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Parallel tempering, also known as replica exchange Monte Carlo, is studied in the context of two simple
free-energy landscapes. The first is a double-well potential defined by two macrostates separated by a barrier.
The second is a “golf course” potential defined by microstates having two possible energies with exponentially
more high-energy states than low-energy states. The equilibration time for replica exchange is analyzed for
both systems. For the double-well system, parallel tempering with a number of replicas that scales as the square
root of the barrier height yields exponential speedup of the equilibration time. On the other hand, replica
exchange yields only marginal speedup for the golf course system. For the double-well system, the free-energy
difference between the two wells has a large effect on the equilibration time. Nearly degenerate wells equili-
brate much more slowly than strongly asymmetric wells. It is proposed that this difference in equilibration time
may lead to a bias in measuring overlaps in spin glasses. These examples illustrate the strengths and weak-
nesses of replica exchange and may serve as a guide for understanding and improving the method in various
applications.
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I. INTRODUCTION

Replica exchange Monte Carlo �MC�, also known as par-
allel tempering, was independently introduced by Swendsen
and Wang �1�, Geyer �2�, and Hukushima and Nemoto �3� for
studying spin glasses. Replica exchange MC is an important
tool in many areas of computational physics �4� where the
free-energy landscape has many metastable minima sepa-
rated by barriers. It is the standard method for simulating
spin glasses and is used for protein folding �5,6� and lattice
gauge theory �7�.

In parallel tempering many replicas of the system are
simulated in parallel using a standard MC technique for sam-
pling the Gibbs distribution such as the Metropolis-Hastings
algorithm. The replicas are simulated at different tempera-
tures. The fixed sequence of temperatures extends from some
low temperature where the equilibration time is very long to
some high temperature where the equilibration time is short.
Replica exchange moves permit replicas at adjacent tempera-
tures to swap temperatures in a way that satisfies detailed
balance so that the entire set of replicas equilibrates at the
prescribed set of temperatures. The heuristic motivation for
replica exchange is that replicas can diffuse from the lowest
to the highest temperature and back to the lowest tempera-
ture. During this “roundtrip” equilibration occurs at high
temperature so that when the replica returns to the lowest
temperature its state is independent of the original state. A
number of studies have focused on optimizing replica ex-
change MC by choosing the set of replica temperatures and
other parameters to minimize the round-trip time �8–10�.
Replica exchange MC is also closely related both to simu-
lated annealing and various generalized ensemble methods
�11,12�.

In the present paper we consider the efficiency of replica
exchange MC in the context of two very simple free-energy

landscapes that, respectively, highlight the strengths and
weaknesses of the method. The first example is a free-energy
landscape with two minima separated by a barrier such as
occurs in the �4 free-energy functional. In the low-
temperature phase where the potential has a double well,
local dynamics fully equilibrates in a time that is exponential
in the barrier height though equilibration within a single well
is typically much faster. As we shall see, replica exchange
can reduce the barrier crossing time from exponential to a
polynomial in the barrier height.

For the double-well potential, we show that the equilibra-
tion time is longest when the free-energy difference between
the wells is a few kBT or less. In this situation, the Gibbs
measure gives significant weight to both macrostates and
equilibration involves diffusive motion of replicas. When the
free-energy difference between the wells is much larger than
kBT, equilibration depends on much faster ballistic motion of
replicas. In the context of spin glasses, a free-energy land-
scape with multiple free-energy minima is expected. In the
discussion section, we argue that the longer equilibration
time for nearly degenerate free-energy minima may lead to
an overestimate of the probability that the spin overlap in
spin glasses is near zero. This reasoning suggests caution in
interpreting simulations for the spin overlap.

The second free-energy landscape to be considered is the
“golf course” potential. Here almost all of the microstates are
degenerate excited states and an exponentially small fraction
of states are degenerate ground states. This model has a
pseudo-first-order transition between a low-temperature
phase where the system is almost always in a ground state
and a high-temperature phase where the system is almost
always in an excited state. For this particularly nasty system,
replica exchange is of little help equilibrating the low-
temperature phase. The equilibration time is controlled by
the time taken to find a ground state and this time is not
reduced by bringing the system first to a higher temperature.

