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Using nonequilibrium molecular dynamics �MD� simulations behavior of three-dimensional �3D� Yukawa
system has been studied in the presence of a small amplitude drive along one direction �say ẑ�. This drive has
the general form V=V0 cos�kLz���t− t0�, where ��t− t0� is a Heaviside step function in time at t= t0 and kL

=2� /L, L being the size of the system; V0 is considered small compared to average interparticle potential
energy. In particular, a 3D equilibrated Yukawa crystal �bcc� near solid-liquid transition is subjected to an
external drive at times t� t0 at the largest possible scale. For a given kL it is observed that there exists a critical
amplitude �V0

c� of the external drive below which the crystalline order is preserved and above which �V0

�V0
c� the transition from bcc to strongly coupled Yukawa liquid is observed. This critical amplitude �V0

c� is
sensitive to the location of the Yukawa solid in the �� ,�� phase space. Various signatures of melting, transients,
and steady state in the presence of this drive are elucidated using extensive MD diagnostics such as loss of
long-range crystalline order, change in diffusion from subnormal to normal, and the fall of transversal shear
peak in the Fourier transform of the velocity autocorrelation function. The mechanism of heating in the
transient state is attributed to the local heating of the system where the forces are maximum. It is shown that
these local hot regions dissipate heat into surrounding regions ultimately leading to a uniform temperature
throughout the system. Ion streaming due to external field has been neglected.
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I. INTRODUCTION

Yukawa systems provide a testing ground for a large num-
ber of fundamental concepts in statistical physics. The for-
mation of dust crystals may be a typical example of interest-
ing behaviors of Yukawa systems �1–5�. In typical laboratory
experiments dusty plasma contains electrons, ions, charged
microparticles, and a neutral gas background. Experimen-
tally the charged microparticles or dust particles can be indi-
vidually visualized. They interact electrostatically and the
background environment of ions and electrons provide the
shielding to their charges. Dusty plasma can be modeled as a
Yukawa system which is a collection of particles interacting
through Yukawa �i.e., screened Coulomb� pair potential
given as

��r� =
Q2

4��0

exp�− r/	D�
r

, �1�

where Q is charge on each dust particle, r is the radial dis-
tance between two dust particles, and �0 is the permittivity of
free space. The Debye radius �	D�, the Wigner-Seitz radius
�a�, and the dust plasma frequency �
p� are given as

	D = � qi
2n̄i

�0kBTi
+

e2n̄e

�0kBTe
�−1/2

, �2�

a = � 3

4�n
�1/3

, �3�


p
2 =

Q2n

�0m
, �4�

where qi, n̄i, and Ti are the charge, average density, and tem-
perature of the plasma ions, and −e, n̄e, and Te the corre-
sponding quantities for plasma electrons, n is the dust par-
ticle number density, and m is the dust particle mass. The
thermodynamics of the Yukawa systems is completely de-
scribed by the following parameters �6�:

� =
a

	D
and � =

Q2

4��0akBT
. �5�

Statistical and thermodynamic properties such as phase tran-
sitions �6�, transport phenomena �7,8�, and dispersion �9� are
some of the most fundamental properties characterizing
dusty plasma systems. In the past, extensive fluid theoretical
analysis have been done for strongly coupled dusty plasmas
�10,11�. Equilibrium molecular dynamics studies have tre-
mendously contributed to the understanding of Yukawa sys-
tems. Nonequilibrium molecular dynamics �MD� �NEMD�
provides a powerful tool to study nonequilibrium features
which are difficult to handle analytically. For a given �� ,��
pair, it is now well known that a three-dimensional �3D�
Yukawa system has a phase diagram composed of face-
centered-cubic �fcc�, body-centered-cubic �bcc� phases and
liquid phases �6�. In typical laboratory experiments dusty
plasma exist under external force fields such as gravity and
electric fields �12,13�. Under external forces which are con-
fining in nature, it is natural to expect that these dusty plasma
will form different structures than the regular fcc and bcc
structures. Formation of layers in a dusty plasma in presence
of an external confining potential was studied by Totsuji
�14,15�. This confining potential had a magnitude much*ganesh@ipr.res.in

