1) 0.833 0.054(1) 0.11700
0.2 2.03(2) 0.80 0.166(2) 0.87 0.141(2) 0.22884
0.3 3.14(3) 0.83 0.285(4) 0.90 0.248(4) 0.33166
0.4 4.37(4) 0.85 0.427(6) 0.92 0.364(6) 0.45545
0.5 5.60(5) 0.87 0.574(7) 0.94 0.492(7) 0.56269
0.6 6.95(5) 0.89 0.737(9) 0.96 0.633(9) 0.67325
0.7 8.42(6) 091 0.91(1) 0.98 0.78(1)  0.78951
0.8 9.60(7) 092 1.07(1) 0.99 0.92(1) 0.88071
0.9 11.28(8) 094 1.27(1) 1.00 1.07(1)  0.92090
1.0 12.57(9) 095 1.44(1) 1.016 1.24(1) 1.05865
1.15  15.5(1) 098 1.80(1) 1.05 1.57(1)  1.28860
2.00 30.4(1) 1.07 3.72(3) 1.14 3.31(3) 2.15879
274 45.1(2) .13 5.60(4) 1.20 5.04(5) 2.89380

Fig. 2. For T=0.50 the reported pressure, freezing density,
and melting density are approximately 13.1%, 3.3%, and
3.0% higher, respectively, than our results. For 7=1.25 our
pressure is 1.9% higher than reported elsewhere. The differ-
ences in pressure at 7=1.5 and 7=2.0 are approximately 3%
and 5.9%, respectively.

As discussed above and illustrated in Table IV, there are
considerable discrepancies in the literature between the val-
ues previously reported by other workers for 7=1.0. At this
temperature, our liquid density is in good agreement with the
values reported for either NVT MD [9] or MC [10] simula-
tions, which in turn is higher than NpT MD [9] calculations.
Our solid density also agrees reasonably well with NVT MC
data, which is higher than either NVT or NpT MD simula-

TABLE III. Solid-liquid phase coexistence properties of the WCA potential at high temperatures. Values

in parentheses represent the uncertainty in the last digit.

T P Pliq Ej, Psor E, An*

3.63636 66.327 1.165(1) 721(2) 1.218(1) 631(1) 3.033
4.08163 77.605 1.198(1) 8.72(2) 1.252(1) 7.73(2) 3.376
465116 92.632 1.237(1) 10.65(2) 1.294(1) 9.53(3) 3.795
5.40540 113.476 1.286(1) 13.29(3) 1.342(1) 12.04(4) 4364
6.45161 143.809 1.342(1) 17.08(3) 1.401(1) 15.62(3) 4.969
8.00000 191.135 1.415(2) 22.78(4) 1.475(1) 21.04(4) 5973
10.52631 274.739 1.514(2) 32.46(7) 1.576(1) 30.29(5) 7.159
1538461 450.978 1.662(2) 51.6(1) 1.729(1) 48.55(7) 9311
2857142 1021.973 1.924(5) 109.2(2) 2.000(3) 103.3(2) 23.769
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FIG. 1. Comparison of the solid-liquid coexistence (a) pressure,
(b) liquid densities, and (c) solid densities for the WCA potential
calculated in this work (@) with data from literature (*, [10]). The
errors are approximately equal to the symbol size.

tions. The liquid phase pressure is in agreement with either
the NVT MC or MD calculations, which is higher than the
NpT MD simulations. In view of this, our MD results clearly
resolve the discrepancy in the literature in favor of the NVT
MC [10] data.

The solid-liquid phase diagram is illustrated in Fig. 3. It is
apparent from Fig. 3(b) that the difference between liquid
and solid densities is relatively small at low temperatures but
progressively increases with increasing temperature.

The effect of intermolecular interactions on the two
phases can be quantified in terms of either the relative den-
sity difference (r.d.d.) and the fractional density change
(f.d.c.) at freezing (also known as the miscibility gap). The
r.d.d. is defined as [9] dn=2(po1=piig) | (Psor+ Piig)» Where pyy
and py, are the solid and liquid densities of the system at
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FIG. 2. Comparison of the relative percentage difference in
pressure (M), liquid density (@), and solid density (A) at different
temperatures obtained in this work and data available from the lit-
erature [10].

solid-liquid coexistence. The miscibility gap or f.d.c. is de-
fined as [15,26] (py1— piig)/ Piig- The lower bound of the rela-
tive density difference is 0.037, which corresponds approxi-
mately to 12-inverse-power soft spheres [27] and the upper
bound value is 0.098, which is the value for hard spheres
[17].

