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We address the description of solutes flow with trapping processes in porous media. Starting from a small-
scale model for tracer particle trajectories, we derive the corresponding governing equations for the concen-
tration of the mobile and immobile phases within a fractal mobile-immobile model approach. We show that this
formulation is fairly general and can easily take into account nonconstant coefficients and in particular space-
dependent sorption rates. The transport equations are solved numerically and a comparison with Monte Carlo
particle-tracking simulations of spatial contaminant profiles and breakthrough curves is proposed, so as to
illustrate the obtained results.
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I. INTRODUCTION

Contaminant migration in porous media is often charac-
terized by non-Fickian �anomalous� transport: following in-
jection, the spread of the pollutants plume might grow non-
linearly in time, �x2�t�− �x�t��2�� t�, ��1, and the resulting
concentration profiles display a non-Gaussian behavior
�1–3�. In contrast, particle flow in perfectly homogeneous
media �where the Fickian advection-dispersion mechanisms
apply� gives rise to linear spread and Gaussian shapes: see,
e.g., �4� and references therein. Many concurrent processes
may explain the observed deviations from Gaussianity. For
instance, the presence of irregularities at multiple space
scales �5,6�, the complex structures of flow streams �7,8� and
saturation/stagnation distribution within the medium �9�, the
physical-chemical or biophysical exchanges of the pollutant
particles with the surrounding material �10,11�, and the pres-
ence of highly concentrated species �12� make the homoge-
neity hypothesis questionable. These issues may play a key
role in correctly predicting the fate of contaminant solutes
for polluted sites remediation and waste management in geo-
logical formations.

Anomalous transport often displays nonuniversal features:
different physical conditions lead to concentration profiles
that, while sharing some properties �such as the scaling law
for the spread, for instance�, cannot be interpreted within a
single coherent framework. This is especially apparent in
presence of boundaries �13� and explains the coexistence of
several models aimed at understanding and predicting solute
dynamics in complex materials. Among them, some of the
most widely adopted formulations are the continuous time
random walk �CTRW� �1,3� and the fractal mobile-immobile
model �f-MIM� �14,15�: both have indeed been applied with
success to the analysis of experimental data ranging from
laboratory to field scale �1,6,16,17�. In particular, these ap-
proaches are well suited to shed light on the “heavy tailed”
�power-law decaying� breakthrough curves �BTCs� that are

frequently measured at the outlet of experimental setups and
the non-Gaussian shapes of spatial contaminant profiles. For
a detailed discussion on the distinct features, advantages, and
limitations of these models see, e.g., �1,10,15,17,18�.

The long-time asymptotic behavior of these formulations
may look very similar �up to an appropriate renaming of the
coefficients� �1� when the analysis is limited to given physi-
cal quantities �such as BTCs�, whereas relevant discrepancies
may appear at a closer inspection �by examining, e.g., spatial
profiles as we will see in the following�. Moreover, the gov-
erning equations for anomalous transport sometimes appear
in the literature under different forms, equivalent when all
parameters, e.g., the diffusion coefficient or the velocity, are
constant and uniform. This equivalence may break down
when the parameters depend on position and/or time �see,
e.g., �19��. In all such cases, one must adopt more precise
hypotheses on the microscopic solute dynamics in the tra-
versed medium, so as to single out an appropriate model for
the experimental data under consideration. In general, how-
ever, solutes trajectories are hardly accessible by experi-
ments �at least in the context of contaminant transport in
porous media�, so that one must resort to ensemble-averaged
macroscopic measurable quantities in order to discriminate
between hypotheses. For instance, the comparison between
model-predicted and experimentally measured BTCs and
spatial profiles may allow choosing the most appropriate
conceptual framework.

According to the f-MIM model, in the hydrodynamic
limit the evolution of the contaminant plume density is ruled
by a transport equation involving integral-differential opera-
tors of noninteger �fractional� order in time as shown in
�18,20� on the basis of numerical and theoretical arguments.
Here the hydrodynamic limit refers to the fact that we are
observing the plume behavior at space and time scales much
longer than those characterizing the typical particle displace-
ments. The prototype equation for the evolution of so-called
fractional dynamics is the fractional Fokker-Planck equation
�FFPE� �21,22�: indeed, f-MIM and FFPE share many fea-
tures and show a similar asymptotic behavior. However,
these two equations are not equivalent and represent hydro-
dynamic limits of distinct small-scale models for particle tra-
jectories.
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In particular, the FFPE corresponds to random walks per-
forming Gaussian jumps �in potential fields� that take ran-
dom durations to be completed �22–24�, whereas f-MIM de-
scribes random walks involving immobile periods �of
random duration� and Gaussian displacements at each time
step �15,17,18,25�. Conceptually, the former is an expedient
means of describing a broad spectrum of velocities, such as
those characterizing flows in heterogeneous and/or nonsat-
urated media, whereas the latter allows distinguishing be-
tween a solid matrix �where particles are stuck such as in a
low permeability region: the so-called immobile phase� and a
bulk flow �where particles undergo advection and diffusion
processes: the so-called mobile phase�.