PHYSICAL REVIEW E 80, 056408 �2009�

1539-3755/2009/80�5�/056408�8� ©2009 The American Physical Society056408-1

http://dx.doi.org/10.1103/PhysRevE.80.056408


larger than the average interparticle potential energy and the
simulations were done in equilibrium conditions. Melting of
dusty plasma crystals under spatially random and time vary-
ing external fields have also been studied by Hoffman using
Fokker-Planck dynamics�16�. In contrast to the above men-
tioned works, in this paper we study the effect of a small
external drive of the form V=V0 cos�kLz���t− t0�, where
��t− t0� is the Heaviside step function in time, and kL
=2� /L, L being the size of the system and V0 small com-
pared to average interparticle potential energy. The choice of
such an external drive is made because any spatial small
amplitude perturbation can be represented as an infinite sum
of modes �Fourier synthesis� in the system. For simplicity
and without loss of generality we have taken the simplest
case, taking k=kL only. The effect of such an external electric
drive on a strongly coupled Yukawa system near a solid-
liquid phase boundary under both equilibrium and nonequi-
librium conditions is addressed. It is important to note that in
the presence of an ac external electrical field, ion streaming
is known to become significant �17,18�. This ion streaming
converts the symmetric Yukawa potential into an asymmetric
one including higher-order poles. However in the presence of
weak external dc field one may regard the present work as a
zeroth-order study, where the ion streaming effects have been
neglected. Therefore the Yukawa potential appearing hence-
forth in this paper is the conventional symmetric potential.

We start from a strongly coupled Yukawa solid �bcc� at
thermal equilibrium near solid-liquid phase boundary ��
=210, �=1� and subject it to an external drive small com-
pared to the average interparticle potential energy. The
Yukawa system then goes through a transient phase which
involves heating, subsequent loss of long-range crystalline
order and melting. We obtain the signatures of melting tran-
sition by measuring the statistical properties of the Yukawa
system after the transients have died down. An interesting
finding of our work is that there exists a critical amplitude of
external drive �V0

c� below which there is no transition into the
liquid state. This critical amplitude �V0

c� is sensitive to the
location of the Yukawa solid in the phase space �� ,��. At a
given �, the value of V0

c increases with �. A melting mecha-
nism is proposed based upon local heating of the system
where the forces are maximum. It is shown that these local
hot regions dissipate heat into surrounding regions ultimately
leading to a uniform temperature throughout the system.

The organization of this paper is as follows: Sec. II of the
paper deals with the molecular dynamics code and the nu-
merical method used, Sec. III presents the molecular dynam-
ics protocol, Sec. IV presents the results, and Sec. V dis-
cusses the melting mechanism. Finally we draw the
conclusions in Sec. VI.

II. MPMD CODE AND NUMERICAL METHODS

Multipotential molecular dynamics �MPMD� is a parallel
molecular dynamics code developed by the authors at the
Institute For Plasma Research, Bhat, Gandhinagar-India for
simulating Yukawa and Coulomb systems. The code has
been exhaustively benchmarked against known results. This
code can handle interatomic potentials of Yukawa systems,

Lennard-Jones, and Tersoff-Brenner. Ewald sums �19,20� are
employed to handle long-ranged forces in the Yukawa sys-
tem in the presence of periodic boundaries. MPMD can
simulate various thermodynamic ensembles such as NVT,
NVE, NPT by employing a Gaussian thermostat �21,22� and
a Andersen barostat �23�. The reduced units used in MPMD
are listed in Table I. Physical quantities appearing henceforth
in this paper are in reduced units. We now move on to the
following subsections to discuss Ewald sums, thermostats,
and the external drive.

