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An analytical expression is proposed to describe the front shape of a non-quasi-neutral plasma expansion
with anisotropic electron pressures. It is of significance in the study of ultrashort plasma expansions generated
from laser-foil interactions and anisotropic astroplasma expansions in space science. It is found that the plasma
front shape depends on the relationship between the ratio of the longitudinal and the transverse temperature of
hot electrons �2 and the electron-ion mass ratio �. For �2� �� ,1�, the ion front is a part of an ellipse and the
major axis is in the lower-temperature axis. For �2��, the ion front is composed by a part of a hyperbolic and
a small pointed projection at the center. In the strongly anisotropic region, there is an ultrashort anomalous
plasma emission of tens of femtoseconds at the angle of near 90°. The ion-velocity distribution and angular-
energy distribution at the ion front have also been given. Particularly, anomalous positron emissions exist in the
electron-positron plasma anisotropic expansion.
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I. INTRODUCTION

The ultrafast energetic plasma emission from laser-matter
interactions offers new possibilities for compact accelerators
�1�, fast ignition for inertial-confinement fusion �2� due to
great advances of laser technology. In the first time interval
of several picoseconds, the plasma generated from laser-
material interactions can achieve local thermodynamic equi-
librium and hydrodynamical equations are adequate. How-
ever, the plasma has no time to reach macrothermal
equilibrium. Electrons generated from the laser-solid interac-
tions are anisotropic, generally, the plasma is non-quasi-
neutral and the charge-separation field is strong in the
ultrashort-time interval. Therefore, the two three-
dimensional analytic kinetic theories under the quasineutral
condition �3,4� are not suitable in the ultrashort time interval.
Neglecting the strong charge-separation field, the two-
dimension anisotropic plasma expansion models �5,6� are
also inadequate. Although we proposed a two-dimension
self-similar solution for describing non-quasi-neutral plasma
expansions �7�, the electron pressure was assumed isotropic
and also improper in the time interval. In the ultrashort time
interval, the field and the pressure of plasmas codetermine
the plasma expansion process.

Almost no collisions are in the interval due to the high
electron temperature larger than tens of keV; therefore, the
energy transport between electron and electron as well as
electron and ion can be ignored. In this paper, hydrodynamic
equations without the energy equation are combined with
Poisson’s equation to propose the early picosecond plasma
emission. It is predicted that there is an ultrashort anomalous
emission of isothermal plasmas in the longitudinal direction
due to the strongly anisotropic pressure and strong charge
separation. The phenomenal has not been observed and re-
ported.

In Sec. II, a self-similar two-dimension solution for a non-
quasi-neutral plasma expansion with anisotropic pressure is
obtained. In the solution, there are two important parameters:
the ratio of the longitudinal temperature T� and the trans-
verse temperature T� of the plasma �2=T� /T� and the
electron-ion mass ratio �=Zme /mi, where Z is the charge
number of the ion, me�mi� is the electron �ion� mass. With the
solution, it is found that the relationship between �2 and �
decides the shape of the ion front: a complicated surface or
an ellipse.

For �2� �0,��, the ion front is composed by a part of a
hyperbolic and a small pointed projection at the center. In the
critical case �2=�, the ion front is a plane and a small
pointed projection at the center. For �2� �� ,1�, the ion front
is a part of an ellipse and the major axis is in the lower-
temperature axis. The ion-velocity distribution at the ion
front has also been given. However, for �2� �0,1�, the major
axis of the ion-velocity ellipse is in the higher-temperature
axis. The difference of the angular-energy distribution from
the known one �7,8� is that the energy is a delta function at
the maximum angle of near 90° for �2��. The angle of the
anomalous emission belongs to �arctan �−1/2 ,� /2� and the
duration of it is on the order of tens of femtoseconds due to
the electron-electron and electron-ion collisions �9�. This
anomalous phenomenal cannot been predicted with the three-
dimension theory �3,4� for the quasineutral plasma expansion
since the strong charge separation was ignored. For the scale
time of nanoseconds �9�, it is satisfied that �2��. Particu-
larly, it is interesting for astrophysicist that anomalous posi-
tron emissions exist in the electron-positron plasma expan-
sion with an anisotropic electron pressure.

