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We study the existence of stationary shock waves in uniform and periodic heterogeneous highly nonlinear
granular chains governed by a power-law contact interaction, comparing discrete and continuum approaches, as
well as experiments. We report the presence of quasisteady shock fronts without the need for dissipative
effects. When viscous effects are neglected, the structure of the leading front appears to be solely the result of
dispersive effects related to the lattice wave dispersion and, for heterogeneous bead chains, to the impedance
mismatch between material domains. We report analytically and numerically the shock-width scaling with the
variation in the particles periodicity �cell size� and compare the obtained results with experiments. We check
the state �−� behind the shock front via quasistatic compression analysis and report a very good agreement
between theory and numerical data.
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I. INTRODUCTION

The problem of wave propagation in heterogeneous non-
linear media has received a lot of attention, see for instance
Whitham �1� and Remoissenet �2�. The case of heteroge-
neous structures with spatial periodicity is of special interest
by offering a wide range of applications in the field of com-
posite materials �laminates or fiber composites� �3–9�. One-
dimensional lattices of granular media �highly nonlinear par-
ticle chains� have been widely recognized in the literature as
the birthplace of the highly nonlinear wave theory for uni-
form and heterogeneous periodic systems �10–13�. One of
their most notable characteristics is the ability to support the
formation and propagation of compact solitary waves char-
acterized by a finite wavelength and a nonlinear amplitude-
velocity scaling. Recently, these systems have been receiving
increasing attention as they represent one of the most experi-
mentally and numerically tractable platforms for the study of
the interplay between discrete and continuum approaches
�14�. In addition, the formation and propagation of highly
nonlinear pulses in uniform and heterogeneous media has
allowed the discovery of interesting physical phenomena like
pulse energy trapping �15–17�, anomalous reflections �18�,
and tunable acoustic wave propagation �19�.

In this paper, the case of granular materials with periodic
heterogeneity is considered. To simplify the analysis without
much restriction on the physics of the problem, we analyze a
one-dimensional chain of particles with uniform diameters,
in elastic contact with each other. The nonlinear response of
a chain of spherical particles has been extensively analyzed
both on theoretical and experimental aspects �11–14,20–29�.
One of the interesting aspects of these systems stems from
the collective particles behavior: although the materials in
each individual bead are assumed to have a linear elastic
response, the ensemble of particles �granular chain� has a

highly nonlinear response which stems from the Hertzian
contact interaction in compression and from the zero tensile
response.

The response of a bead chain to the impact of a bead of
finite mass at an extremity was analyzed �11,30�. It was
shown that this impact generates solitary waves in increasing
number depending on the striker mass and/or the duration of
the exciting pulse. Less attention was accorded to the shock
wave generated by a constant velocity applied to an extrem-
ity of the bead chain �for instance by the impact of a long
projectile�. When viscous dissipation is present, Herbold and
Nesterenko have shown that a stationary shock front can be
formed in a uniform chain of particles �26�, and that a steady
shock front propagates with a constant velocity and a con-
stant shape. These authors investigated the structure of the
shock front analytically.

The scope of this paper is to analyze the structure of the
shock front generated in periodic heterogeneous chains of
spherical particles by the application of a constant velocity at
an extremity of the chain. While the existence of a steady
shock front has gained some attention for uniform bead
chains, no studies have been developed on the shock-wave
structure in the case of periodic heterogeneous systems. Un-
derstanding the propagation properties of shock structures in
granular media is particularly relevant for the development
of new shock-protecting systems, energy trapping, and blast
mitigation devices based on highly nonlinear dynamics. For
example, it is interesting to learn how one can control the
shock-front width as a function of the materials parameters
and geometrical arrangement of the nonlinear system. Also,
the presence of such “compact” shock front could facilitate
the engineering design of systems for shock confinement and
impulse redirection.

In this paper, we consider chains of particles composed by
the periodic repetition of a basic unit cell made up of an
arrangement of two types of beads �steel and polytetrafluo-
roethylene�. The analysis is based on direct numerical simu-
lations of the dynamic response of the discrete bead system,
on analytical results obtained from homogenized equations
and on experimental tests. A particular attention will be de-
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voted to the leading shock front when no dissipation is taken
into account. The relationship between the microstructure of
the bead chain �i.e., the periodic cell pattern� and the struc-
ture of the shock front will be investigated and a scaling law
will be found. We note that together with nonlinear effects,
dispersive effects do play a primary role in the shaping of the
shock-wave structure. Two types of dispersive effects are
involved: those related to the impedance mismatch between
beads of different properties and those related to the discrete
nature of the bead chain.

The paper is organized as follows: in Sec. II we describe
the materials configurations used in the analysis, the numeri-
cal approach followed, and the experimental set up. We then
introduce in Sec. III the basic continuum equations describ-
ing the traveling waves in periodic heterogeneous granular
chains. We subsequently present in Sec. IV the numerical
results for the presence of shock waves in the periodic com-
posite chains of particles. In Sec. V we develop a theoretical
framework for the analysis of the quasisteady shock waves.
Their structure is studied by analytical means in Sec. VI for
the case of uniform and diatomic �periodic repetition of two-
particle unit cells� chains. We check in Sec. VII the consis-
tency of our approaches by comparing directly the two ana-
lytical approaches followed and by directly matching
experiments, numerical, and theoretical frameworks. Finally,
in Sec. VIII, we demonstrate the existence of a scaling law
�linear relationship� between the width of the steady shock
front and the fundamental cell size in the system. Conclu-
sions are drawn in Sec. IX, and possible applications of this
work are foreseen.

II. MATERIAL CONFIGURATION

We consider the dynamic response of a one-dimensional
bead chain made up of a regular alignment of beads. The
chain is assumed to be either uniform or to be composed of
a periodic distribution of unit cells. Fundamental unit cells
composed of two different types of beads are called dimers.
We refer to a dimer chain as a one-dimensional granular
system of different lengths with periodic repetition of
dimers. Dimers considered in this paper are made up of a
series of N1 aligned beads of type 1 followed by a series of
N2 beads of type 2. The corresponding chain is denoted as
�N1 :N2� dimer. Examples of the possible granular configura-
tions studied are shown in Fig. 1. Beads �1� and �2� have
respectively masses m1 and m2, Young’s moduli E1 and E2,
Poisson coefficients �1 and �2, and initial radii R1 and R2
�diameters D1 and D2�. For instance in Fig. 1�c� the bead
chain is a �3:2� dimer. The bead on the left boundary of the
chain is assumed to be always of type �1�. In the applications
considered in this paper, �1� and �2� designate respectively
stainless-steel beads and PTFE �polytetrafluoroethylene�
beads. The material characteristics and geometry of these
beads are given in Table I.

We denote by � the average stretch over a unit cell sub-
jected to a quasistatic compressive force F. This stretch is
identical for all unit cells and equal to the overall stretch of
the chain. The overall quasistatic response of the chain of
particles is defined by the relationship between F and �.

First, consider the case of a �1:1� dimer as defined in Fig.
1�b�. The initial distance between the centers of two neighbor
beads is L0= �D1+D2� /2. This distance is changed into L
after application of the force F and the stretch is �=L /L0.
The variation � �taken as positive� of the distance between
the centers of neighbor bead is obtained in terms of F by the
Herztian contact theory,

F =
4

3
E��R��k, �1�

k = 3/2,
1

E�
=

1 − �1
2

E1
+

1 − �2
2

E2
,

1

R�
=

1

R1
+

1

R2
. �2�

Considering that �=L0−L=L0�1−��, the quasistatic re-
sponse �1� can be written as

F = FQS��� = K�1 − ��k. �3a�

For k=3 /2, we have:

K =
1

3
E��D1D2�D1 + D2� . �3b�

A uniform bead chain is treated as a particular case of the
above equations.