The outline of the paper is as follows. In Sec. II we intro-
duce replica exchange Monte Carlo. In Sec. III we analyze
the behavior of replica exchange Monte Carlo for the double-*machta@physics.umass.edu
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well free-energy landscape both analytically and via numeri-
cal simulations. In Sec. IV we introduce the golf course po-
tential and analyze replica exchange for this potential. The
paper closes with a discussion in Sec. V.

II. REPLICA EXCHANGE MONTE CARLO

Replica exchange Monte Carlo is designed to equilibrate a
set of replicas of a system at inverse temperatures,

�0 � �1 � . . . ,�R−1. �1�

Each of the R replicas is equipped with dynamics that equili-
brates it at its respective temperature. In addition, replica
exchange moves are permitted between replicas at neighbor-
ing temperatures. In a replica exchange move, the tempera-
tures of the two replicas are swapped. In order to satisfy
detailed balance and ensure that the entire set of replicas
equilibrates, the probability for accepting a replica exchange
move between replicas at temperatures � and �� is given by

pswap = min�1,e��−����E−E��� , �2�

where E and E� are the respective energies of the replicas
that were originally at � and ��. If the replica exchange
move is accepted, the replica whose local dynamics was set
at inverse temperature � is now set at �� and vice versa.

III. DOUBLE-WELL POTENTIAL

In this section we consider a simple free energy with two
minima such as occurs, for example, in a �4 theory. The free
energy associated with each minima or well is

�F���� = −
1

2
�� − �c�2�K + H�� , �3�

where � labels the well; the deep well is indicated by �=1
and the shallow well by �=0. Although the free-energy land-
scape itself is not explicitly prescribed, we assume that free
energy at the saddle point between the wells is zero so that F
is the free-energy barrier for transitions between wells. From
the free energy we can obtain the internal energy U���� and
energy fluctuations by differentiations with respect to �. The
internal energy, which is the expectation of the energy E, is

U���� = E�E� = − �� − �c��K + H�� �4�

and the variance ��
2 of the energy is

��
2 = Var�E� = �K + H�� . �5�

The free-energy difference ��F��� between the wells is con-
trolled by H �H�0� and given by

��F��� = �F0��� − �F1��� =
1

2
�� − �c�2H . �6�

Given this free-energy difference, the probability c��� of
being in the deep well �i.e., the expectation of �� at inverse
temperature � is

c��� = E��� =
1

1 + e−��F��� . �7�

To completely specify the statics of the model, we assume
that the energy distribution in each well is a normal distribu-
tion with mean U���� and variance ��

2 .

A. Replica exchange dynamics for the double-well model

We suppose that each replica is equipped with single tem-
perature dynamics that is much faster than the rate of replica
exchange attempts. Thus, for each replica exchange attempt,
the energies of the two replicas are chosen independently
from normal distributions for the given replica’s temperature
and well index. The time scale for transitions between wells
by single temperature dynamics for ���c is order e−�F;
however, in the analysis and simulations that follow, we do
not permit single temperature dynamics to effect transitions
between the wells except at �c. This simplification leads to
an underestimate of the equilibration time for replica ex-
change since the replicas near �c may also contribute to bar-
rier crossings between the wells. Since the entropy of each
well is the same at �=�c and since there is no barrier be-
tween the wells here, we assume an initial condition for par-
allel tempering in which each well is equally likely to be
populated for every ���c.

It is straightforward to verify that the replica exchange
dynamics described above satisfies detailed balance with re-
spect to the normal distribution of the energies in the two
wells and the probability c��� given in Eq. �7� for being in
the deep well. The normal distribution of energies within
each well is maintained by fiat while c��� is established via
replica exchange. Our goal is to understand the time scale for
reaching this equilibrium well distribution.

