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Event-chain Monte Carlo algorithms for hard-sphere systems
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In this paper we present the event-chain algorithms, which are fast Markov-chain Monte Carlo methods for
hard spheres and related systems. In a single move of these rejection-free methods, an arbitrarily long chain of
particles is displaced, and long-range coherent motion can be induced. Numerical simulations show that
event-chain algorithms clearly outperform the conventional Metropolis method. Irreversible versions of the
algorithms, which violate detailed balance, improve the speed of the method even further. We also compare our
method with a recent implementations of the molecular-dynamics algorithm.
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Hard spheres in three and in two dimensions (hard disks)
occupy a special place in statistical mechanics. Indeed, many
fundamental concepts, from the virial expansion (by van der
Waals and Boltzmann), to two-dimensional melting [1], to
long-time tails [2], were first discussed in these extraordinar-
ily rich physical systems. These models have also played a
crucial role in the history of computation: both the Metropo-
lis algorithm [3] and molecular dynamics [4] were first
implemented for monodisperse hard disks in a box. In con-
trast with the spectacular algorithmic developments for lat-
tice spin models [5,6], Monte Carlo algorithms for hard
spheres have changed little since the 1950s, especially for
high densities. Recent sophisticated implementation have re-
duced the complexity of the molecular-dynamics algorithm
to a value comparable to that of the Monte Carlo method.
Nevertheless, one can today still not equilibrate sufficiently
large systems [7] to clarify whether the melting transition in
two-dimensional hard disks, at density (occupied volume
fraction) 7=0.70, is weakly first order, or whether it is of
the Kosterlitz-Thouless type [8], with a narrow hexatic phase
in between the liquid and the solid.

In this paper, we propose a class of Monte Carlo algo-
rithms for hard-sphere systems: the ‘“‘event-chain” algo-
rithms. In contrast to the Metropolis algorithm, these meth-
ods are rejection-free. In a single move, they displace an
arbitrary long chain of spheres, each advancing until it
strikes the next one. Event-chain algorithms are generically
faster than other Markov-chain algorithms, in part because
the mean-square displacements of individual particles are
larger. In addition, one of the event-chain algorithms moves
coherently over long distances. This further improves equili-
bration times. Finally, the absence of rejections allows us to
consider irreversible versions, which violate detailed bal-
ance, but preserve the correct stationary distribution. These
versions accelerate the algorithm even further. The event-
chain algorithms clearly outperform the traditional Metropo-
lis algorithm for hard-disk and hard-sphere systems.

In the local Metropolis algorithm, the move of a sphere is
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accepted if it induces no overlaps, and is rejected otherwise
(see Fig. 1). This algorithm is notoriously slow at high den-
sity because, although a particle can move back and forth in
the “cage” formed by its neighbors, it cannot easily escape
from it [9].

To overcome the limitations of the local Metropolis algo-
rithm, coordinated particle moves have been considered:
When the displacement of one sphere generates overlaps
with other spheres, the latter are in turn moved out of the
way. The rejection-free pivot cluster algorithm [10], for ex-
ample, works extremely well for binary [11] or for polydis-
perse [ 12] mixtures, but it breaks down for the high densities
of interest in two-dimensional melting. In Jaster’s algorithm
[13], overlapping spheres forming a chain are displaced, all
of them by a fixed vector, until a configuration without over-
laps is obtained (see Fig. 1). If a sphere branches out to more
than one other sphere during the chain construction, the
move is rejected (see Fig. 1). This happens frequently, so the
expected chain length is short and Jaster’s algorithm barely
faster than the local Metropolis algorithm.

In the algorithms presented here, each move consists in a
deterministic chain of “events:” a disk advances until it
strikes another one, which then in turn is displaced. The
move starts with a randomly chosen disk, and stops when the
lengths of all displacements add up to a total-displacement
parameter € (see Fig. 2). This parameter allows the move to
be reversible without rejections. To satisfy detailed balance,
the move must also conserve configuration-space volume.
This implies that when a disk strikes a neighbor, the latter
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FIG. 1. Upper panels: Accepted (left) and rejected (right) local
Metropolis moves of a disk in the cage formed by its neighbors.
Lower panels: Accepted and rejected moves in Jaster’s chain
algorithm.
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FIG. 2. Left two panels: Move of the straight event-chain (SEC)
algorithm. The individual displacements add up to a distance €.
Right two panels: Reflected event-chain (REC) move.

may be displaced either in the original direction [“straight
event-chain” (SEC) algorithm] or in the direction reflected
with respect to the symmetry axis of the collision [“reflected
event-chain” (REC) algorithm] (see Fig. 2). In a periodic
box, and with the initial direction € sampled uniformly in
[0,27], both versions, which we call “reversible,” preserve
the uniform measure because of detailed balance.