A. Ewald sums

We follow Refs. �19,20� to develop the numerical scheme
of our MD simulation. Consider a system of Na atoms, each
of which now carries a charge. A periodic array of replicated
systems is created in the spirit of the periodic boundary con-
ditions to mimic an infinitely large system; but now, because
of the long-range nature of the interactions, the energy of the
replicated system includes contributions from all replicas
since no truncation is imposed. The interaction energy is now
given as

��r� = ���r�� + �
n�0

���r + nL�� , �6�

with ��r� being the Yukawa potential in Eq. �1�. L is the size
of the simulation box and n= �nx ,ny ,nz�. The contribution
from replicated systems becomes important especially if the
Debye screening length 	D becomes comparable to or greater
than size of the simulation box L. The above-mentioned po-
tential represents the interaction energy of particle i with
particle j �at separation r=rj−ri� and with all the periodic
images of the particles. The infinite sum in Eq. �6� represents
the contribution from all the periodic images. In our MD
simulations we calculate the total Ewald-Yukawa potential
energy of the system by rewriting it as

� = �r + �k − �Self. �7�

Here k= �nx ,ny ,nz�
2�
L . The short-range contribution to Eq.

�7� is given as

TABLE I. Reduced units used in MPMD code.

Reduced quantity Reduced units

Distance �r� r /a

Time �t� t
p /	3

Density ��� �a3

Temperature �T� kBT�4��0a /Q2�
Energy �E� E�4��0a /Q2�
Force �F� F�4��0a2 /Q2�
Self-diffusion coefficient �D� D	3 / �
pa2�
Mean-square displacement �
�r2�� 
�r2� /a2
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�r =
1

4�
ij

�
n

�
erfc�
�rij + nL� +

�

2

�exp���rij + nL��

+ erfc�
�rij + nL� −
�

2

�exp�− ��rij + nL�� , �8�

the long-ranged contribution as

�k =
2�

V
�
k�0

exp�−
k2 + �2

4
2 �
k2 + �2 ��

i

exp�ik · ri��2
, �9�

and the self interaction is given as

�Self = 
 


	�
exp�− �2

4
2 � −
�

2
exp�− �

2

�� . �10�

In our simulations the summation over k in Eq. �9� is taken
over 297 vectors subject to the constraint �n�=	nx

2+ny
2+nz

2

�5. The value of Gaussian width 
 is taken as 5.6 /L �19�.
Though we have employed Ewald sums in our MD simu-

lations, for large system size �L� and large screening param-
eter ���, Ewald sums are not necessary �24�.

B. Thermostats

The choice of thermostats and barostats depends on
whether the final states prepared are true ensembles or not.
We have used a Gaussian thermostat �21,22� for our work.
This thermostat is based on the Gauss’s principle of least
constraint and results in an isokinetic ensemble. In the limit
of large number of degrees of freedom a Gaussian thermostat
produces the correct canonical ensemble. The Gaussian ther-
mostat can be build into the Leap-Frog integrator �25�. Be-
cause the Gaussian thermostat controls the temperature by
the constraint method it gets very close to the desired tem-
perature, and the temperature constraint is only preserved to
the accuracy of numerical integration �26�. This can be very
useful if one is simulating very large systems. We give here
a very simple formulation of the Gaussian thermostat for a
system of Na particles.

1

2�
i=1

Na

ṙi
2 = NaEk. �11�

Where Na and Ek are the number of particles and the kinetic
energy, respectively. Then the constrained equation of mo-
tion is

r̈i = Fi + 
ṙi �12�

and since Ėk=0 or equivalently �i
Naṙi · r̈i=0, it follows that

the value of the Lagrange multiplier 
 is


 = −

�
i

Na

ṙi · Fi

�
i

Na

ṙi
2

. �13�

The isothermal version of the Leap-Frog integrator is then
readily seen to be

ṙi�t + �t/2� = �1 + 
�t�ṙi�t − �t/2� + �t�1 + 
�t/2�Fi�t� .