II. ANISOTROPIC NON-QUASI-NEUTRAL PLASMA
EXPANSION WITH STRONG CHARGE SEPARATION

A. Basic assumptions and equations

When an ultrashort laser pulse interacts with a solid tar-
get, electrons are generated in few femtoseconds with aniso-*huangyongs@gmail.com
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tropic temperatures: T� in the x direction and T� in the y
direction, which is perpendicular to x. For the laser intensity
larger than 1016 W /cm2, the temperature of laser-produced
electrons is larger than several keV. Therefore, for the den-
sity of 1020 /cm3, the electron-electron collision frequency
and electron-ion collisions frequency are about 1012 /s. The
higher the electron temperature, the smaller the collision fre-
quency. We cut the time into pieces, each �t long. Therefore,
in the short-time interval of �t, if �t−1 is larger than the
electron-electron and electron-ion collision frequency, the
plasma expansion can be assumed to be isothermal with
characteristic temperatures: T� and T�. On the other hand,
the temperatures of electrons can sustain constant due to the
energy supply of laser pulse in the laser-pulse duration tl.

Due to 1 eV=11 600 K, the electron temperature for la-
ser intensity larger than 1017 W /cm2 is higher than 108 K.
With Debye-Hüchel’s state equation �10�, the electron-gas
pressure

p = nkBTe −
kBTe

24��De
3 , �1�

in Gaussian units. The second part comes from the electro-
static term of free energy. For high temperature on the order
of keV and the electron density of 1020 /cm3, the ratio of the
second part and the first part of the above equation is smaller
than 10−7. Therefore, the high-temperature electron-gas pres-
sure is p=nkBTe.

In the time interval of about hundreds of femtoseconds
after the solid target shot by an ultrashort laser pulse, the ions
have not been accelerated efficiently and the ion temperature
kBTi is about several eV, which is still high enough to make
the viscosity term �	Ti

−3/2� negligible compared with the
charge-separation field. However, kBTi
kBT� and kBTi

kBT�. Therefore, the ion pressure can also be neglected
compared with the electron pressure in the two-fluid system.
It is called the cold-ion assumption.

Based on the above analysis, in the ultrashort time inter-
val of �t, we can assume that the pressure tensor of a two-
dimension anisotropic plasma satisfies

P̄ = �nekBT� 0

0 nekBT�

� . �2�

In Eq. �2�, since the electron temperature is high enough, the
shear components are ignored for the convenience of the
following analytic calculation, which is equivalent to ne-
glecting the viscosity term in the two-fluid equations.

For convenience, the physical parameters: the time t, the
length coordinate x�y�, the ion �electron� velocity vi�ve�, the
electron field E, and the ion �electron� density ni�ne� are nor-
malized by the inverse of the equivalent plasma frequency
�pi0=�ne0e2 /mi�0, the equivalent plasma Debye length �D0
=cs /�pi0, the equivalent ion acoustic speed cs=�ZkBTe /mi,
E0=kBTe /e�D0, and the reference hot-electron density ne0,
respectively, where mi is the ion mass, Z is the charge num-
ber of the ion, e is the elemental charge, and Te=T� +T� is an
equivalent temperature.

Then the electric potential is normalized as

 =
e�

kBTe
, �3�

where � is the physical potential. t ,x�y� ,vi�ve� ,E ,ni�ne� are
still used to represent the normalized parameters in the fol-
lowing discussion.