Given the dynamical assumptions it is not difficult to cal-
culate the average rate of replica exchange for the double-
well model. Let W�,���� ,��� be the average rate of replica
exchange if the two replicas are, respectively, at inverse tem-
peratures � and �� in wells � and ��. Without loss of gen-
erality, assume ����. The rate W�,���� ,��� is obtained by
averaging Eq. �2� over the energy distribution,

W�,����,��� = E�min�1,e��−����E−E���� . �8�

Here E� · � is an average over the normal distributions of E
and E�, the energies in the respective wells at the given tem-
peratures. The explicit expression for the replica exchange
rate is

W�,����,��� =� � dEdE�

2	�����
e−�E − U�����2/2��

2 − �E� − U�������2/2���
2

�
�E� − E�e��−����E−E�� + 
�E − E��� . �9�
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B. Degenerate wells: H=0

First consider the simpler case of degenerate wells �H
=0�, it is not hard to show that the two terms in Eq. �9� are
equal and, using Eqs. �4� and �5�, the Gaussian integrals
yield

W�,����,��� = erfc� �� − ���	K

2

 , �10�

where erfc� · � is the complementary error function. The rep-
lica exchange rates are independent of the well indices and
the dynamics of replica exchange is diffusive.

Given the replica exchange rate, we can estimate the
equilibration time as follows. Suppose there are R equally
spaced replicas with inverse temperatures ranging from �0 to
�c. Equilibration requires that a replica in one well at the
lowest temperature �0 diffuses to �c where the well is ran-
domized. Up to constant factors, the equilibration time ��R�
for R replicas scales like the mean first passage time for a
random walk between the ends of a chain of R sites with
hopping rate W, with a reflecting boundary at �0 and an
absorbing boundary at �c. The mean first passage time for
this process is �R−1�2 /W �13�. Thus, from Eq. �10�

��R� � �R − 1�2/erfc� ��0 − �c�	K

2�R − 1�

 . �11�

From the asymptotic behavior of the error function, erfc�x�
�exp�−x2� / �		x� we see that the optimum number of rep-
licas should scale as the square root of the well depth, Ropt
���0−�c�	K. The replica exchange rate is then order unity
and the optimized equilibration time in this diffusive regime,
�D, is proportional to the well depth,

�D � �Ropt − 1�2 � K��0 − �c�2. �12�

Since the optimum number of replicas is independent of
prefactors in Eq. �11�, we can obtain Ropt by numerically
minimizing the right-hand side of Eq. �11� with respect to R;
the result �30� is

Ropt = 1 + 0.594��0 − �c�	K . �13�

The above result represents the main strength of replica
exchange Monte Carlo. The time for barrier crossing be-
tween the wells has been reduced from an exponential in the
barrier height to linear in the barrier height. Note that a key
feature of the double-well model required for the success of
parallel tempering is the continuity of the free energy with
temperature.

C. Asymmetric wells: H�0

When H�0, the wells are asymmetric and the motion of
replicas is biased diffusion. Replicas in the deep well move
toward lower temperatures relative to replicas in the shallow
well. The average replica exchange rates reflect that bias and,
carrying out the integrals in Eq. �9�, we obtain

W0,1��,��� = E1 + E2E3 �14�

and

W1,0��,��� = E2 + E1/E3, �15�

where

E1 =
1

2
erfc� �� − ���K − ��� − �c�H

	4K + 2H

 , �16�

E2 =
1

2
erfc� �� − ���K + �� − �c�H

	4K + 2H

 , �17�

and

E3 = exp
�� − ����� + ��

2
− �c
H� . �18�

Since E1�E2 and E3�1, we have W0,1�� ,���
�W1,0�� ,��� and the dynamics is biased toward deep well
replicas moving to lower temperatures. The velocity V�� ,���
of deep well �shallow well� replicas toward lower �higher�
temperature is the difference of the rates,

V = W0,1 − W1,0. �19�

Figure 1 shows V vs ��=�−�� for several values of H and
the choice K=16, �=5, and �c=1. The three curves corre-
spond to H=2 �bottom�, H=5 �middle�, and H=20 �top�. The
qualitative features are that velocity increases as the bias, H,
increases and that �� must neither be too large nor too near
zero to maximize the velocity. As the bias increases, the ve-
locity approaches unity for an increasing range of ��.