The effective response FQS��� of the composite bead
chain is derived in Appendix A for the general case where
N1�1 and N2�1. The result has the same form as Eq. �3a�,

F = FQS��� = Kef f�1 − ��k, �4a�

with the overall stretch � being given by

FIG. 1. Schematic representation of the bead chains: �a� uniform
bead chain, �b� �1:1�-dimer chain, �c� �3:2�-dimer chain.

TABLE I. Materials’ properties �19�.

Material
Mass
�g�

E
�GPa�

Poisson ratio
�v�

Radius
�mm�

Stainless steel 0.45 193 0.30 2.38

PTFE 0.123 1.46 0.46 2.38
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� = f11�11 + f22�22 + f12�12. �4b�

The effective stiffness modulus Kef f is defined by Eq. �A14�
in Appendix A. The coefficients f11, f22, and f12 are also
defined in Appendix A. �12 is the stretch between the centers
of two neighbor beads �1� and �2� as illustrated in Figs. 1�b�
and 1�c�. Note that �12=�21. The value of �12 is identical to
� defined by �3a-b�. �11 ��22� is the stretch between the cen-
ters of two neighboring beads �1� ��2��, see Fig. 1�c�, and is
given in Appendix A

For non-Hertzian contact we have k�3 /2. For instance,
for the contact of a cone with a flat surface we have k=2
�31�. For a dimer chain made of aligned cones of types �1�
and �2�, the result �3� will remain valid with k=2 and an
appropriate value of K. Only Hertzian contact �spherical
beads� will be considered in this paper; however some results
can be extended to a generalized contact interaction law with
a non-Hertzian exponent.

A. Numerical analysis

Numerical simulations are conducted by using the nu-
merical scheme described in �13,32�. We represent the elastic
particles composing the chains by point masses �concen-
trated at the bead’s centers� connected by nonlinear springs,
accounting for the Hertzian contact interactions. We solve a
discrete system of equation for the particles equation of mo-
tion by using the Runge-Kutta integration method �32�. The
time step used in the simulations was 5�10−7 s.

B. Experimental setup

One-dimensional chains of particles were assembled from
different periodic combinations of stainless-steel beads �316-
type�, with diameter D=4.76 mm and mass 0.45 g, and
PTFE �polytetrafluoroethylene� particles of equal diameter
and mass 0.123 g �all beads provided by McMaster-Carr�.
The systems were positioned vertically, and the alignment of
the particles was ensured by using a 4-garolite rod holder as
shown in Fig. 1 of �13�. Pulses of different durations and
amplitudes were generated by impacting a long stainless-
steel cylindrical rod �4.76 mm in diameter, mass equal to 33
g� on the top particle of the chain �always selected to be a
stainless-steel bead� from different heights. Two calibrated
piezosensors �RC�103 �s� were embedded inside selected
particles �13� and connected to a Tektronix oscilloscope to
monitor the force-time response of the system and obtain a
precise measurement of the speed of signal propagation be-
tween particles.

III. CONTINUUM APPROACH FOR TRAVELING WAVES
IN CHAINS OF DIMERS

We consider in this section the particular case of a �1:1�
dimer. The unit cell is solely composed of two beads �1� and
�2�. In addition we assume that the beads have same diameter
D. For long waves, a “homogenized” continuous response of
the dynamic behavior of the bead chain can be obtained from
the discrete formulation. We refer to �11� for a general pre-
sentation of the homogenization process, and summarize the

results obtained in �12,13� for a chain of �1:1� dimers.
The position of a material particle in the reference and the

current configurations is, respectively, defined by X and x.
The longitudinal displacement is u=x−X and the deforma-
tion gradient is ux=�u /�x. The wave equation of the homog-
enized system can be written as �12,13�

u		 = ux
k−1uxx + Gux

k−3uxx
3 + Hux

k−2uxxuxxx + Iux
k−1u4x. �5�

In this equation the normalized time 	 is related to the physi-
cal time t by

	 = t�2kDk+1A

m1 + m2
, �6�

with

A =
2E1E2D2−k

3�E1�1 − �2
2� + E2�1 − �1

2��
. �7�

Here k represents the nonlinear contact exponent in the
force-displacement relationship; E1 and E2 are the elastic
moduli of the particles �1� and �2�, respectively, and v1 and
v2 represent the Poisson’s ratios. Note that the normalized
time 	 has the dimension of a length.

Other parameters in Eq. �5� are defined by

G =
1

6
�2 − 3k + k2�D2 m1

2

�m1 + m2�2 , �8�

H = 2�k − 1�D22m1
2 + m1m2 − m2

2

6�m1 + m2�2 , �9�

I = 2D2m1
2 − m1m2 + m2

2

6�m1 + m2�2 . �10�

The lack of symmetry with respect to indices 1 and 2, as in
Eq. �8�, indicates that the solution is only approximate. How-
ever, when compared against experiments and direct numeri-
cal simulations, these results have a good predictivity
�12,13�. In the present paper, we compare direct numerical
simulation of the discrete system with theoretical consider-
ations, and show that the model defined by Eqs. �5�–�10�
provides good results if the condition m1�m2 is satisfied.

We seek traveling-wave solutions of the Eq. �5� that have
the following form:

u = u�
� with 
 = x − VS	 . �11�

The rescaled �nondimensional� wave speed VS is related to

the physical speed V̂S by

VS = V̂St/	 = V̂S� m1 + m2

2kDk+1A
. �12�

The following definition is introduced:

z = �− ux�1/p, �13�

where −ux is assumed to be positive. The exponent is defined
by
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p = ��H + 3I� − ��H + 3I�2 − 8I�G + H + I���2�G + H + I��−1.

�14�

Note that there are two possible values of p that lead to this
reduction, and we chose one arbitrarily to simplify the result-
ing ordinary differential equation. Then, Eq. �5� takes the
form �13�

d2z

d
2 = �z� − �z �15�

with parameters defined by

� = 1 + p − kp , �16�

� =
1

I�kp + a�
, �17�

� =
VS

2

I�p + a�
, �18�

a = 1 − kp + 3�p − 1� + pH/I . �19�

Introducing the stretch �=�x /�X, it follows from Eq. �13�
that

z = �1 − ��1/p. �20�

The analysis is limited to small deformations; therefore there
is no necessity to distinguish Lagrangian and Eulerian coor-
dinates of a material particle.

Note that � scales as 1 /D2 and is a function of k and of
m1 /m2,

� =
1

D2 f�k,m1/m2� . �21�

Similarly

� =
VS

2

D2g�k,m1/m2� , �22�

� = ��k,m1/m2� . �23�

In the case of uniform beads it follows from Eqs.
�8�–�10�, �14�, and �16�–�19� that

I =
D2

12
, G =

1

24
�2 − 3k + k2�D2, H =

1

6
�k − 1�D2,

�24�

p =
2

k + 1
, a = 0, � =

6

D2

k + 1

k
,

� =
3 − k

1 + k
� =

6�k + 1�VS
2

D2 . �25�

For Hertzian contact, we have k=3 /2 and it follows:

� =
10

D2 � =
3

5
� =

10V̂S
2

D2c2 , �26�

where:

c2 =
2E


�0�1 − �2�
��0 mass density of the bead� . �27�

For uniform beads and Hertzian contact, the relationship �12�
between the physical velocity V̂S and the nondimensional
velocity VS reads

V̂S/VS = c�3

2
. �28�

IV. NUMERICAL INVESTIGATION OF QUASISTEADY
SHOCK WAVES IN PERIODIC HETEROGENEOUS

BEAD CHAINS

We consider here shock waves generated by the applica-
tion of a constant velocity v− at the left extremity of a chain
of beads. It is well known that steady wave fronts result in
general from the competition between the front steepening
due to the nonlinearity of the system’s response and the front
widening due to dissipative and dispersive effects. Disper-
sive effects are related to the discrete aspect of the bead
chain on one hand. This is a well-known phenomenon in
lattice crystals. On the other hand, for heterogeneous bead
chains �beads made up of different materials� additional dis-
persive effects are produced by wave reflections and refrac-
tions due to impedance mismatch between beads of different
material properties.