The detailed balance condition is allowed to be broken in
the SEC algorithm. Indeed, for a given direction 6, a con-
figuration I of N disks can reach N other configurations in
one move. By applying to I' the N possible moves in direc-
tion 6, one finds the N configurations that reach I'. Therefore,
the SEC algorithm satisfies global balance for any distribu-
tion of 6. Algorithms breaking detailed balance induce prob-
ability flows in the configuration space and potentially
speed-up equilibration [18]. We study such an irreversible
version of the SEC algorithm where 6 is uniformly distrib-
uted in [0, 7]. To preserve ergodicity, at least two indepen-
dent directions are needed. By far our fastest implementation
(the “xy version” of the SEC algorithm) alternates moves in
the positive x and y directions (6=0,7/2). A version of the
SEC algorithm, but with rejections and which cannot break
detailed balance, was also mentioned in [13].

In Fig. 3 we show the integrated distribution of |W| of Eq.

(5),

f (| V])d| P, (1)

0

for the xy version of the SEC algorithm, for the Metropolis
algorithm, and for molecular dynamics in the same system.
They are found to be equal. This demonstrates the correct-
ness of our implementations.
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FIG. 3. Comparison of the integrated distribution of an observ-
able [the absolute value of the order parameter W of Eq. (5)] be-
tween the SEC algorithm which breaks detailed balance, molecular
dynamics (MD) and the local Metropolis algorithm for 1024 disks
at 7=0.71.
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FIG. 4. Left: Histogram m(\/\) of the free path A(6) for 1024
disks at density 7=0.71. The distribution is close to exponential
even in the solid phase. Right: Mean-free path A\ in units of the disk
radius as a function of 7.

As a first step to analyze the performance of the event-
chain algorithms, we consider the mean-square displacement
(Ai) of individual disks, both in the local Metropolis and in
the event-chain algorithms. As mentioned, event-chain algo-
rithms generically outperform the Metropolis algorithm in
part because they take larger steps on average. In order to
compare the two methods, we measure time in units of at-
tempted one-particle displacements.

Let us define the “free path” A=\(6) of a disk as the
distance it must move in direction @ to strike another particle.
The ensemble average of \ yields the mean-free path (. The
distribution of the free path m(\/\) is well approximated by
an exponential

m(N/Ng) = exp(— N/\), (2)

even in the solid phase (see Fig. 4). This exponential ansatz
allows us to estimate the mean-square displacement for the
local Metropolis algorithm, supposing, for simplicity, that the
proposed moves have fixed step size € in random directions.
The acceptance probability p,..(€)=exp(—€/N\y) yields
(Ai(€)>=€2 exp(—£€/\y), which is maximized when € =2\,

max(A(6)) = (A4(20g)) = 4r/e’. (3)

To estimate the mean-square displacement for the event-
chain algorithms, we suppose that the lengths of subsequent
displacements in the chain are independent. In this case, the
expected number of particles in the chain equals €/\y+1. We
index the displacement during one event-chain move through
a timelike variable s with 0=s=¢. The mean-square dis-
placement of an event-chain move (the expected sum of the
squares of the individual displacements) can be expressed
through the probability 7(s,s’) that two times s and s’ be-
long to the same particle movement,

¢ rt
(A3(0)) =J J dsds' (s,s")
0J0

With the ansatz of Eq. (2), we have (s,s’)
=exp(—|s—s’|/No). This yields the mean-square displacement
per particle, which can be viewed as a short-time (local)
diffusion coefficient,
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FIG. 5. Left: Order-parameter distribution for 256 disks in a
periodic square box for =0.71. Right: Correlation function C(A,)
for this system. The correlation time is obtained from an exponen-
tial fit, as shown.
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This tends to 2)\% for large €/\,, that is, to a value &2
~4 times larger than what we found in Eq. (3), for the local
Metropolis algorithm. This factor corresponds to the effi-
ciency gain we might expect for a generic event-chain algo-
rithm with large €/\,, even though we will obtain consider-
ably larger factors for the SEC algorithm.