As H increases there is a complicated crossover from dif-
fusion to biased diffusion to ballistic motion. Unlike the
symmetric case, for H�0 the arguments of the error func-
tions depend on both the temperature difference between rep-
licas and the absolute temperature so that evenly spaced rep-
licas cannot be expected to optimize the equilibration time.
Nonetheless, we can make some crude estimates for the bal-
listic regime. The requirement for the ballistic regime is that
��F= ��−�c�2H /2�1 for most replica temperatures � so
that each replica is nearly always in the deep well. Then ��
can be chosen so that V�1. In this regime the equilibration

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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�

FIG. 1. �Color online� The velocity V vs the temperature be-
tween the replicas ��=�−�� for three values of the well asymme-
try parameter, H=2 �blue; bottom�, 5 �green; middle�, and 20 �red;
top� for the choice K=16, �=5, and �c=1.
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time scale is simply the time required to generate order R
states in the deep well at �c and then move them to the
colder replicas. This time scale is order R. The argument of
the error function must be small to achieve a velocity near
unity, which is essentially the same condition as in the dif-
fusive regime so that Ropt���0−�c�	K. The behavior of the
equilibration time in the ballistic regime �B is expected to be

�B � Ropt � ��0 − �c�	K . �20�

The main point here is that the time scale is much longer for
the diffusive regime than the ballistic regime. In the diffusive
regime, the equilibration time is proportional to the free-
energy barrier between the wells but in the ballistic regime it
behaves as the square root of the free-energy barrier.

We have so far considered the simple situation where the
free-energy difference between the wells changes monotoni-
cally with the temperature—one well is deeper than the other
for all ���c. If instead, the free-energy difference between
wells changes sign in a temperature region where there is a
large barrier between the wells then the motion of replicas
will be biased in a way that causes trapping and very long
equilibration times. This is the situation that holds at a ther-
mal first-order transition. It would be interesting to calculate
the equilibration times in a simple free-energy landscape
with a first-order transition.

D. Numerical simulations

We carried out simulations of parallel tempering for the
double-well model. In each step of the simulation, a pair of
adjacent temperatures � and �� is randomly chosen. The
energies of the associated replicas are chosen from normal
distributions with means U���� and U������ and standard
deviations �� and ���, respectively. The replica exchange
move is accepted with probability given by Eq. �2�. If one of
the replicas is at �c, the well indicator � for this replica is
chosen randomly before attempting the replica exchange
move. Otherwise, transitions between the two wells are for-
bidden and � is conserved. One MC sweep consists of R
−1 replica exchange attempts and time is measured in
sweeps. The simulations are initialized so that each replica is
randomly chosen to be in either well with equal probability.

We simulated several values of the parameters H, K, and
R. In all simulations we chose �0=5 and �c=1 so as to be
deep in the low-temperature regime. We measured two quan-
tities, the exponential autocorrelation time and the initial de-
cay toward equilibrium. The exponential autocorrelation
time �exp is obtained from the autocorrelation function, 
�t�,
of the fraction of replicas in the deep well �= �1 /R��i=0

R−1�i,


�t� =
���t��� − ���2

��2� − ���2 . �21�

Here � · � indicates an equilibrium average and the measure-
ment of ��t� is displaced by t sweeps from �. The equilib-
rium average is obtained from long time averages. The ini-
tialization time before data collection is typically several
thousand sweeps and the run time is 10–50 million sweeps.
Except for an initial period of faster decay, 
�t� is well

described by a single exponential and the exponential auto-
correlation time �exp is obtained by fitting to a single expo-
nential function, 
�t�=ae−t/�exp, over an appropriate range of
t. We considered K=8, 16, 32, and 64 and H=0, 0.5, 1, 2, 3,
5, and 10. We explored a range of numbers of replicas R to
find Ropt. We found that Ropt is correctly predicted by Eq.
�13� for H=0 and that for H�0, Ropt is slightly larger than
for the symmetric H=0 case but within one or two of the
predictions of Eq. �13�. An exact measurement of Ropt for the
asymmetric case proved difficult because ��R� varies very
little with R near Ropt.