Shock waves in uniform bead chains have been investi-
gated by different authors �11,24–27,33–36�. The relative
role of dissipative and dispersive effects on the shock-front
structure is not well understood. Even when dissipative ef-
fects are absent, the shock front can have a steady structure.
For instance, Hill and Knopoff �37� have observed in their
numerical experiments on strong shocks in one-dimensional
uniform Toda lattices initially at rest that the shock is led by
a soliton. The same observation was made by Nesterenko for
uniform bead chains �11�. The leading hump of the shock
wave was reported to be very close to a stationary solitary
wave propagating at the head of a globally nonstationary
wave. The spatial distribution of the particle velocity was
such that at the wave front, the particle velocity is raised
from zero �state of rest� to a maximum value that is about
twice the applied velocity v−. Behind this shock front, the
particle velocity shows oscillations of decaying amplitude
and finally tends asymptotically to v− far away the wave
front. The velocity of the leading front was also reported to
be equal to the solitary wave velocity with very good accu-
racy �11�.

In this work we study numerically the structure of the
shocks forming in chains in which periodic heterogeneities
are considered and dissipative effects are disregarded. In the
analysis all the particles in the chains are assumed to have
identical diameters. A shock wave is generated by the impact
of a massive striker at one extremity of the chain and the
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existence of quasisteady shock waves is illustrated. The
striker’s impact velocity is denoted by v−. It is reported in
�11,27� that the first oscillation in the force-time diagram
�Fig. 2� should be very close to a solitary wave in the case of
small dissipation. It is then deduced that Fmax /F−=1.95. This
relationship is well satisfied in our simulations.

The results presented in Fig. 2 show that almost identical
time histories for the leading fronts and initial oscillations
are obtained when recording the force at “homologous”
beads separated by the distance nLcell, where Lcell is the cell
size and n is a positive integer. For instance, in Fig. 2�d�, the
particles no. 90 and no. 150 are at ten cell sizes from each
other. Note that for nonhomologous beads no. 90 and no. 151
the time histories of the force would be different. To clarify
the comparison, Figs. 2�e� and 2�f� show results for the �1–
1�-dimer and the �5–1�-dimer in which the signal of the par-
ticle closest to the impact has been shifted to overlap with
the signal recorded from the homologous points. It is evident
that the fronts and the following leading pulses overlap ex-

actly, but after few oscillations the tails tend to go out of
phase.

The shock front is characterized by half of the first oscil-
lation, where the force rises to the maximum value Fmax. The

velocity V̂S of the wave front can be estimated by consider-
ing the arrival time of the peak value of the force at two
homologous bead centers. As soon as the shock front is at
few cell sizes from the chain extremity, the shock velocity is
observed to have a constant value.

From these considerations it can be concluded that, for an

observer moving with the shock velocity V̂S, the wave pat-
tern is not changed when the observer arrives at homologous
beads �distant by an integer numbers of cells�. When the
observer takes a different position in the unit cell the wave
pattern is changing, but due to the periodicity of the chain
structure, the observer experiences the periodicity T

=Lcell / V̂S in the time evolution of the wave pattern. For the
observer, time averaging will define a steady shock-wave

structure propagating with the velocity V̂S. These consider-
ations can be summarized as follows. In general the force
F=F�x , t� is function of position and time. Considering the

coordinate 
=x− V̂St, the wave pattern has the form F

= F̃�
 , t� for an observer moving with the shock-wave veloc-

ity V̂S. Due to the spatial periodicity of the bead-chain struc-

ture, F̃�
 , t� has the time periodicity T=Lcell / V̂S. We shall
qualify this wave pattern as a quasisteady shock front. A
steady wave can be defined by time averaging of the quasi-
steady wave over a period,

Fst�
� =
1

T
�

t0

t0+T

F̃�
,t�dt .

As discussed in the foregoing, V̂S and F− can be obtained in
terms of the impact velocity v− from the numerical simula-
tions of the dynamic response of a bead chain. The force F−

corresponds to the steady state � −� reached far behind the
shock front. The stretch �− associated to this state is related
to F− by the constitutive law �4�,

F− = FQS��−� = Kef f�1 − �−�k. �29�

The values of V̂S and F− are reported in Table II for different
impact velocities comparing numerical and theoretical data
�see next section�.

V. THEORETICAL ANALYSIS OF QUASISTEADY SHOCK
FRONTS IN PERIODIC COMPOSITE BEAD CHAINS

In this section, a theoretical framework is developed for
the analysis of quasisteady shock waves. The laws relating

V̂S and F− to the impact velocity v− will be determined.
These results are then compared to the data obtained by nu-
merical means in the previous section. For a given impact
velocity v− the steady state �−� reached far behind the shock
can be characterized by considering the following simplified
framework. Note first that, to fulfill the small deformation
hypothesis and the Hertzian contact theory, only moderate
impact velocities are considered. In that context, “thermal

FIG. 2. �Color online� Numerical results showing the evolution
with time of the compressive force F at various bead locations for a
given impact velocity v− �1 m/s�. Four configurations for chains of
300 particles are considered: �a� Uniform chain, the top �dark�
curve corresponds to particle 51 and the bottom �light� one to par-
ticle 101, Y-axis scale is 25 N. �b� �1:1� dimer chain, the top curve
corresponds to particle 51 and the bottom one to particle 71, Y-axis
scale is 5 N. �c� �3:3� dimer chain, the top curve corresponds to
particle 95 and the bottom one to particle 125, Y-axis scale is 5 N.
�d� �5:1� dimer chain, the top curve corresponds to particle 90 and
the bottom one to particle 150, Y-axis scale is 10 N. In �a�–�d� the
curves have been shifted on the vertical axis to ease the visualiza-
tion. For all cases, the force first rises to a local peak value Fmax
and then sustains oscillations with decreasing amplitude. The force
is tending asymptotically to the limit F−. Note that an accurate
estimate of F− can be obtained by considering the time average of
the force over some oscillations �first oscillation disregarded�. �e�
Curves from panel �b� in which the signal from particle 51 has been
superimposed to particle 71 for comparison. �f� Curves from panel
�d� in which the signal from particle 90 has been superimposed to
particle 150 for comparison.
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effects” characterized by random and chaotic bead vibrations
are negligible.

Ahead and far behind the shock front, the bead chain is
respectively in the state of rest �+� and in the state �−� of
quasistatic compression. In a first step, the shock is consid-
ered as a moving discontinuity across, which the particle
velocity, the stretch, and the stress sustain an instantaneous
jump from �+� to �−�. For shocks of moderate amplitude, the
jump relations will be obtained by taking the quasistatic re-
sponse given by Eq. �4� as the Hugoniot �“thermal effects”
neglected�. To characterize the shock-wave structure, i.e., the
layer across which the physical variables evolve from state
�+� to state �−�, additional information about the bead-chain
response is necessary. This problem will be addressed in the
next section in the case of uniform bead chains and �1:1�
dimers.