In a finite system, the expressions in Eq. (4) must be
corrected for the center-of-mass displacement. For the SEC
algorithm, the corrected mean-square displacement per par-
ticle, D,.(£), drops to zero for €/\y,— % because in that
limit, for a finite box, all disks participate in the chain, and
the system ends up moving as a solid block. The REC algo-
rithm, in contrast, saturates to a constant mean-square dis-
placement per particle for large chains.

To further analyze the event-chain algorithms, we deter-
mined the autocorrelation time of the orientational order pa-
rameter V¥ [14] for hard-disk systems at densities near the
melting transition. The orientational order parameter W av-
erages the complex-valued local bond order ¢; for each disk
J, where

V=1N (5)
j
and
1
lﬂj = 2 eXP(i6¢’j,1<)- (6)
1j (k. jy

In Eq. (6), the sum is over the n; neighbors of j, and ¢; is
the angle of the shortest vector equivalent to x,—x; [14].
Probable values of W form an irregular ring around the ori-
gin [see the scatter plot in Fig. 5; the ¥ — W+ 7 symmetry in
a square box imposes (W(7))=0].

We suppose that the correlation time of this system is
proportional to the time the order parameter takes to wander
around the ring, that is, the autocorrelation time of W. This
global measure of the overall speed of a Monte Carlo simu-
lation is more appropriate than, for example, single-particle
diffusion constants. However W is very long to decorrelate at
the interesting densities (see Fig. 7), and we have to limit
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FIG. 6. Left: Efficiency of SEC and REC algorithms for 1024
disks at 7#=0.71 (all speeds normalized by the speed of the revers-
ible SEC algorithm at €/\y=1). The speed of the local Metropolis
algorithm and the mean-square displacement per particle from Eq.
(4) are also shown. Right: Density dependence of the optimal
speed-up factor.

ourselves to small systems. The autocorrelation function
C(A,) of the orientational order parameter is defined by the
ensemble average

C(A) < (W(OW*(r+A),

normalized so that C(0)=1. In our square box, this function
decays to zero exponentially for large A, (see Fig. 5), and the
decay constant 7 and the speed 1/ 7 are obtained by a fit, for
each value of the parameters (N, 7,{), from one single very
long simulation (with 7> 7). The local Metropolis algorithm,
for its optimal step size, is as fast as the event-chain algo-
rithms with €/Ny=1. (Our implementation moves 3 X 10!
particles per hour on a 2.8 GHz single-processor workstation
for N=4096.)

For small total displacements €/Ay<<1, the speed of all
the algorithms (reversible and irreversible SEC, REC, and
local Metropolis algorithm) is proportional to Dy, (€), as
given by Eq. (4), that is, they all follow the single-particle
behavior (see Fig. 6). For larger €/\, the event-chain algo-
rithms realize a considerable speed-up compared to the local
Metropolis algorithm (also in Fig. 6). Moreover, both ver-
sions of the SEC algorithm set up coherent motion across the
system and are clearly better than the REC algorithm, whose
particle chains meander through the system (as shown in Fig.
2), so that the disks move incoherently. For large €/\, the
irreversible SEC algorithm is faster than the reversible ver-
sion: it is of advantage to break detailed balance. Figure 6
also illustrates that the SEC algorithm becomes more effi-
cient (as compared to the local Metropolis algorithm) as one
approaches the transition from the liquid phase (at density
7~0.708). The optimal speed-up increases with the system
size, as shown in Table I. This suggests that the speed-up of
the SEC algorithm may well increase with the correlation
length of the system, and may, in the transition region, have
a more favorable scaling than the local Metropolis algorithm.

Let us finally discuss the relationship between the Monte
Carlo method and the molecular-dynamics algorithm. All
these approaches describe the same equilibrium state. Unlike
the Monte Carlo method, the molecular dynamics follows the
physical time-evolution of the system. The first implementa-
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TABLE 1. Optimal speed-up reached by the SEC algorithm
(with respect to the reversible SEC algorithm for €/\y=1) at den-
sity 7#=0.71 as a function of particle number.