Figure 2 shows �exp vs K for H=0, 5, and 10 and for K
=8, 16, 32, and 64. Statistical errors are smaller than the data
points. The lines are best power-law fits of the form aKx. The
fitted powers are x=0.76, 0.83, and 0.99 for H=10, 5, and 0,
respectively. The fact that �exp increases essentially linearly
in K for H=0 agrees with Eq. �12� of Sec. III B for symmet-
ric wells. However, although x�1 for the two asymmetric
cases, we do not observe x=0.5, as predicted in Eq. �20� of
Sec. III C for highly asymmetric wells, even for H=10. We
believe this is a crossover effect but it may also indicate
more subtleties in the asymmetric case than have been taken
into account in the simple theoretical arguments based on
ballistic motion of replicas. Figure 3 shows �exp vs H for
fixed K=16 revealing the rapid decline in equilibration time
as the asymmetry increases.

The initial relaxation to equilibrium of the lowest tem-
perature replica is often more relevant for applications of
parallel tempering than the exponential autocorrelation time.
To study the initial relaxation to equilibrium, we investigated
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FIG. 2. �Color online� The exponential autocorrelation time �exp

for the fraction of sites in the deep well vs the well depth parameter
K for H=10 �green diamonds�, H=5 �red squares�, and H=0 �blue
circles�. The lines are best power-law fits, �exp�Kx with x=0.76,
0.83, and 0.99 for H=10, 5, and 0, respectively.
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FIG. 3. �Color online� The exponential autocorrelation time �exp

vs the asymmetry between the wells H for K=16.
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��t�, the probability that the lowest temperature replica is in
the deep well after t sweeps,

��t� = ��0�t�� − c��0� . �22�

Note that ��0�0��=1 /2 for the standard initial condition and
limt→���0�t��=c��0� so that ��t� approaches zero for large t.
The error in sampling �0 after t sweeps is determined by
��t�. Figure 4 shows log-linear plots of ��t� as a function of
t for �a� small asymmetry H=0.1 and �b� large asymmetry
H=5 for K=16 and R=12. For small asymmetry, ��t� decays
nearly exponentially after an initial faster decay with a time
scale that is very close to �exp. For large asymmetry, two time
scales are clearly apparent. The short time scale is approxi-
mately 2 and the long time scale is about 9, whereas �exp
=11 for these parameters. Presumably, the time scale �exp
would finally be apparent in ��t� but perhaps not until it has
decayed to extremely small values.

The initial short time scale for ��t� for the strongly asym-
metric H=5 case can be understood qualitatively as the av-
erage time for the lowest temperature replica that is also in
the deep well to move to the lowest temperature �0. If this
nearest replica is at temperature �k the expected time for it to
move to �0 is approximately k /V where V is the velocity
defined in Eq. �19�, which is nearly unity in the strongly
asymmetric case for sufficiently closely spaced replicas.
Thus, we expect that initially, ��t� will decay on a time scale
order unity. Since this initial decay persists to quite small
values of ��t� it may be the relevant time scale for practical
equilibration in the strongly asymmetric case. The key find-
ing of the numerical study is that equilibration times are
much shorter for asymmetric free-energy minima than for
nearly degenerate minima.

IV. GOLF COURSE LANDSCAPE

In this section we consider the efficacy of replica ex-
change for the golf course landscape. Like a flat golf course,
this landscape has a small number of degenerate ground
states—the “hole”—and an exponentially larger number of
degenerate excited states—the “green.” The golf course land-
scape has eN microstates where N is the “system size.” A
fraction e−�c�N of these microstates have energy 0 while the
remaining states have energy �N with ��0. The golf course
system is a quenched disordered system; different realiza-
tions of disorder correspond to different sets of ground states.
The microstates of the system are labeled by integers and we

suppose that there is an oracle for each realization of the
system that tells whether a given integer label corresponds to
a ground state. On the other hand, the set of ground states is
itself inaccessible except by exhaustive search. Natural real-
izations of golf course landscapes are studied in �14�.