�14�

C. External potential and Hamiltonian

We have applied an external drive along ẑ which has the
form V=V0 cos�kLz���t− t0�, where ��t− t0� is a Heaviside
step function in time and kL= 2�

L with L being the length of
the system. The drive and corresponding force acting at
times t� t0 is shown in Fig. 1. Periodic boundaries are em-
ployed along x̂ , ŷ , ẑ directions. The Hamiltonian of the sys-
tem now becomes,

H = �H0, t � t0

H0 + H1, t � t0,
� �15�

where

H0 = �
i

Na vi
2

2
+ �

i�j

Na 1

rij
exp�− �rij� �16�

and

H1 = �
i

Na

V0 cos�kLzi� , �17�

where zi is the z coordinate of the particle i. The magnitude
of external drive V0 is small compared to interparticle poten-
tial energy. Our system is thus fully described by three pa-
rameters; the screening parameter �, the dimensionless pa-
rameter �=1 /T, and strength of the external drive V0.

III. MOLECULAR DYNAMICS SIMULATIONS

We have performed extensive molecular dynamics simu-
lations with MPMD for three dimensional Yukawa system of
dust particles with 432 particles in a cubic box of edge L
=12.8. This gives a mean density ��� of 0.206. Unless oth-

− 6 − 4 − 2 0 2 4 6
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− 0 . 1 5

− 0 . 1 0

− 0 . 0 5

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

V

V

− 0 . 0 5

0 . 0 0

0 . 0 5

F
z

F z = − d V / d z

FIG. 1. The external potential V applied along ẑ direction and
the corresponding force Fz=− dV

dz : the cubic simulation box is cen-
tered at the origin with the edge length L=12.8. The spatial profile
of potential drive is such that the force acting on any particle is
always away from the center. Left y axis shows the potential drive
and right y axis shows the force in reduced units. Refer to Table I
for units.
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erwise specified, the screening parameter �=1 and inverse
temperature �=1 /T=210. The Yukawa system for this �� ,��
pair is a bcc solid close to the solid-liquid phase boundary.
Periodic boundaries were kept along all directions. The time
step ��t� in our MD simulations is 0.001. The simulation is
done in the following steps �see Fig. 2 for a typical run at
�=210 and V0=0.175�:

�i� Canonical run: first we perform canonical ensemble
MD for 3.5�105�t to take the system to a thermal equilib-
rium at required �=210 by connecting it to a Gaussian ther-
mostat.

�ii� Microcanonical run: after step �i�, we remove the ther-
mostat and do a microcanonical MD for 3.5�105�t where
the system finds a different thermal equilibrium very close to
the � set in step �i�. At this stage measurements with V0=0
are taken.

�iii� Transient phase: at the end of step �ii� �and the ther-
mostat decoupled�, the external drive is turned on and the
system goes through transient phase where the temperature
of the system changes. Measurements in nonequilibrium
conditions is done during this phase.

�iv� Final equilibrium: we continue the simulations after
step �iii� until the transients die and the final equilibrium is
reached. At this stage equilibrium measurements with V0
�0 are taken.

We now move on to Sec. IV to discuss the results of our
simulations.

IV. RESULTS

In this section we present our results in both the nonequi-
librium �transient� and equilibrium conditions. Section IV A
discusses the energetics of our simulations, Sec. IV B deals
with the measurements on the lattice structure, Sec. IV C
deals with the self-diffusion coefficient and mean-square dis-
placement and finally in Sec. IV D we discuss the Fourier
transformed velocity autocorrelation function.

A. Energetics

We give the time evolution of energies with the time axis
divided into the following three regions:

�a� 0� t�350: canonical run: thermostat on, external
drive off.

�b� 350� t�700: microcanonical Run: thermostat off, ex-
ternal drive off.

�c� 700� t�1300: transient Phase: thermostat off, exter-
nal drive on.

�d� 1300� t�2200: final equilibrium: thermostat off, ex-
ternal drive on.