The temperature dependency of the r.d.d. and f.d.c. is il-
lustrated in Fig. 4. It is evident that both metrics decrease
with increasing temperature. A comparison is also made in
Fig. 4 with the LJ potential. It is apparent that the values
obtained for the WCA are lower than the LJ values in all
cases. The average relative density difference of the LJ sys-
tem from Agrawal and Kofke’s data is 0.093 compared with
0.060 obtained from our data, which lies between the hard-
sphere and r~'? soft-sphere values. For T=1 Hess et al. [9]
and de Kuijper et al. [10] reported Sn=0.063 and on
~(.0718, respectively. This compares to on~=0.067 obtained
from our data.

B. Low and high temperature limits

It is expected that at high temperatures the average kinetic
energy will be such that it would be impossible to distinguish
between LJ and WCA interactions. de Kuijper er al. [10]
predicted that this would occur at 7> 10. We have calculated
solid-liquid coexistence for temperatures up to 7=28.57 and
these data are compared with results for the Lennard-Jones
potential in Fig. 5(a). It is apparent from this comparison that
the WCA and LJ results begin to converge at high tempera-
tures. Both the WCA and LJ calculations show convergence

TABLE IV. Comparison of WCA solid-liquid coexistence data
at 7°=1.0 with literature data using various simulation techniques
as discussed in the text.

*

Method N p;kiq p7iq pjol Psol

NVT MC 500 12.60 0.952 12.60 1.023
NVT MD 2048 12.62 0.960 10.65 0.970
NpT MD 8788 10.65 0.912 10.67 0.971
This work 4000 12.57 0.950 12.57 1.016
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FIG. 3. Solid-liquid coexistence (a) pressure (@) and (b) freez-
ing (upper points) and melting (lower points) densities (@) as a
function of temperature.

to a common asymptote [15] at 1/7—0 which corresponds
to the 12th-power soft-sphere limit.

In contrast to the high temperature behavior, Fig. 5(b)
indicates that the WCA and LJ fluids behave very differently
as T—0. A clear divergence in the pressure-temperature be-
havior of the two potentials is evident for 7<<1.0. There is an
apparent discontinuity [15] in pressure for the LJ potential,
which stops short of approaching 7=0. In contrast, the WCA
calculation approaches T=0. At T=0, we estimate that the
pressure is pj ' <0.0068.

C. Temperature dependence of coexistence pressure and
densities

Using the special scaling properties of the inverse
nth-power potential, Agrawal and Kofke [15] obtained the
following relationship for the solid-liquid coexistence pres-
sure of a 12—-6 Lennard-Jones fluid:
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FIG. 4. Comparison of (a) r.d.d. and (b) f.d.c. WCA data as a
function of temperature obtained in this work (@) with Lennard-
Jones (O) data from the literature [15].

P12—6:,3_5/4 exp(— DBI/Z)(16-89+ k1,8+k2ﬂ2), (2)

where B=1/kT, 16.89 is the limiting soft-sphere value of
pB*, D=0.4759 was determined from soft-sphere simula-
tion data, and k; and k, are fitting parameters. The fact that
the WCA fluid has the same (Fig. 6) soft-sphere high tem-
perature limiting behavior as the LJ potential means that it
should be possible to fit Eq. (2) to our data. However, unlike
the LJ potential the WCA pressure is continuous until 7=0
and there is no triple point, which means a fit can be made
for the entire temperature range. For the WCA fluid, we
found that the introduction of an additional parameter (k)
was required to account for these differences:

pwea=B""* exp(- DBY*)(16.8% + k| B+ k,8%).  (3)

When kg=2.34, k;=-59, and k,=12, Eq. (3) accurately re-
produces the pressure-temperature behavior as evident from
a squared correlation coefficient (R?) value of 0.99.

Van der Hoef [28] fitted the freezing and melting densities
for a 12-6 Lennard-Jones via two polynomial relationships
involving . We fitted our WCA data via the following
relationships:

piig= B exp(= 0.5187°)(0.027 + 1.478+0.128% + 1.4 X 107*8> + 1.94 X 107°B") @
Pootia = B> exp(= 0.518%%)(0.027 + 1.558+0.148% + 1.1 X 107483 +2.1 X 107°8%) |
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FIG. 5. Comparison of (a) the overall pressure-temperature and
the (b) pressure-low temperature behavior of the WCA fluid calcu-
lated in this work (@) with literature data [15] for the Lennard-
Jones potential (---). The Lennard-Jones data were supplemented by
calculations using Eq. (1) from Ref. [28].