States �−� and �+� are related by jump relationships ob-
tained from the conservation of momentum and the compat-
ibility condition. The law of conservation of momentum, in
the direction x of wave propagation, has the form

�F̂

�x
= �̂0

�v
�t

, �30�

where F̂ is the longitudinal force, v is the particle velocity,
and �̂0 is the mass per unit chain length. Note that by defi-
nition the compressive force F �positive under compression�
is

F = − F̂ . �31�

The compatibility equation reads

�v
�x

=
��

�t
. �32�

The stretch � is given in terms of the longitudinal displace-
ment u by

� = 1 +
�u

�x
. �33�

For a steady wave and for an observer moving with the

shock velocity V̂S, the variables are solely function of 
=x

− V̂St. Then Eqs. �30� and �32� can be written as ordinary
differential equations with respect to 
. Upon integration of
these equations, the following jump relationships are ob-
tained:

F− − F+ = �̂0V̂S�v− − v+� , �34�

v− − v+ = − V̂S��− − �+� . �35�

As the state �+� is the initial state of rest, we have F+=0,
�+=0, and �+=1. Thus Eqs. �34� and �35� take the form

F− = �̂0V̂Sv
−, �36�

v− = V̂S�1 − �−� . �37�

By elimination of V̂S between Eqs. �36� and �37� and by
using the constitutive relationship �29�, the stretch behind the
shock can be calculated in terms of the impact velocity v−,

��− − 1�FQS��−� + �̂0�v−�2 = 0. �38�

This relationship provides an implicit equation that allows us
to determine �− in terms of the impact velocity v−. The shock

velocity V̂S is then obtained from Eq. �37�.
Considering the law �4�, we obtain from Eq. �38� an ex-

plicit relationship between �− and the impact velocity,

�− = 1 − � �̂0

Kef f
�v−�2	1/�1+k�

. �39�

The compressive force is

F− = Kef f�1 − �−�k = Kef f� �̂0

Kef f
	k/�1+k�

�v−�2k/�1+k�. �40�

The Eqs. �39� and �40� characterize the material state �−�
behind the shock front.

The shock velocity V̂S is given by Eq. �37�,

V̂S
2 =

Kef f

�̂0

�1 − �−�k−1 = �Kef f

�̂0
	2/�1+k�

�v−��2�k−1��/�k+1�.

�41�

For Herzian contact we have k=3 /2, and V̂S� �v−�1/5. As
noted in �11,27� this nonlinear relationship between shock
velocity and impact velocity is quite different from the linear

law V̂S=c++Sv− usually obtained for steady plastic shocks in
polycrystalline metals �38,39�.

The results obtained from the continuum theory �40� and
�41� are compared in Table II for a �1:1� dimer with the data
obtained in Sec. IV by direct numerical simulation of the
discrete bead system. A satisfactory agreement is observed
between these approaches. It should be noted that the results
would be slightly different for a �N :N� dimer since the stiff-

TABLE II. Comparison of the numerical and analytical values

obtained for the shock velocity �V̂S�, the force amplitude �F−� and
the front width for different impact velocities. Here we considered a
�1:1� dimer chain composed of 300 particles, values are reported in
reference to particles number 51 and 57 �PTFE� from the impacted
side.

Numerical data Analytical data

v−

�m/s�
F−

�N�
V̂s

�m/s�
w

�mm�
F−

�N�
V̂s

�m/s� �−

0.1 0.50 84.50 16.48 0.4912 81.62 0.9988

0.5 3.43 116.60 17.72 3.389 112.6 0.9956

1 7.85 134.72 18.46 7.786 129.3 0.9923

10 124.00 211.56 18.40 123.4 205.0 0.9512

25 375.50 255.00 18.87 370.5 246.2 0.8985

50 860.40 292.92 19.63 851.3 282.9 0.8232

100 1974.00 336.00 18.31 1956 324.9 0.6922
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ness Kef f depends on N �see Eqs. �A14� and �A8��. For in-
stance, for N=6 and �−=0.1 m /s the results are F−

=0.54 N and V̂S=90.5 m /s. Additional results are shown in
the Table III for a �5:1� dimer.

VI. SHOCK STRUCTURE FOR UNIFORM BEAD CHAINS
AND CHAINS OF (1:1) DIMERS: THEORETICAL

ANALYSIS

Numerical simulations presented in Sec. IV support the
existence of quasistationary shocks in elastic bead chains.
Here we investigate in details the shock structure for com-
posite as well as for uniform chains. The shock structure is
defined as the layer where the material sustains a continuous
transition �oscillatory in our case� from state �+� to state �−�
respectively ahead and behind the shock front. In dissipative
materials, the shock structure results from the competition
between the steepening of the wave front due to the nonlin-
earity of the material response and the smoothing due to
dissipative effects. Dissipation is the result of viscous damp-
ing or thermal conduction. Note that viscous effects have
been introduced by Herbold and Nesterenko �26� to obtain
fully steady shock waves in uniform bead chains. However,
these results have not been extended to heterogeneous bead
chains.

In the numerical and theoretical treatment of the present
paper, the materials composing the particles are assumed to
have a perfectly linear elastic response. Accordingly, the con-
tact interaction between particles is assumed to follow the
nonlinear Hertz law. Thus, the quasisteady shock structure
observed in the numerical results shown in Sec. IV must be
attributed to a physical phenomenon different from dissipa-
tion. This is not the case for the experiments �shown in Sec.
VII� in which the effects of dissipation are evident and con-
firm the results reported in �26�. Indeed, it is well known that
a shock can be structured by the interplay of dispersive ef-
fects and nonlinear material effects. An example is given by

the Korteweg-de Vries equation governing shallow water
waves �40�.

Wave dispersion is a known phenomenon in the dynamic
response of uniform chains of particles. Lattice dispersion
occurs when the wavelength is of the order of the separation
distance between bead centers. In heterogeneous chains an
additional agent of wave dispersion is due to the impedance
mismatch between domains occupied respectively by beads
�1� and �2�, having different mechanical properties. Consid-
ering for example a �N1 :N2� dimer with N1 and N2 being
large enough, one expects wave reflection and refraction at
the interfaces �1�-�2� and �2�-�1�. It is known from the theory
of elastic waves in heterogeneous elastic bodies that wave
dispersion is the result of wave reflection and refraction at
material interfaces. This problem has been analyzed in great
details �41,42�, in particular for multilayer periodic media
�4�.

This implies that for a heterogeneous chain of particles
wave dispersion comprises in general two different aspects
working at different length scales. The first aspect is lattice
dispersion at the scale of the separation distance D between
bead centers. The second is impedance mismatch at the in-
terfaces between the domains occupied by beads �1� and �2�
�N1 and N2 being large enough�. The scale of this additional
dispersive effect is the cell size �N1+N2�D. For small values
of N1 and N2, the lattice scale �microscopic scale� and the
cell scale �mesoscopic scale� can not be separated.

An important feature of the present paper relies on the
detailed analysis of the relationship between wave dispersion
and the structure of quasisteady shock waves in bead chains.
Of particular interest is the effect of N1 and N2 in composite
chains.

The shock-wave patterns exhibited in Fig. 2 show oscil-
lations with decaying amplitudes. For a �1:1� dimer chain,
the solution is governed by Eq. �15�. In the phase plane
�z ,�=dz /d
�, the trajectories emanating from the state �+�
�z=0, �=0� have the form

� = �� 2�

� + 1
z�+1 − �z2. �42�

These trajectories are defined for 0�z�z�, where z�

= �2� / ����+1���1/�1−��.
The state �z− ,�=0�, corresponding to the state �−� behind

the shock, can not be reached by any of the trajectories de-
fined by Eq. �42�. Thus the oscillations observed numerically
in the wave pattern cannot be described by Eq. �15�. How-
ever, as shown in �26� the addition of viscosity allows one to
define a trajectory connecting the states �+� and �−� defined
on both sides of the shock. For small viscosities, the shock
structure z�
� shows decaying oscillations until the value z−

is reached. For larger viscosities the transition from z=0 to
z− occurs without oscillations. It is still an open question to
describe by analytical means the decaying oscillations shown
in Fig. 2, while there is no viscosity in the problem. The
failure of Eq. �15� in doing so may indicate that the under-
lying long wave hypothesis brings too much simplification in
the physics of the problem. The role of numerical damping
as a factor of attenuation should also be clarified. The decay

TABLE III. Comparison of the numerical and analytical values

obtained for the shock velocity �V̂S�, the force amplitude �F−�, and
the front width for different impact velocities. Here we considered a
�5:1� dimer chain composed of 300 particles, values are reported in
reference to particle number 103 and 121 �PTFE� from the impacted
side.