With the cold-ion assumption, the ion pressure gradient
and ion viscosity are neglected. With Eq. �2�, the electron
viscosity can be ignored. Therefore, the two-fluid system
without the energy equation is then normalized as

�n

�t
+

��nvx�
�x

+
��nvy�

�y
= 0, �4�

�vxi

�t
+ vxi

�vxi

�xi
= −

�

�xi
, �5�

�ne

�t
+

��neve,x�
�x

+
��neve,y�

�y
= 0, �6�

�� �ve,xi

�t
+ ve,xi

�ve,xi

�xi
� =

�

�xi
−

�i

ne

�ne

�xi
, �7�

where i=1,2 ,x1=x , x2=y,

�1 =
T�

Te
, �2 =

T�

Te
, �8�

and Poisson’s equation is normalized as

�2

�x2 +
�2

�y2 = ne − Zn , �9�

B. Analytical expressions of the ion front shape

With reference to the similarity transformation used by
Huang et al. �7�, the systems �4�–�9� can be transformed
using

� = t, �1 =
x

R1�t�
, �2 =

y

R2�t�
, �10�

vi,x�ve,x� =
�x

��
= �1R1�, vi,y�ve,y� =

�y

��
= �2R2�, �11�

ni�e� =
Ni�e�,1��1,�2�

R1
2 +

Ni�e�,2��1,�2�

R2
2 , �12�

where R1, R2, N1, and N2 need to be determined by solving
the transformed hydrodynamic equations. The transformed
continuity equation is

�R1�

R1
−

R2�

R2
��Ni�e�,1

R1
2 −

Ni�e�,2

R2
2 � = 0, �13�

which requires
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R2

R1
= � , �14�

where � is a constant. Then the ion �electron� density is
simplified to

ni�e� =
Ni�e���1,�2�

R2�t�
, �15�

where

Ni�e� = Ni�e�,1 +
Ni�e�,2

�2 , �16�

R = R1. �17�

Solving the transformed motion equation of ions,

Ri�Ri = −
1

�i

�

��i
, i = 1,2, �18�

gives that

	
0

�

exp��1
2�d�1 =

�0t

R0
, �19�

where

� =�ln� R

R0
� , �20�

and

R0 = R�t = 0� . �21�

Therefore, the potential in the ion region satisfies

 = − 0��1
2 + �2�2

2� , �22�

where 0 is a constant.
The transformed electron motion equation is

�Ri�Ri�i + �1
� ln�Ne�

��i
−

�

��i
= 0, i = 1,2. �23�

Assuming

�2 =
T�

T�

, �24�

with Eq. �23�, the electron density in the ion region satisfies

Ne��1,�2� = Ne,0 exp
− �1 + ��0 ��1
2 + �2

2�
�1

� . �25�

Then from Poisson’s equation, the ion density is Ni=Ne+4,
which shows the non-quasi-neutrality of the plasma. Equa-
tion �23� can be solved in the ion region due to the special
form of the electric potential =1��1�+2��2�.

However, beyond the ion front, the potential and electron
density are governed by the motion equation of electrons and
Poisson’s equation together since the potential cannot be
separated to 1��1�+2��2� and then the electron density
cannot be solved from the motion equation solely.

By combining Eq. �23� and Poisson’s equation, a two-
order partial differential equation of the electron density can
be achieved,

�1� �2 ln Ne

��1
2 + �2�2 ln Ne

��2
2 � + 2�1 + �2��0 = Ne. �26�

The first integral of it gives

� �Y

��1
�2

+ �2� �Y

��2
�2

=
2 exp�Y� − 4�1 + �2��0Y

�1
+ C0,

�27�

where C0 is the first integral constant and Y =ln�Ne�.
The physical condition requires that Y is a C1 function

and, therefore, the curve equation of the ion front is

�1
2

A2 +
�2

2

B2 = D exp
−
��1

2 + �2
2�

2D0 � + C0, �28�

A−2 = 1 − ��2, B−2 = �2 − �, D =
�1

2�1 + ��0,2 , �29�

where C0 is a constant and 0,2 is the square of 0. With Eq.
�28�, the curve of the ion front may be some part of a hyper-
bola, an ellipse, or a circle approximately for different ratio
�2. A critical value of �2 is the mass ratio of electron and ion
� or the inverse of it.