In Eq. (4) we have introduced an exponential term to Van der
Hoef’s original formulas to accommodate the low tempera-
ture behavior of the WCA fluid. We found that the WCA

21/6

7= (1+T)6
0.3837T + 1.068
T 042937+ 1
o=0.111 175 247" - 0.076 383 85973
+1.080 142 48 + 0.000 693 1297°3
-0.063 920 968 log T

Figure 7 compares the compressibility factor predicted by
these WCA equations of state with our data for the freezing
line at different temperatures. It is apparent from this com-
parison that the Kolafa and Nezbeda [31] and Verlet and
Weis [30] equations fail to even qualitatively reproduce the
variation of the compressibility factor with respect to tem-
perature. The Heyes and Okumura equation [29] yields
qualitative agreement for the compressibility factors at all
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FIG. 6. Comparison of the solid-liquid coexistence pressure of
the WCA potential (@) with data reported for the LJ potential (---)
[15] as a function of reciprocal temperature.

simulation data could be accurately (R*>=0.99) fitted to these
equations.

D. Comparison with equation of state calculations

Attempts [29-31] have been made to develop an equation
of state for the WCA potential. The usual starting point is a
variation of the Carnahan-Starling [32] equation, which pro-
vides an accurate description of the compressibility factor of
hard spheres (Z) in terms of the packing fraction of hard
spheres (y=mpad/6):

3 1+y+ay’-by?
(1-y°* 7
where a and b are adjustable parameters. When a=b=1, Eq.
(5) is the original Carnahan-Starling equation. A WCA equa-

tion of state is obtained by simply substituting the hard-
sphere diameter with a temperature-dependent formula:

(5)

\
Heyes and Okumura (a=3.597,b=5.836)
Verlet and Weis (a=b=1) > ©)
Kolafa and Nezbeda (a=b=1)
b,

temperatures. The average absolute deviation between the
compressibility factors predicted by the Heyes and Okumura
equation and our simulation data is 8.5%. In view of this
reasonably good quantitative agreement, we used our simu-
lation data to revaluated the a and b parameters of the Heyes
and Okumura equation. Values of a=17.22 and b=31.1 re-
sult in an average absolute deviation of approximately 0.38%
and good agreement at all temperatures (Fig. 7). This sug-
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FIG. 7. Comparison of molecular simulation data for the com-
pressibility factors of the WCA fluid obtained in this work (@) with
calculations using the Heyes and Okumura (O), Verlet and Weis
EOS (0J), and Kolafa and Nezbeda (V) equations of state. The solid
line represents calculations of the reparametrized Heyes and Oku-
mura equation reported here.

gests that the reparametrized Heyes and Okumura equation
could have a role in equation of state development for real
fluids as an alternative to the Carnahan-Starling hard-sphere
term.

E. Melting and freezing rules

A commonly used method to predict melting is the Lin-
demann rule [33] which states that a solid melts if the root-
mean-square displacement of particles around their ideal po-
sition is approximately 10% of their nearest-neighbor
distance. Luo et al. [34] reported that the Lindemann rule is
valid for the Lennard-Jones potential for a wide range of
pressures. In view of this, it is reasonable for it to also apply
to WCA fluids. Ashcroft et al. [35] showed that, when
viewed from the liquid side of the phase transition, Linde-
mann’s melting rule can be expressed as L=ayg(T)*/V,,
=const, where V,, is equal to the volume of the liquid and
oys(T) is the temperature-dependent hard-sphere diameter.
Heyes and Okumura [29] have found that a good approxima-
tion for the effective hard-sphere diameter of the WCA po-
tential is opy5(7)=2"%/(1+T)"S. Values of L obtained from
our simulation data at various temperatures are summarized
in Table V. It is evident that L is close to being constant for
most temperatures.

Raveché et al. [36] proposed that the ratio of the first
maximum to the nonzero first minimum of the radial distri-
bution function on the freezing line is constant [G
=g(rmax)/ €(rmin) =const]. Figure 8(a) compares the radial
distribution functions at melting and freezing densities. We
have calculated values of G for the freezing densities at low
and intermediate temperatures and the results are summa-
rized in Table V. Although there is some variability in the
value of G, it can be used as a reasonable indicator of freez-
ing.