Numerical data Analytical data

v−

�m/s�
F−

�N�
V̂s

�m/s�
w

�mm�
F−

�N�
V̂s

�m/s� �−

0.1 1.09 136.00 54.26 1.10 132.9 0.9992

0.5 7.41 187.89 56.37 7.62 183.3 0.9973

1 17.83 216.91 54.01 17.50 210.6 0.9953

10 280.4 342.72 54.50 277.3 333.7 0.9700

25 838.2 411.92 55.60 832.6 400.8 0.9376

50 1970 476.00 55.70 1913 460.4 0.8914

100 4511 542.28 54.23 4395 528.9 0.8109
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of oscillations might be also connected to thermalization and
the trend toward equipartition of the energy as observed in
other situations �15,17,32�.

Our purpose is not to describe the whole pattern of oscil-
lations, but rather to analyze the first ramp where the force is
raised from F=0 to F=Fmax. We shall call this leading part
of the shock wave the shock front. For a nondissipative uni-
form bead chain, the shock front is constituted by half a
solitary wave as discussed by Nesterenko �11�. This result
remains almost unchanged if a small dissipation is accounted
for. In this section a theoretical analysis of the shock front is
developed based on Eq. �15� for stationary traveling waves.
This equation describes the motion of stationary traveling
waves in uniform bead chains and �1:1� dimers. The com-
parison with numerical analysis indicates that Eq. �15� pro-
vides a good approximation of the shock front in �1:1�
dimers. This is an extension of the observations of Nester-
enko �11� made for a uniform bead chain. The analysis of the
shock structure depends on the value of the exponent � in
Eq. �15�. To consider a specific example, it can be noted that
for uniform bead chains we have, according to Eq. �25�,
1���3 for 1�k�0, �=1 for k=1, and 0���1 for
3�k�1. For Hertzian contact we have k= 3

2 and �= 3
5 . In

the following, we shall restrict our analysis to the case
0���1. Equation �15� has the form

d2z

d
2 = g�z� �43�

with

g�z� = �z� − �z �� � 0, � � 0�, z = �− ux�1/p. �44�

Defining

z− = ��

�
	1/��−1�

, �45�

we have, g�z−�=0. As a consequence of 0���1, we note
that g�z��0 for 0�z�z−.

We seek a solution 
→z�
� of Eq. �15� such that there
exist 
− for which z�
−�=z−.

Multiplying both members of Eq. �43� by dz /d
, it fol-
lows after integration that

1

2

� dz

d

�
��2

− � dz

d

�
−��2
 = ĝ�z� �46�

with

ĝ�z� = − �
z

z−

g�u�du =
�

� + 1
�z�+1 − �z−��+1� −

�

2
�z2 − �z−�2� .

�47�

Note that ĝ�z��0 for 0�z�z−.
Since the right-hand side of Eq. �46� is negative we must

have �dz /d
�
−��� �dz /d
�
�� for 
�
−.
We consider a wave moving to the right direction. Thus

z�
� is a decreasing function of 
 and z�
−�=z−�z�
� for

�
−. In addition lim


→�

z�
�=0. By letting 
 tending to infinity

in Eq. �46� we obtain

� dz

d

�
−�	2

=
2�

� + 1
�z−��+1 − ��z−�2. �48�

Thus Eq. �46� reduces to

1

2
� dz

d

	2

= g̃�z� �49�

with

g̃�z� =
�

� + 1
z�+1 −

�

2
z2 = �

0

z

g�u�du . �50�

For 0�z�z− we have g�z��0 and thus g̃�z��0.
Considering that dz

d
 �0 for a right moving wave, we have

dz

d

= − �2g̃�z� �51�

and by integration


 = 
− + �
z

z− du

�2g̃�u�
. �52�

For z�0, the function z→1 /�g̃�z� is integrable in the
vicinity of z=0 when ��1. This is due to the fact that
for small values of z the function g̃�z� is equivalent to
�� / ��+1��z�+1.

Therefore the value z=0 is reached at 
+�� defined by


+ = 
− + �
0

z− du

�2g̃�u�
. �53�

From Eq. �49� we have dz
d
 �
+�=0.

The integration of Eq. �52� can be made explicitly, see
Appendix B. It is shown that


 = 
− +
2

�1 − ����
�arcsin����� + 1�

2�
�z−��1−��/2	

− arcsin����� + 1�
2�

z�1−��/2	� �54�

The shock-front structure is given by the function z�
�. This
function is defined by the parametric representation z→

�54�. Note that the shock front is not entirely described by
considering only variation in 
 on the interval 
−�
�
+. By
letting 
 vary below the value 
− the totality of the shock
front from z=0 to the maximum value of z can be described.

A lower estimate of the shock width can be obtained by
noting that z+=0 at 
+ and by using the definition �45� of z−.
An upper estimate is found by considering that about half of
the leading front is spanned when 
 varies from 
+ to 
−,

wlower = 
+ − 
− =
2

�1 − ����
arcsin��� + 1

2
	 ,

wupper = 2wlower. �55�

From Eq. �55� it follows that the shock width is not sensitive
to the shock amplitude �i.e., to the impact velocity v−�. This
point will be checked against direct numerical calculations.
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Let us remind that for a uniform bead chain and for a �1:1�
dimer with uniform bead diameter D, � is scaled by 1 /D2,
see Eq. �21�. Therefore the shock width is scaled by the bead
diameter D.

VII. COMPARISON OF ANALYTICAL, NUMERICAL,
AND EXPERIMENTAL APPROACHES FOR A CHAIN

OF DIMERS

A. Characterization of the state (−) behind the shock:
consistency of analytical approaches

In this manuscript we have evaluated the material state
�−� far behind the shock front and the shock velocity follow-
ing two different analytical approaches: �i� The first approach
was developed in Sec. V and used the quasistatic homoge-
neized compression response of the chain of particles and the
jump conditions across the shock. This approach could be
applied to any periodic bead chain; �ii� The second approach
was specifically developed for a chain of �1:1� dimers. It was
based on the traveling wave Eq. �15�, which is a continuous
version of the dynamic response of the discrete bead system.

The results of the first approach �i� have been found to be
in good agreement with numerical simulations. The consis-
tency with the second approach �ii�, which is specific to a
�1:1� dimer, needs also to be evaluated.

The shock intensity can be characterized either by the

impact velocity v− or by the shock velocity V̂S as v− and V̂S
are in one-to-one correspondence. We consider here that the

shock velocity V̂S is given. Denote by �1
− and �2

− the stretches
at state �−� determined by the approaches �i� and �ii�, respec-
tively. For consistency one should have �1

−=�2
−.

Using the approach �i� it follows from Eq. �41� that

�1 − �1
−�k−1 = V̂S

2 �̂0

Kef f
. �56�

According to the approach �ii�, the state �−� is defined by
z−= �� /��1/�1−��. Combining with Eq. �20� we obtain

�1 − �2
−��1−��/p =

�

�
= VS

2kp + a

p + a
, �57�

where the expressions �17� and �18� of � and � have been
used.