Due to the assumed symmetrical form of the pressure, we
only need to consider the cases for �2� �0,1�. Figure 1
shows the eight cases of the ion front for �2� �0,1�, which
are obtained by solving Eq. �28� with C0=0 and 0=1. For
�2��, the curve of the ion front is a part of an ellipse whose
eccentricity is

e =
�1 − �2��1 + ��

1 − �2�
, �30�

as shown by Fig. 1�a�.
As �2→�, e→1. Specially, for �2=1, i.e., T�=T�, the ion

front is a part of a circle. This result consists with that given
in �7,8� and can be used to predict the ion maximum energy
and the angular ion distribution in the laser-thin interactions.

For �2��, the ion front is complicated and contains two
parts: a part of a hyperbola and another curve, as shown by
Fig. 1�b�. For the part of the hyperbola, �2�2.5 and the
slope of the asymptote is ��1−��2� / ��−�2�.

As �2→�, the slope trends to infinite and the ion front
becomes a flat surface, as shown by the dash dot line in Fig.
1�b�. This is the longitudinal anomalous plasma emission.
For �=0, the emission angle is smallest and equal to
arctan��−1/2�. Therefore, the range of the emission angle is
�arctan��−1/2� ,� /2�.

C. Velocity distribution at the ion front

Figure 2 shows the ion-velocity distribution at the ion
front obtained from our two-dimension theory for different
electron-temperature ratio �2� �0,1�. For different times, the
shapes of the ion-velocity distribution are the same although
the amplitudes are different.
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For �2� �0,��, the velocity distribution has two parts:
ellipselike at small v2 and hyperboliclike at large v2, which is
shown by the dot line or the dash line in Fig. 2�a�. The solid
line in Fig. 2�a� shows all the ions move toward the x direc-
tion since the temperature in the y direction is zero. The dash
dot line in Fig. 2�a� shows the critical case: �2=�, in which
the velocity in the x direction at large v2 is zero and all the
ions move in the y direction.

For �2� �� ,1�, the ion-velocity distribution is a part of an
ellipse, whose eccentricity is ����−2−�2� / �1−��−2� and the
major axis is in the high-temperature direction x. At �2=1,
the ion-velocity distribution is a part of a circle and isotropic,
as shown by the dash dot line in Fig. 2�b�.

D. Angular-energy distribution at the ion front

Figure 3 shows the angular-energy distribution for �2

� �0,1�. With it, the facts are indicated:
�1� For �2� �0,��, the energy decreases with angle ex-

cept for the maximum angle of near 90°. At the maximum
angle, the energy is a delta function with the peak value of
about 0.62E0. Especially, the maximum angle is 90° for the
critical point �2=�. This anomalous plasma emission hap-
pens since the large Coulomb space-charge field dominates
in the longitudinal direction and is counteracted partly by the
gradient of the pressure in the transverse direction. As seen
in Fig. 3, the anomalous emission angle belongs to

�arctan��−1/2� ,90°�, which is obtained above from Fig. 1.
�2� For �2� �� ,1�, the ion energy decreases with angle

monotonically. At �2=1, the energy is a constant function
with respect to angle.

E. Duration of the anomalous emission

As it is well known, when an ultraintense laser pulse in-
teracts with solid materials, electrons with anisotropic tem-

FIG. 1. �Color online� ��1 ,�2� at the ion front for different �2 for
0=1 and C0=0 in Eq. �28�. �a� and �b� are obtained from the
solutions of Eq. �28�. In �a�, �2��, where �=Zme /mi, Z is the ion
charge number, and me�mi� represents the mass of electron�ion�. In
these cases, the curve of the ion front is a part of an ellipse, espe-
cially, a circle for �2=1. The major axis of the ellipse is in the
lower-temperature direction. In �b�, �2��. In these cases, the ion
front contains two parts. For �2�2.5, the ion front is a part of a
hyperbola or a plane ��2=��. For �2�2.5, the ion front is a small
pointed projection.