As the external drive has the form V=V0 cos�kLz�; kL

= 2�
L , the total energy of the Yukawa system should not

change when the external drive is turned on provided the
particles are arranged symmetrically around z=0. However,
since we have a thermally equilibrated Yukawa solid, the
arrangement of particles is not symmetric around the z=0
plane. As can be expected this leads to a small jump in the
total energy at the instant the Yukawa solid is subjected to
the external drive. In the present work this jump is more than
two orders of magnitude smaller than the variations in ki-
netic and potential energies. Hence our energetics are well
resolved. In Figs. 3�a� and 3�b� we show the time evolution
of kinetic and potential energies, respectively.

B. Structure

1. Lattice correlation

Long-range order corresponds to the presence of lattice
structure and is the quantity underlying x-ray scattering mea-
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FIG. 2. Steps �i�–�iv� in Sec. III for a given run at �=210, V0

=0.175. T1: canonical run. T2: microcanonical run. T3: transient
phase. T4: final equilibrium. Refer to Table I for units.
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FIG. 3. �a� Kinetic energy per particle �Ek� vs time: the sudden
rise in temperature is clearly seen at t=700. This rise in T is fol-
lowed by a fall, which is due to the rearrangement of the Yukawa
system in the external drive. �b� Potential energy per particle �Vpot�
vs time: the time evolution of potential energy is consistent with the
kinematics. The Yukawa system slowly reaches its final equilibrium
in presence of external drive at time t�1300. Refer to Table I for
units.
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surements from crystalline materials. If the local density at a
point r can be expressed as a sum over atoms:

��r� = �
j=1

Na

��r − r j� , �18�

then its Fourier transform is simply the lattice correlation �

� =
1

Na
�
j=1

Na

exp�− ik · r j� . �19�

In calculations of � done to test the presence of long-range
order we take the values of k as 2�

lu
�1,−1,1�, 2�

lu
�1,0 ,1�, and

2�
lu

�1,0 ,0� for face-centered-cubic, body-centered-cubic, and
simple cubic lattices, respectively, and lu is unit cell edge. If
the system is almost fully ordered then ��1 but in the
disordered liquid state ��O�Na

−1/2�. The initial crystalline
structure of our system of 432 particles at �=210 and �=1 is
bcc. as shown in Fig. 4�a�. In Fig. 4�b� we show the melting
of the system and loss of crystalline order with the applica-
tion of external drive.

2. Radial distribution function

The fluid state is characterized by absence of any perma-
nent structure. In the case of spatially homogeneous systems
only relative separation is meaningful �26�, and hence we use
the following sum over all pairs for the radial distribution
function:

g�r� =
2V

Na
2��

i�j

��r − rij�� . �20�

Since g�r� is a function that gives spherically averaged local
organization around any atom, �g�r�dr is proportional to the
probability of finding an atom in the volume element dr at a
distance r from a given atom. Spherically averaged g�r� for
various values of external drive V0 is shown in Fig. 5. For
V0=0, g�r� is measured after the system has reached equilib-
rium, and for V0�0, g�r� is measured when the system has
reached equilibrium in the presence of the external drive. As
V0 increases the peaks in g�r� decrease which shows the loss
of long-range positional order as the system goes toward the
liquid state. For V0=0.125 the first peak in g�r� falls by about
18%, and at V0=0.250 it falls by 25%. At finite V0, although
the system has lost lattice order �see Fig. 4�b��, it is still a
correlated liquid as seen from the oscillations in g�r�. In the
following subsection we discuss the diffusion properties of
Yukawa solid in the presence of external drive.

C. Self-diffusion coefficient and mean-square displacement

The self-diffusion coefficient in the long time limit is
given by Einstein relation