Dividing Eqs. �56� and �57�, noting that k−1= �1−�� / p
from Eq. �16� and considering Eq. �12�, it follows that

�1 − �2
−

1 − �1
−	k−1

=
Kef f�m1 + m2�

2�̂0kDk+1A

kp + a

p + a
. �58�

For a �1:1� dimer with uniform bead radius, we have

Kef f =
2

3

E1E2D2

E2�1 − v1
2� + E1�1 − v2

2�
, �59�

A = D−kKef f , �60�

�̂0 =
m1 + m2

2D
. �61�

Thus, Eq. �58� can be rewritten as

�1 − �2
−

1 − �1
−	k−1

=
kp + a

k�p + a�
. �62�

Considering that k=3 /2, Eq. �62� takes the form

�1 − �2
−

1 − �1
−	1/2

= Q �63�

with

Q =

p +
2

3
a

p + a
. �64�

For uniform beads, we have �1
−=�2

− since a=0, according to
Eq. �25�. Thus, the same state �−� is predicted by approaches
�i� and �ii�.

However for a �1:1� dimer the approaches �i� and �ii� do
not provide in general exactly the same results. An estimate
of the gap between the results can be obtained by comparing
Q with unity as shown in Fig. 3. From Eqs. �14� and �19� it
appears that a and p are solely functions of k and of the mass
ratio m1 /m2. As k has the fixed value 3/2, it is enough to
show the variation of Q in terms of m1 /m2. Figure 3 shows
that for m1 /m2 larger than 0.8, the maximum deviation of Q
from unity is about 4%. For m1 /m2�2, Q is rapidly tending
to the asymptotic value 1. Thus to within few percent error,
the two approaches are aimed to provide close results if one
considers that the label �1� is affected to the heavy bead.

B. Shock structure for a dimer bead chain: comparison
of analytical, numerical, and experimental approaches

It is worth evaluating the analytical results by comparing
the shock structure given by numerical and experimental re-
sults with the predictions of approach �ii� developed in Sec.

FIG. 3. Variation of the parameter Q, defined by Eq. �64�, in
terms of the mass ratio of particles. A value of Q close to unity
indicates a good consistency between the two analytical approaches
used for characterizing the state behind the shock.

STATIONARY SHOCKS IN PERIODIC HIGHLY … PHYSICAL REVIEW E 80, 056602 �2009�

056602-9



VI and based on the long-wavelength approximation �15�.
Figure 4 shows the evolution of the force with time for dif-
ferent particles and dimer arrangements. The results pre-
dicted by the analytical approach �curve 1� are compared
against numerical simulation �curve 2� and experimental
measurements �curve 3�. In the analytical approach, the spa-
tial position 
 is function of z by Eq. �54�, and of time

through t=
 / V̂S+ t0, where t0 is an arbitrary time shift which
can be calibrated to have the best match with the experimen-
tal results. Note that the result �54� was obtained from Eq.
�15�. Thus the long wave approximations, upon which this
equation is based, provide a limitation of analytical results.
Another difficulty in the analytical approach is to find an
appropriate relationship between force and stretch during the
transition between state �+� and state �−� where oscillations
are observed. Using the homogenized quasistatic constitutive
law �4� is not correct, except for states �+� and �−� which are
uniform and steady states. Considering the linear relationship
between the force F and the stretch � as described by the
Rayleigh line

F = �̂0V̂S
2�1 − �� = �̂0V̂S

2zp �65�

will not be totally appropriate as this equation is obtained by
using the macroscopic form of the conservation of momen-
tum, Eq. �30�, see Appendix C. Despite these limitations, Eq.
�65� is used to derive the transient evolution of the compres-
sion force, to test the validity of the continuum approach by
comparison against experimental measurements, Fig. 4.

The shock velocity V̂S is calculated in terms of v− with
Eq. �41�. The dependence of F upon 
 is described by the
parametric representation (
�z� ,F�z�), where 
�z� is given by
Eq. �54� and F�z� by Eq. �65�. Figure 4�a� shows that the
shock front, predicted analytically for uniform bead chain, is
in good correlation with numerical simulations. However, the

correlation is not as good against experimental measure-
ments. The presence of dissipative effects in experiments,
which are neglected in the modeling, but cannot be avoided
in the experiments, may explain this discrepancy �26�. The
following estimates of the shock-front width are obtained
from Eq. �55�: wlower=8.3 mm, wupper=16.6 mm. The rise

time at the shock front is evaluated as �tlower=wlower / V̂S
=0.013 ms, �tupper=0.026 ms. These lower and upper esti-
mates correlate well with the rise time estimated numerically
and experimentally, see Fig. 4�a�.

For the �1:1� dimer, from Eq. �55� we have, wlower
=13 mm, wupper=26 mm, �tlower=0.119 ms, and �tupper
=0.238 ms. The results of the lower ��tlower� and upper
bounds ��tupper� of the rise time associated to the first peak
provide an estimate for the temporal shock width of
�0.12 ms. This value is in good correlation with the tempo-
ral width observed in the fronts of Fig. 4�b�. Figures 4�c� and
4�d� show the spatial distribution of the force along, respec-
tively, �2:2� and �4:4� dimer chains for an impact velocity
v−=0.2 ms−1. Here again, a good correlation could be found
between estimations of the rise time by numerical and ex-
perimental results. In addition it was found that the width w
of the shock front scales with the cell size. For instance, for
the �1:1� dimer chain the cell size is 2D where D
=4.76 mm is the bead diameter. It appears from the numeri-
cal results reported in Table II that w� two cell sizes. It will
be shown in the next section that the scaling law relating the
width of the shock front to the cell size is verified for any
kind of dimer configuration.

The numerical results presented in Fig. 4 are supported by
experimental measurements. Indeed, it appears clearly in
Fig. 4 that the rise times of the leading front �and conse-
quently the widths of the shock front� obtained numerically
are in good correlation with those obtained experimentally.

It is also important to note that the width of the steady
shock front is almost independent upon the impact velocity
v−, see for example the results reported in Table II showing
for a �1:1� dimer chain a quasi-invariance of w in the range
0.1 ms−1�v−�100 ms−1. The analytical estimates, from
Eq. �55�, confirm the invariance of w with respect to v−.

VIII. RELATIONSHIP BETWEEN THE CELL SIZE AND
THE WIDTH OF THE STEADY SHOCK FRONT

The results of the previous section �scaling law of the
width w of the shock front and independence of w with re-
spect to the impact velocity� obtained for uniform bead
chains and for �1:1� dimer chains are extended here for unit
cells of any size and any configuration. The analytical ap-
proach developed in Sec. VI does not apply here, since it is
not proved that Eq. �15� remains valid when the unit cell
contains more than two beads. Therefore the shock-width is
evaluated from numerical simulations of the dynamic re-
sponse of the discrete bead chain.

The numerical evaluation of the shock width is made in
the following way. At a given bead, the analysis of the time
history of the force provides an evaluation of the arrival time
of the shock front �tarrival� and of the time at which the maxi-
mum of the force is reached �tmax�. However the time differ-

FIG. 4. �Color online� Comparison of analytical results from Eq.
�54�, �curve 1�, numerical simulation of the discrete bead chain
�curve 2� and experiments �curve 3�. �a� Uniform chain composed
of 53 particles. Striker velocity 0.44 m/s, curves correspond to the
force-time response measured in particle 21; �b� �1:1� dimer chain
composed of 53 particles. Striker velocity 0.44 m/s, curves corre-
spond to particle 39; �c� �2:2� dimer chain, 64 particles total, striker
velocity 0.2 m/s, curves correspond to particle 28; �d� �4:4� dimer
chain 64 particles total, striker velocity 0.2 m/s curves correspond
to particle 26.
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ence �t= tarrival− tmax depends naturally on the location of the
bead �inside the unit cell� where time history is recorded.
Taking the average of �t over the whole set of beads of a
unit cell provides a quantity �taverage—which, under steady
wave propagation, will be time independent. Finally, an es-

timate of the shock-front width is given by V̂S�taverage. This
characterization of the shock width may be rather computa-
tionally lengthy when large cell sizes are considered. It has
been checked that an easier way to proceed, providing close
results, consists in evaluating �t at the bead in the middle �or
closest to the middle� of the soft phase of the unit cell con-
sidered.