FIG. 2. �Color online� The ion-velocity distribution at the ion
front for I=1015 W /cm2, �=0.8 nm, and �2� �0,1�; 0=1 in Eq.
�28�, ��t�=0.003 at t=0.1 ps. �a� The ion-velocity distribution at
the ion front for �2��. �b� The ion-velocity distribution at the ion
front for �2��.

FIG. 3. �Color online� The ion energy distribution at the ion
front VS the angle to the central axis x for �2� �0,1�, 0=1 in Eq.
�28�. In this figure, the energy for any angle is normalized by E0 for
each �2, where E0 is the ion energy at the central axis.
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peratures are generated in a time interval on the order of few
femtoseconds. As pointed out by Eq. �2� and Fig. 1 shown by
Ferrante et al. �9�, the transverse temperature of electrons T�

would decrease and the longitudinal temperature T� would
increase due to the electron-electron and electron-ion colli-
sions. They gave the growth rate of the temperatures �Eqs.
�3� and �4� in Ref. �9�� by solving the kinetic equation �Eq.
�2� in Ref. �9�� under the bi-Maxwellian distribution assump-
tion. In fact, if the initial state satisfies T� ��T�, after a time
interval on the order of tens of femtoseconds, T� ��T�. Af-
ter a time on the order of few or tens of picoseconds, the two
temperatures tend to be the same.

In order to show the fact, we assume that the initial state
is T�,0=0 and T�,0=100 eV. Set the electron density to be
1019 /cm3 �which is about the value measured by relevant
experiments �8��, with Eqs. �3� and �4� in Ref. �9�, T� in-
creases from 0 eV to �T�,0, i.e., �2=�, at about 44 fs. After
several nanoseconds, it is satisfied that �T� 
T��T�, i.e.,
�
�2�1.

At the very beginning time, the ion front is a flat surface
with a small pointed projection at the center shown by the
dash dot line in Fig. 1�b�. There is the longitudinal anoma-
lous plasma emission in the interval on the order of tens of
femtoseconds. After that, �2��, and then the ion front de-
velops to a part of ellipses shown by the solid, dash, and dot
lines step by step in Fig. 1�a�. At last, the ion front trends to
a part of a circle shown by the dash dot line in Fig. 1�a�.

F. Anomalous positron emission in the pair-plasma
expansion

An interesting deduction is as follows: the longitudinal
positron emission happens in the electron-positron plasma
expansions for ��1 since �=1, if the positron temperature
is far smaller than the electron temperature. Therefore, the
anomalous positron emissions exists if the electron pressure
is anisotropic, which is easy to be satisfied.

However, it is required that the positron temperature is
small enough compared with electron temperatures in the

initial stage of the expansion. In this case, the duration of the
emission is about the inverse of the electron-positron or
electron-electron collision frequency.

The anomalous positron emission may exist in the space
and observed in the space detection since the space plasma is
rarefied and then the duration of the emission will be long
enough to be observed.

III. CONCLUSION

In conclusion, the analytic expression for the ion front of
plasma expansion with anisotropic pressure and strong
charge-separation field is predicted. The ion-velocity distri-
bution at the ion front and angular-energy distribution at the
ion front are both given. It needs to be concerned that the
energy is a delta function at the maximum angle of near 90°
and the plasma emits anomalously due to the longitudinal
Coulomb explosion for �2� �0,��, as shown by the solid,
dash, and dot lines in Fig. 3. This anomalous phenomenon
has not been observed since the strongly anisotropic plasma
is difficult to be generated or even if it is generated in the
laser-plasma interaction, the duration of the emission is too
short to be observed with the existing technologies. If we can
generate a strongly anisotropic plasma that can sustain a pe-
riod long enough or we can master an ultrafast detection
technology, the anomalous emission will be observed and
then yields significant applications.

However, anomalous positron emissions exist in the
electron-positron plasma expansion with an anisotropic elec-
tron pressure if the positron temperature is small enough in
the early stage of the expansion. The emission duration
would be longer than several picoseconds.
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