Optimal speed-up

N Reversible Irreversible
64 ~6 ~8
256 ~8 ~11
1024 ~9 ~15
4096 ~10 ~20

tions of the molecular-dynamics algorithm [4] were very
time consuming, with a complexity of O(N) per event (col-
lision), slower than the Metropolis algorithm [O(1) per
move]. The complexity of modern implementations has im-
proved to O(log N) [15] per event and even O(1) [16]. A
closer look is thus needed to choose between the two meth-
ods.

We used a simple version of the molecular dynamics to
compute the decorrelation time of W in the same way as in
Fig. 5. In number of events, molecular dynamics is found to
be about three times faster than the irreversible version of
SEC for »~0.7 and N=64-1024. It is very interesting to
notice that molecular dynamics shows, unlike REC, the same
density dependence of its speed as SEC around the transition
region. We then determined the CPU time per collision of
one of the most rapid current implementations of the hard-
disk molecular-dynamics algorithm [15]. For the 32X 32
system at 7~ 0.7, this implementation reaches about 1.7
X 10° collisions per hour on a 2.6 GHz workstation [17]. Our
xy implementation of the SEC algorithm reaches 3% 10!
collisions per hour on similar hardware. Our implementation
is thus about 5 times faster in CPU time to reach thermody-
namic equilibrium than the best molecular-dynamics imple-
mentation. We should also note that SEC is much easier to
implement. A synopsis of these relative and absolute timing
issues is presented in Fig. 7. For clarity, we give times in
terms of “‘equivalent Metropolis moves;” this means that one
event of the molecular-dynamics algorithm corresponds to
~3 SEC events and to ~60 Metropolis moves. The horizon-
tal lines indicate what can be achieved in approximately one
hour with our implementation of the Metropolis algorithm,
irreversible SEC, and the implementation of the molecular-
dynamics algorithm of [15].

In conclusion, we have in this paper proposed a class of
algorithms for hard spheres and related systems, which
clearly outperform the local Metropolis algorithm. We dis-
cussed three aspects of our algorithms, which all contributed
to improve their speed. First, we showed that event-chain
algorithms have a larger effective step size than the local
Metropolis algorithm, because spheres move until they strike
one of their neighbors. We computed mean-square displace-
ments per particle (local diffusion constants) to quantify this
point. Nevertheless, local diffusion constants are not clearly
related to the speed of the algorithm: they merely describe
the short-time rattling of a particle in its cage (only for small
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FIG. 7. System-size dependence of the correlation time of the
orientational order parameter for two densities. What can be
achieved in approximately one hour using the different algorithms
discussed in this paper is indicated by horizontal lines.

€/\ is the local diffusion constant directly proportional to
the algorithm’s speed). Second, we performed numerical
simulations of two variants of the method, and carefully ana-
lyzed the autocorrelation function of the orientational order
parameter. One of them, the SEC algorithm, induces coher-
ent motion of a long chain of spheres, and it allows the
different parts of the system to communicate with each other.
We witnessed considerable performance gains of this algo-
rithm in the critical region, in the same way than the molecu-
lar dynamics. This suggests the exciting possibility that the
speed-up of the event-chain algorithm grows with the corre-
lation length of the system, and may have a more favorable
scaling than the local Metropolis algorithm in the critical
region. This speed-up, which is shared by both the
molecular-dynamics algorithm and the SEC algorithm, is not
understood and should be further investigated. Third, we no-
ticed that the absence of rejections permitted to conceive an
irreversible version of the SEC algorithm which improves
the performances.

Our implementation of the SEC algorithm approaches
equilibrium (for large systems at 7=0.70) about 40 times
faster than our local Metropolis algorithm, not only because
of the speed-up evidenced in Fig. 6 but also because the xy
version of the algorithm computes no scalar products and
uses very few random numbers. It also equilibrates about
five times faster than the best molecular-dynamics imple-
mentation and preserves certainly a large potential for im-
provement.

Nevertheless, CPU times needed for convergence remain
extremely large, and even with our algorithm, full conver-
gence of systems with 10° particles at high densities comes
barely into reach. The irreversible SEC algorithm not only
appears to be the fastest currently known simulation method
for dense hard-disk and hard-sphere systems, but it also pro-
vides a telling example of the benefits of breaking detailed
balance in Monte Carlo algorithms going beyond the “lift-
ing” Markov chains [18].
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