We have also tested the Hansen and Verlet [11] freezing
rule, which says that upon freezing the structure factor has a
maximum value of S(ky)=2.85. We have obtained the struc-
ture factor via a Fourier transformation of the pair-
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TABLE V. Invariants of the Lindemann, Raveché et al., and
Hansen and Verlet melting or freezing rules as a function of coex-
istence temperature.

T L=osy(T*)*/V,, G=8(rmax)/ & (Finin) S(k)
0.1 1.106 0.136 3.10
0.2 1.095 0.204 3.02
0.3 1.084 0.151 2.97
0.4 1.080 0.160 2.90
0.5 1.081 0.165 2.86
0.6 1.084 0.168 2.83
0.7 1.077 0.168 2.80
0.8 1.084 0.175 2.76
0.9 1.080 0.173 2.75
1 1.100 0.174 2.70
1.15 1.179 0.152 2.85
2 1.154 0.143 2.86
2.74 1.237 0.187 2.47

correlation function. An example of our calculations is illus-
trated in Fig. 8(b) and the maximum values at the freezing
density at various temperatures are summarized in Table V.
Although the required value is not exactly obtained, in most
cases the deviation is relatively small.

290

2.25

1.60
S(k)

0.95

0.30 : : : : :
55 90 125 16.0

FIG. 8. (a) Comparison of radial distribution functions at T*
=1.0 for the WCA fluid at freezing (solid line) and melting (dashed
line) points. (b) A typical structure factor curve for the WCA fluid at
a freezing point (p*=0.98, T"=1.15).
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FIG. 9. Comparison of entropy of fusion obtained in this work
(@) for the WCA fluid with the data for the Lennard-Jones potential
©) [15].

F. Entropy of fusion

The simulation data for the change in enthalpy (Tables II
and III) allow us to calculate the entropy of fusion, i.e., AS
=AH/T (Fig. 9). It is evident that for 7<10, there is a steep
increase in AS, which reflects the high degree of order of the
solid phase compared with higher temperatures which ap-
proach a constant value. Figure 9 also compares AS for the
LJ and WCA potentials and it is evident that the WCA values
are lower at all temperatures. The average value of entropy
change calculated was AS=1.20 with a variation of about
14%, which compares with an average value of 1.36 calcu-
lated from the LJ data of Agrawal and Kofke [15]. For a real
substance such as aluminum the value of the calculated [37]
entropy change is AS=1.2 compared to an experimental
value of AS=1.4.

We note that, because of the way the reduce constants are
defined, the value of the entropy of fusion can be trans-
formed into real units by simply multiplying the reduced
value by the Boltzmann constant. This means that the en-
tropy of fusion predicted by the WCA, Lennard-Jones, and
other such two-parameter potentials is independent of the
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value of the potential parameters. This provides a convenient
way of directly comparing different intermolecular potentials
with each other. More importantly, if experimental entropy of
fusion data are available for comparison, this insight allows
us to quickly assess how accurately an intermolecular poten-
tial is likely to predict the thermodynamic properties of real
fluids at any temperature.

IV. CONCLUSIONS

A combination of two molecular simulation algorithms
has been used to determine the solid-liquid coexistence of
the WCA fluid from low temperatures up to very high tem-
peratures. At very high temperatures, the coexistence pres-
sure approaches the same 12th-power soft-sphere asymptote
as the 12—6 Lennard-Jones potential. However, in contrast to
the Lennard-Jones potential, which shows a discontinuity of
pressure at low temperatures, the coexistence pressure of the
WCA potential approaches the zero-temperature limit. Solid-
liquid coexistence of the WCA potential commences at den-
sities close to the limiting packing fraction of hard spheres,
whereas the triple point is the commencement point for the
Lennard-Jones fluid. Three empirical relationships are deter-
mined to accurately reproduce the coexistence pressure and
both solid and liquid phase densities from near zero tempera-
ture up to the very high temperatures. The simulation data
are used to reparametrize the Heyes and Okumura WCA
equation of state, resulting in considerably greater accuracy
for the compressibility factor. The Lindemann and Raveché
et al. melting rules can be used to predict the onset of melt-
ing and the Hansen and Verlet freezing rule can be applied
for crystallization.
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