In Fig. 5, the shock-front width, evaluated as above, is
reported in terms of the cell size for various cell configura-
tions. The shock width is independent of the impact
velocities and has been obtained by averaging runs between
�0.1–100 m/s�. From Fig. 5�a�, it appears that the shock
width is proportional to the cell size for �N1 ,N2� dimers with
N1�N2. For N1�N2, an affine relationship is found, which
is slightly different from the linear law obtained for
N1�N2. We do not have a clear explanation of this differ-
ence. However, in all cases the shock-front width can be
considered as scaled by the cell size. These results extend
those of Sec. VII obtained for uniform chain and �1:1�
dimers.

The invariance with respect to the impact velocity of the
shock-front width, demonstrated in Sec. VII for uniform
chain and �1:1� dimers, is extended here by considering vari-
ous cell configurations. The results of Table III for a �5:1�
dimer provide an illustration of this invariance in the range
of impact velocities 0.1 ms−1�v−�100 ms−1. Indeed, for
all our simulations made for various cell configurations, the
same invariance was found.

It is interesting to compare the dynamic response of a
composite bead chain with the response of layered structures.
Zhuang et al. �9� considered periodically layered composites
made of a succession of soft �polymeric� and hard �metallic�
layers.

In their shock experiments the laminates were deformed
plastically and it was found that the stress jump �� across
the shock was related to the maximum strain rate within the
shock ��̇�max by a power-law of the form

��̇�max = B����hL. �66�

For the laminates analyzed by Zhuang et al. �9� the expo-
nent was in the range: 1.6�hL�2.4. These results were in-
terpreted theoretically by Molinari and Ravichandran �43� in
terms of gradient plasticity approaches. A power-law depen-
dence of the form �66� seems to be a general feature in shock
experiments, the exponent h depending on the material con-
sidered. Swegle and Grady �39� discussed the relationship
�66� in the context of single-phase metallic materials. They
found from shock-wave experiments that Eq. �66� was fairly
well satisfied for various metals with the exponent h having
the “universal” value hSG=4. Swegle and Grady �39� inter-
preted these results in terms of a material strain-rate sensi-
tivity parameter m. According to the interpretation of experi-
mental results given in �39�, single-phase metals should have
the same rate sensitivity m=0.5 when subjected to the high
strain rates undergone within the shock layer. These results
were revisited by Molinari and Ravichandran �44� who
found that, within the shock layer, m could be different from
0.5, although remaining close to this value.

The composite bead chains considered in this paper rep-
resent highly nonlinear material systems for which it is worth
to characterize the “shock” response as done previously for
solid continuum by Swegle and Grady �39�, and Molinari
and Ravichandran �43,44�. A way to characterize the material
response within the shock is to analyze the relationship be-
tween load �compressive stress or force� and strain rate. With
respect to the approach developed by Swegle and Grady �39�
the stress � has to be replaced here by the force F. Since
F+=0 �state of rest ahead of the shock�, the variation in the
force between state �+� and state �−� is: �F=F−.

We define an average strain rate �̄̇ within the shock front
as follows. When a particle crosses the leading shock front
the corresponding compressive force is raised from 0 to
Fmax, which is about two times F−. The time durations to

reach Fmax and F− are, respectively, about w / V̂S and

�w /2� / V̂S. The increasing of strain �in absolute value� corre-
sponding to the variation of F from 0 to F− is �ln �−�. There-
fore �̄̇ can be defined as

FIG. 5. �Color online� Variation in the shock width as a function
of the cell size for different configurations of particle chains. �a�
Response of dimers in which steel beads represent the predominant
mass contribution; �b� response for dimers in which the number of
PTFE beads in a unit cell prevails over the number of steel beads.
The dotted line reports the linear fitting of the data in panel �a� for
comparison. The inset shows the force-time relation for the disor-
dered shock front in a �2:10� dimer impacted by a steel particle with
velocity 10 m/s. The curve represents the numerical result obtained
in particle 116.
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�̄̇ =
�ln �−�

�w/2�/V̂S

. �67�

Considering that for moderate compression we have �ln �−�
�1−�−, it can be checked by using Eq. �41� that

�̄̇ � 2
v−

w
. �68�

Figure 6 shows the dependence of F− in terms of �̄̇ in a
log-log diagram. Different material configurations are con-
sidered �1:1�, �3:3�, and �6:6� dimers. Note that the cells �3:3�
and �6:6� are obtained from the �1:1� dimer’s cell by multi-
plying the number of beads, respectively, by a factor �=3
and �=6. For a given unit-cell configuration, the linear rela-
tionship obtained in Fig. 6 indicates that a power-law depen-
dence of the form applies,

�̄̇ = B�F−�hBC, �69�

where the subscript �BC� on the exponent holds for bead
chain.

As the slopes of the different lines in Fig. 6 are the same,
it can be concluded that the exponent has a constant value
independent of the ratio �. This value, estimated as hBC
=0.83�0.009 is in close agreement with the theoretical
value htheor=0.833, as predicted below for k=3 /2 by Eq.
�71�.

Analytical results can be obtained by combining Eqs. �68�
and �40� into

F− = b��̄̇�1/htheor �70�

with

b = Kef f� �̂0

Kef f
	k/�1+k�

w2k/�1+k�, htheor =
1 + k

2k
. �71�

Since for a given bead chain, the shock width was shown to
be almost independent of the impact velocity v−, we have, by
comparison with Eq. �69�: hBC= �1+k� /2k.

Equations �70� and �71� show that for a given value of F−

�i.e., for a given shock strength�, the average strain rate �̄̇
within the shock front is nearly inversely proportional to the
shock width w. As w is proportional to the cell size, it can be
concluded that �̄̇ is inversely proportional to the cell size.
Indeed, in the log-log diagram represented in Fig. 6, the
curve associated to the �1:1� dimer is obtained from that
associated to the �3:3� dimer by a horizontal shift of ln���,
where �=3 is the ratio between cell sizes.

It should be noted that the slope of the lines in Fig. 6
depends solely upon the value of the exponent k in the Hertz
constant law. However, for a given composition of the dimer
chain, the position of the corresponding line in Fig. 6 is
given by the coefficient b defined in Eq. �71�. For a �1:1�
dimer chain, this coefficient depends of the composition of
the unit cell via Kef f and �̂0. The coefficient b depends also
from �=��k ,m1 /m2� and �= 1

D2 f�k ,m1 /m2� through the esti-
mates �55� of the shock-front width.

The relationship �70� can be viewed as representative of
the material response across the shock. It is worth noting that
the force F− exhibits a strain-rate dependence that does not
stem from the quasistatic response of the bead chain as the
beads are assumed to have a purely elastic response. From
Eq. �70� it appears that the parameter b vanishes when inertia
is neglected ��̂0=0�. Thus the rate dependence of F− is
clearly the consequence of inertia effects.

The exponent h varies within a broad range depending on
the structure of the material considered and on the physical
mechanisms that control the shock front. The largest value
h=4 is obtained for single-phase metals and is due to dissi-
pation. The lowest value hBC=0.833 is for the highly nonlin-
ear bead chains considered in this paper. Intermediate values
of the exponent 1.6�hL�2.4 are found for continuum lay-
ered materials.