D = lim
t→�

1

6Nat��
j=1

Na

�r j�t� − r j�0��2� . �21�

We define mean-square displacement as


�r2� =
1

Na
��

j=1

Na

�rj�t� − rj�0��2� . �22�

Then from Eqs. �21� and �22�, we get


�r2� = 6Dt . �23�

The angular brackets 
¯ � stand for ensemble average
over 400 ensembles at equilibrium. All the measurements
were done after step �ii� �for V0=0� and step �iv� �for V0
�0� as mentioned in Sec. III. For liquids and gases at long
times, 
�r2� goes as t and hence D asymptotes to a constant
value. This constant value is called the diffusion coefficient
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FIG. 4. �a� Lattice correlation ��� without external drive: the
long-range lattice order is bcc in the absence of external drive. �b�
Lattice correlation ��� with external drive: the drive is switched on
at t=700. The fall in lattice order is clearly faster with increasing
V0.
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FIG. 5. Radial distribution function g�r�: the fall in the peaks of
g�r� is clearly seen with varying amplitudes of external drive V0.
The oscillations in g�r� even for larger values of V0 indicate that the
transition is from solid state to a strongly coupled liquid state.
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of the system. In Figs. 6�a� and 6�b� we show the plots for D
and 
�r2�, respectively, for our system at equilibrium. It is
clear from these figures that for smaller values of V0, D
drops close to zero �there is no diffusion�. This is character-
istic of solid state. At higher values of V0, D asymptotes to
higher values. This asymptotic nature of D is a typical char-
acteristic of liquid state. In the following section we discuss
the velocity autocorrelation and its Fourier transforms.

D. Fourier transformed velocity autocorrelation function

The normalized velocity autocorrelation function is con-
structed as

Z�t� =

��
j=1

Na

v j�t� · v j�0��
��

j=1

Na

v j�0� · v j�0�� , �24�

Its Fourier transform Z�
� is given as

Z�
� =
1

2�
�

−�

�

Z�t�exp�i
t�dt . �25�

The integral in Eq. �25� is approximated as a discrete sum
and calculated via fast Fourier transform of Z�t�

Z�
� � �
n=0

N−1

Z�tn�exp�i
tn��t . �26�

The power spectrum of Z�
� for various values of V0 are
plotted in Fig. 7. In the strong coupling regimes ��=210�,
the power spectrum of Z�
� shows a collective peak near
plasmon frequency at 
�0.67
p as shown in previous
works �27�. There is another prominent peak near a low non-
zero frequency. To explain this peak Hansen, McDonald and
Pollock attempted to give a unified description of the veloc-
ity autocorrelation function in the liquid regime using the
memory function formalism �28�. A somewhat more general
approach in sort of a mode coupling model was investigated
by Gold and Mazenko �29�. It was shown by Schmidt for
coulomb liquids �30� that this low-frequency peak at strong
coupling is associated with the occurrence of transversal
acoustic excitations �or shear modes� in the system. We no-
tice two important trends here: first, the collective peak near
the plasmon frequency 
p starts to fall and second, the broad
peak at low frequency which corresponds to shear modes
starts to disappear. Both these observations confirm the ap-
proach to the liquid state as the external drive V0 increases.
In the following section we discuss the melting mechanism
of Yukawa solid in the presence of an external drive.

V. MECHANISM OF MELTING

The applied external drive results in a force along ẑ with a
sinusoidally varying magnitude. It is interesting to note that
work done due to this directed force is being converted into
random kinetic energy of particles due to collisions with
nearest neighbors. In this section, we attempt to give a quali-
tative explanation for the melting mechanism. At the instant
when the external drive is turned on local hot zones are cre-
ated where the magnitude of forces is maximum �see Fig.
8�a��. These hot zones give heat to the neighboring region
and the system heats up. At the beginning of the transient
phase the two humps in the temperature are clearly seen.
These humps vanish toward the end of the transient phase.
We define the temperature profile along ẑ as follows:
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FIG. 6. �a� Diffusion: for V0 there is no diffusion, but higher
values of V0 show that the diffusion asymptotes to larger values. �b�
Mean-square displacement 
�r2� on a log-log scale: except for V0

=0 where the displacement is limited, higher values show 
�r2�
increasing linearly with time. Refer Table I for units.
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FIG. 7. Fourier transformed velocity autocorrelation: as V0 in-
creases the longitudinal peak at 
�0.67
p begins to fall. There is
also a clear fall in the low frequency transversal shear peak as V0

increases �see text for explanation�.
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Nz
�

i

Nz 1

2
vi

2� , �27�

where Nz is the number of particles in one of the slabs along
ẑ and 
 � denote the time average. In Fig. 8�a� we show the
temperature profile �Tz� along ẑ for the case V0=0.150.