The parameter �c is also the inverse temperature of a
pseudo-first-order transition. For ���c and large N the sys-
tem is almost surely in a ground state but for ���c it is
almost surely in an excited state. More specifically, let c���
be the probability of being in a ground state at temperature
�. It is straightforward to see that c��� is given by

c��� =
1

1 + e−��−�c��N . �23�

The dynamics of the system is a global version of the
Metropolis-Hastings algorithm. Each step consists of propos-
ing a random microstate, consulting the oracle to determine
its energy, and then accepting the proposal with probability,
min�1,e−��E�, where �E is the difference in energy between
the proposed and initial microstates. This dynamics con-
verges to equilibrium; however, the equilibration time is ex-
ponential in N. In units of MC steps, the excitation rate from
a ground state to an excited state is controlled by the energy
barrier e−��N. The deexcitation rate from an excited state to a
ground state is controlled by the entropy barrier e−�c�N. The
equilibration rate is the sum of these two rates, e−�c�N

+e−��N. For �0��c the equilibration rate is dominated by
the deexcitation term and the equilibration time �0 is ap-
proximately

�0 � e−�c�N. �24�

On the other hand, for �1��c, the equilibration rate is domi-
nated by the excitation rate and the equilibration time �1 is

�1 � e−�1�N. �25�

Suppose we wish to equilibrate a system at inverse tem-
perature �0��c using replica exchange Monte Carlo with
replicas given by Eq. �1� with �R−1��c. Initially each rep-
lica is almost certainly in an excited state. Since all replicas
have the same energy, replica exchange moves are always
accepted and the round-trip time is independent of N though
proportional to R2. Of course, this short initial round-trip
time is misleading and has nothing to do with the equilibra-
tion time. Equilibration requires finding ground states and
this happens on the exponential time scale �0. If a ground
state is discovered by a high-temperature replica, that ground
state will quickly and nearly irreversibly be passed to lower
temperature by replica exchange. If there are � replica tem-
peratures in the low-temperature “phase,” that is, if ��−1
��c and ����c then a ground state must be discovered �
times to populate each cold replica. Since there are R sys-
tems looking for the ground state, we obtain a modest accel-
eration of order R /�. For example, if �=1, there is a factor of
R speedup due to replica exchange. This speedup is not de-
pendent on faster equilibration at high temperatures but re-
lies on simple parallelism; all replicas are put to work inde-
pendently looking for rare ground states but only � ground
states need to be found. In conclusion, for the golf course

�
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FIG. 4. The initial approach to equilibrium of the probability of
the coldest replica being in the deep well ��t� vs time t after the
initial conditions for �a� small asymmetry H=0.1 and �b� large
asymmetry H=5.0. In both cases K=16, �0=5, and R=12.
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landscape, replica exchange achieves a modest speedup in
the equilibration time due to brute force parallelism. Before
equilibration has been achieved, the round-trip time is short
and unrelated to the equilibration time. The golf course land-
scape is the most extreme case of the problem of the equi-
librium macrostate having an exponentially small and hidden
basin of attraction.

V. DISCUSSION

The broad conclusion of this work is that replica ex-
change Monte Carlo is efficient for systems with free-energy
landscapes with multiple minima so long as the landscape
varies continuously and monotonically with temperature and
the relevant minima have large basins of attraction. In this
situation, replica exchange is able to quickly sample the
minima with the correct weighting. In this context, a basin of
attraction of a macrostate is imprecisely defined as the subset
of microstates that has a high likelihood of reaching the mac-
rostate via a quench from high temperature. The speed of the
quench must be much slower than the rate of equilibration
within the macrostate and much faster than the transition rate
between macrostates. Given the assumption of large basins
of attraction and exponential barriers between macrostates,
parallel tempering with polynomially many replicas reaches
equilibrium in a time that is polynomial in the barrier height
and thus achieves exponential speedup. On the other hand,
replica exchange yields little improvement for systems where
the relevant macrostates have small basins of attraction. Here
the problem is simply finding equilibrium states rather than
moving between them. For real world applications, both
kinds of problems may be present—barriers between mul-
tiple states and small basins of attraction.

Let us now consider the case of Ising spin glasses in three
dimensions. It is known that finding ground states is NP-hard
�15�. This fact suggests, but does not prove, that the basins of
attraction of the low-temperature equilibrium states are ex-
ponentially small. On the other hand, for temperatures not
too far below the critical temperature it may be that the ba-
sins of attraction are still relatively large and replica ex-
change can produce large reductions in equilibration times.