It is worth noting that hBC is solely dependent upon the
exponent k=3 /2 of the Hertz contact law, which is only de-
pendent on the geometry of the contact. In contrast for con-
tinuum such as polycrystalline metals and layered compos-
ites, the exponent h is highly dependent on material
properties. However, for bead chains, material properties do
have an effect on the level of strain rate through the pre-
factor b in the law �70�.

It is also important to note that a low value of h is ben-
eficial. Indeed, in that case, we have a weak dependence of
the strain rate �within the shock front� with respect to the
pressure loading.

IX. CONCLUSIONS

We have considered quasistationary shock waves propa-
gating in homogeneous and heterogeneous chains of spheri-
cal particles generated by the impact of a massive striker.
The chains of particles were composed by the periodic rep-

FIG. 6. Force F− versus average strain rate �̄̇ within the shock
layer for various cell sizes: �1:1� dimer chains �crosses�; �3:3�
�circles�; �6:6� �squares�.
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etition of a basic unit cell composed of an arrangement of
two types of beads �steel and polytetrafluoroethylene�. The
analysis was based on direct numerical simulations of the
dynamic response of the discrete bead system and on ana-
lytical results obtained from homogenized equations. Theo-
retical and numerical results were also compared against ex-
perimental tests and a good correlation was found with
respect to the material state behind the shock.

For the amplitude of the leading hump in the shock front,
a qualitative agreement was found with respect to experi-
mental data. However a quantitative agreement could not be
reached as dissipative effects in experiments produced an
important damping �particularly when polymeric beads were
involved�, while the modeling was developed for purely elas-
tic beads �no form of dissipation was included�.

It was also theoretically shown that in the absence of dis-
sipation dispersive effects structured the leading front of the
shock wave. Two types of dispersive effects are involved in
the problem: classical lattice dispersion found in any discrete
system of punctual masses with interacting elastic potentials,
and dispersion due to the impedance mismatch between ma-
terial domains. Although dissipative effects are present in
experiments, the measured shock-front width was found to
be in good agreement with the one predicted by theory and
by discrete numerical analysis �that did not account for dis-
sipation�.

In addition, we demonstrated by numerical, analytical,
and experimental means that the width of the shock front is
scaled by the size of the unit cell of the composite chain and
is independent upon the impact velocity. A power-law rela-
tionship was found between the average strain rate within the
shock front and the jump of the compressive load across the
shock. This result is similar to theoretical and experimental
laws obtained for continuum materials �polycrystalline met-
als and layered composites�. The power law is characterized
by two parameters, an exponent h and a prefactor B. Inter-
estingly, for a bead chain, h is not affected by material prop-
erties but is solely dependent upon the geometry of the con-
tact between beads. Indeed, h has a value quite different
from those corresponding to continuum materials. This con-
fers to bead chains the unique feature of having a strain rate
within the leading shock front with a weaker dependence
upon the impact velocity than for other materials. However,
the prefactor B is a function of material properties and so is
the width of the shock front. This leaves place for optimizing
the internal structure of a composite chain of particles with
the perspective of decreasing the level of strain rates gener-
ated by the impact of a projectile, suggesting these systems
as effective novel energy dispersive materials.
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APPENDIX A: THE OVERALL EFFECTIVE RESPONSE
OF A COMPOSITE BEAD CHAIN UNDER
QUASISTATIC COMPRESSIVE LOADING

We consider a composite chain of particles as defined in
Sec. II. The numbers of beads of type �1� and �2� per unit cell
are, respectively, denoted by N1 and N2. The compressive
force F is applied quasistatically. The resulting overall
stretch is �. The relationship �→F �effective response of the
composite bead chain� is determined here in general while it
was only given in Sec. II for a �1:1� dimer �N1=1 and N2
=1�.

Consider two adjacent beads �i� and �j� with centers Ai
and Aj, respectively. The bead type is defined by the value of
i or j �for instance i=1 means that the first bead is of type
�1��. Under the compressive force F, the stretch undergone
by the segment Lij =AiAj is denoted by �ij. The initial dis-
tance between the centers is AiAj = �Di+Dj� /2.

It is easily checked that an unit cell can be defined by the
following sequence: N1−1 segments L11 with stretch �11, a
segment of type L12 with stretch �12, N2−1 segments of type
L22 with stretch �22, and finally a segment of type L21 with
stretch �21.

The stretches �12 and �21 resulting from the contact of
beads �1� and �2� are identical and are given by Eqs. �3a� and
�3b�,

�12 = �21 = 1 − � F

K12
	1/k

, �A1�

K12 =
1

3
E��D1D2�D1 + D2� , �A2�

1

E�
=

1 − �1
2

E1
+

1 − �2
2

E2
. �A3�

The stretch �11 corresponds to the contact of two identical
beads of type �1�. The result follows from the relationships
�A1�–�A3� where the subscript 2 is replaced by 1,

�11 = 1 − � F

K11
	1/k

, �A4�

K11 =
2

3
E�D1

2, �A5�

1

E�
= 2

1 − �1
2

E1
. �A6�

The stretch �22 is given by Eqs. �A4�–�A6� with 1→2.
The overall stretch �or effective stretch� in the composite

bead chain is obtained as the weighted average of the local
stretches �11, �22, and �12,

� = f11�11 + f22�22 + f12�12, �A7�

f11 =
�N1 − 1�D1

N1D1 + N2D2
, f22 =

�N2 − 1�D2

N1D1 + N2D2
,
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f12 =
D1 + D2

N1D1 + N2D2
. �A8�

Note that

f11 + f22 + f12 = 1. �A9�

From Eqs. �A1� and �A4� and the relationship for �22
similar to Eq. �A4�, we have

�K12�1/k�1 − �12� = �K11�1/k�1 − �11� = �K22�1/k�1 − �22� .

�A10�

Using Eqs. �A7� and �A9�, it follows that

1 − � = f11�1 − �11� + f22�1 − �22� + f12�1 − �12� ,

�A11�

which by Eq. �A10� can be written as

1 − � = A�1 − �11� , �A12�

with A= f11+ f22�K11 /K22�1/k+ f12�K11 /K12�1/k.
Thus, by elimination of �11 between Eqs. �A4� and �A12�

we obtain the effective response of the composite bead chain
under quasistatic compression,

F = FQS��� = Kef f�1 − ��k �A13�

with

Kef f = �f11�K11�−1/k + f22�K22�−1/k + f12�K12�−1/k�−k.

�A14�

The stiffness parameters K11, K22, and K12 have been calcu-
lated in the case of Hertzian contact, see Eqs. �A2� and �A5�.
However, the result �A14� remains valid for non-Hertzian
contact, with appropriate definitions of K11, K22, and K12.

APPENDIX B: INTEGRATION OF THE SHOCK PROFILE

Integration of Eq. �52� �providing the shock structure� is
obtained as follows: consider the integral,

I =� dz

�2g̃�z�
=

1
��
� dz

�a1z�+1 − z2
, �B1�

where a1=2� / ��+1��.
With the change of variable z=a1

1/�1−��X2/�1−��, Eq. �B1�
can be written as

I =
2

�1 − ����
� dX

�1 − X2

=
2

�1 − ����
arcsin����1 + ��

2�
z�1−��/2	 + const .

�B2�

APPENDIX C: RAYLEIGH LINE

From the usual formulation of traveling waves Eqs. �30�
and �32� can be expressed in terms of the variable 
=x

− V̂St and integrated between state �+� and the current state,

F − F+ = �̂0V̂S�v − v+� , �C1�

v − v+ = − V̂S�� − �+� . �C2�

Considering that F+=0 and �+=1, the following relationship
is obtained:

F = �̂0V̂S
2�1 − �� = �̂0V̂S

2zp, �C3�

which defines the Rayleigh line.
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