In Fig. 8�b� we show the plots of inverse temperature ���
as a function of time for various values of V0. For each value
of V0, the initial � falls before reaching an equilibrium value.
For the case V0=0.115, the fall in � is just as much so that
the Yukawa system comes close to the solid-liquid phase
boundary which is at �=185 for �=1 �horizontal dotted line
�6��. It is interesting to note that at late times the value of �
for V0=0.115 case is marginally higher than the initial value.
From this figure we qualitatively explain that the critical am-
plitude of melting V0

c should be close to 0.115.
It was shown in the Fig. 4�b� that the fall of lattice corre-

lation ��� is rapid as we increase the value of V0. We define
the melting time tm as the time in which � falls by an efold
��37%�. In Fig. 9�a�, for a given initial temperature ��
=210� we show the temperature profile along ẑ very early in
the run �t=25� for different values of V0. The increased local
heating is clearly seen with increasing values of V0. This
qualitatively explains the decrease in melting times with in-

creasing V0. In Fig. 9�b� we show V0 versus melting times
for different values of initial temperatures ��=200 and �
=240�. At higher �, the correlations in the Yukawa system
get stronger and hence it may be expected that the critical
amplitude �V0

c� is larger. This feature is clearly seen in Fig.
9�b�.

VI. CONCLUDING REMARKS

We have performed for the first time extensive equilib-
rium and nonequilibrium molecular dynamics simulations on
3D Yukawa systems with periodic boundary conditions along
x̂, ŷ, and ẑ under an external drive given by V
=V0 cos�kLz���t− t0�, where ��t− t0� is a Heaviside step
function in time and kL=2� /L, L being the size of the sys-
tem. The long-range nature of the force and the periodic
boundaries were properly handled by including Ewald sums.
The initial state of the system of 432 particles is a regular
BCC state. We then apply a small external drive and observe
the melting of the system. After the initial transients die
down we measure statistical properties such as the self-
diffusion coefficient, mean-square displacement, and Fourier
transformed velocity autocorrelation functions. The solid to
liquid melting is discussed on the basis of these statistical
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FIG. 8. �a� Snapshots of temperature along ẑ�Tz� taken at differ-
ent times. The z component of force Fz �taken on right y axis� is
plotted on top. The figure explains initial local heating in regions
where magnitude of Fz is maximum. The simulation box is centered
at origin. �b� The plot of � as a function of time for various values
of V0. Horizontal dotted line shows the �=185 solid-liquid phase
boundary line for �=1. See �6�.
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FIG. 9. �a� The profile of temperature along ẑ�Tz� very early in
the run �t=25� for various values of V0. �b� The melting time �tm�
versus V0 for two values of initial �. tm is the time during which the
lattice correlation � fall by an efold ��37%�. From this graph we
compute V0

c as the value at which the Yukawa solid takes infinite
time to melt into a liquid. Dashed lines cut the x axis at V0

c. At
higher �, value of V0

c is higher.
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properties and a mechanism for melting is proposed based on
local heating in the system in regions where the magnitude
of forces are maximum. We also qualitatively explain the
decrease in melting times with increasing the magnitude of
external drive V0. For a given �� ,�� pair we have found a
critical amplitude of external drive V0

c below which there is
no transition. This critical amplitude �V0

c� depend on the lo-
cation of the Yukawa system in the �� ,�� phase space. For
larger �, the value of V0

c is larger. There are several open
questions such as the effect of the external drive at multiple
kL�

s, scaling of V0
c with the screening parameter �, and char-

acterization of the nature of transition of Yukawa solid to a
strongly correlated liquid. As a comparison, more rigorous

potential models, such as the asymmetric Yukawa potential
�17,18� can be employed to study similar phenomena.
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