As a working hypothesis, let us adopt the droplet picture
�16,17� for the low-temperature phase of the three-
dimensional �3D� Ising spin glass. Within the droplet picture
something like the double-well model should describe the
lowest lying states in the low-temperature phase. The two
wells correspond to the two orientations of the droplet and
fluctuations around these orientations �31�. Each realization
of disorder has different values of the barrier height and free-
energy difference. The statistics of these parameters are as-
sumed to have power-law behavior in the linear systems size

L. Specifically, K̄�L� and H2�L2
, where the overbar refers
to a disorder average and 
 is believed to be near 0.2 for the
three-dimensional Ising spin glass.

Parallel tempering has proved to be a successful tool for
studying 3D spin glasses and it is reasonable to assume that
for small systems the equilibrium states have sufficiently
large basins of attraction that they can be “found” in a rea-
sonable time by replica exchange. Even so, there is a poten-

tial source of bias in parallel tempering as it is typically used.
In typical applications the length of the run is fixed indepen-
dent of the realization of disorder. These parameters are cho-
sen to ensure that some disorder averages are near their equi-
librium values. For example, the test described in �18�
insures that the disorder averaged energy is near its equilib-
rium value. However, this requirement may not guarantee
that all relevant observables are well equilibrated.

In the droplet model, the fraction of realizations with
nearly degenerate lowest lying states scales as L−
. Thus,
most disorder realizations have a large free-energy difference
between the equilibrium state and the excited �droplet� state.
In the context of the double-well model, these realizations
have ��−�c�2H /2�1 and, as we have seen, they will be
rapidly equilibrated by parallel tempering. On the other
hand, the small fraction �order L−
� of realizations with “ac-
tive droplets,” that is, two nearly degenerate minima, will
have much longer than typical equilibration times. Both be-
cause these realizations are rare and because the two droplet
orientations have similar energies, the poor equilibration of
these active droplet realizations will not introduce much er-
ror in the measurement of the disorder averaged energy. The
same cannot be said for the disorder averaged spin overlap
distribution near zero overlap, P�q�0�. It is precisely the
difficult to equilibrate, active droplet realizations that con-
tribute to this quantity since these are the systems that have a
significant likelihood in equilibrium of having either droplet
orientation. If these realizations are not equilibrated it will
lead to an overestimate of P�q�0�. In particular, the equi-
librium contribution of a given realization to P�q�0� de-
pends on the relative weight of the two droplet states. Given
the simplifying assumption that the two droplet states have
zero overlap, a realization with free-energy difference
��F��� between the droplet states will contribute 2c����1
−c����=2e−��F / �1+e−��F�2 to P�q�0�. Exactly degenerate
disorder realizations contribute 1/2 to P�q�0� but as ��F
becomes larger than unity, the equilibrium contribution to
P�q�0� diminishes rapidly. However, for times less than the
equilibration time the two droplet orientations will be close
to equally populated assuming both have nearly equal basins
of attraction as expected in the droplet model. The result of
this bias is that P�q�0� approaches its equilibrium value
from above on a time scale associated with the equilibration
of realizations with active droplets. This time scale is ex-
pected to be considerably longer than the time scale for the
equilibration of the disorder averaged energy.

The nature of the low-temperature phase of finite-
dimensional spin glasses is the subject of a long-standing
controversy. In the droplet scenario most realizations of dis-
order have a large gap between a unique equilibrium state
and a macroscopically different low lying excited state. The
replica symmetry breaking �RSB� picture �19–23� proposes
multiple nearly degenerate low lying equilibrium states with
an ultrametric overlap structure. A scenario that has features
of both pictures and is supported by numerical studies is the
“trivial nontrivial” �TNT� picture �24,25�. The possible state
structures in the thermodynamic limit are constrained by
mathematical theorems �26� but the various scenarios are dif-
ficult to distinguish in simulations of small systems. The dis-
order averaged spin overlap near zero, P�q�0�, has been
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studied numerically to distinguish these scenarios �24,25,27�.
In the RSB and also the TNT pictures, this quantity ap-
proaches a constant while in the droplet picture it decreases
as L−
. In simulations P�q�0� decreases for small L but then
reaches a plateau at a small but nonzero value �28�. The
above considerations suggest caution in interpreting numeri-
cal results for P�q�0�. It would be useful to carefully study
the correlation between the equilibration time of disorder

realizations and their contribution to P�q�0� to ensure that
this quantity has been correctly measured in simulations.
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