The aim of our work is to provide a generalization of the
f-MIM approach to the case of nonconstant flows and space-
dependent sorption rates, which can commonly arise in trans-
port experiments. Nonuniformity can occur in both field and
laboratory scale measures and may involve also sharp dis-
continuities in the physical properties of the traversed media.
Based on a small-scale description of particle trajectories, we
will derive the corresponding governing equations for the
macroscopic quantities, namely, the mobile and immobile
densities, in such a way that nonconstant coefficients are
easily taken into account. In the case of constant velocity
field and uniform sorption, similar results were obtained via
subordination theory �20�, along the strategy proposed in
�23,26–28�. This approach was extended to time-dependent
forcing by �29,30�, but, in the case of nonuniform coeffi-
cients, stronger arguments have to be used. Finally, in order
to corroborate the proposed results, we will compare Monte
Carlo particle-tracking simulations of solutes spatial profiles
and BTCs with the numerical solutions of the governing
equations.

This paper is organized as follows: in Sec. II we recall the
small-scale model for flow with trapping processes in porous
media on the basis of the f-MIM formalism and provide an
extension to nonconstant flows. Then, in Sec. III, we derive
the densities of the mobile and immobile contaminant phases
at small scale, and in Sec. IV the corresponding governing
equations in the hydrodynamic limit. These equations are
discretized and solved numerically and the obtained solu-
tions are compared with Monte Carlo simulation results in
Sec. V. Conclusions are finally drawn in Sec. VI.

II. SMALL-SCALE MODEL FOR FLOW
WITH TRAPPING PROCESSES

As customary, we begin by representing the stochastic
trajectory of a contaminant particle in a porous medium as a
random walk xt

�,� undergoing advection and diffusion. Super-
scripts � ,� denote the characteristic length and time scales,
respectively, of the process. First, we briefly recall the essen-
tial features of the standard Gaussian models that usually
describe small-scale displacements of a contaminant plume
in homogeneous saturated materials. Then, we focus on het-
erogeneous and/or unsaturated media, where the broad dis-
tribution of permeabilities and different flow regions experi-
enced by the tracers is mirrored in the possibility of trapping
events at each visited spatial site, the walker dynamics being

otherwise similar to that observed in homogeneous materials.
These trapping events affect the sojourn times and thus alter
the typical scales of average displacement �i.e., velocity� and
spread �i.e., diffusion� of the contaminant plume.

A. Gaussian model for homogeneous materials

For homogeneous saturated materials, it is usually pos-
sible to identify an average flow field v�t�, so that at each
time step �t−� , t� particles are advected over a distance
��t�=�t−�

t v�t��dt�. Dispersion is usually taken into account
by adding random �symmetrical� jumps of characteristic
length scale � to the advective contribution �. The total dis-
placement during � can be therefore written as �x=�+��,
where � is a random number drawn from a probability den-
sity function �pdf� �1��� with zero mean and unit variance. It
follows that ��� · �=�−1�1�· /�� is the density of ��. Usually,
one assumes that ����� is a normal pdf with zero mean and
standard deviation equal to �, which means that the typical
scale of fluctuations around the average particle displace-
ment is �. It is well known that the scaling �hydrodynamic�
limit of such �independent� random walks is attained when
�→0 in such a way that the ratio �2 /2� converges to some
limit D. The parameter D defines the diffusion coefficient.
Under this scaling limit and when v is constant, the stochas-
tic process xt

�,� asymptotically approaches the Brownian mo-
tion �BM� xt with drift, whose concentration P�x , t� �i.e., the
probability density of finding a walker at position x at a
given time t� is shown to satisfy the following Fokker-Planck
equation �FPE� �31�:

�tP�x,t� = �x
2DP�x,t� − �xvP�x,t� . �1�

Note that FPE �1� is equivalent to the advection-dispersion
equation �ADE� when D is uniform �32�. When D depends
on x, Eq. �1� still represents the hydrodynamic limit of ran-
dom walks as above satisfying �2 /2�=D�x� �32�. For sake of
simplicity, in the following we will refer to the case where D
is uniform, i.e., D�x�=D. By virtue of the central limit theo-
rem, the results recalled above actually apply more generally
to a broad class of random walks where ����� is a generic
symmetric jump length pdf with finite second moment. After
a sufficient number of displacements, these processes all
converge to BM in the hydrodynamic limit �provided that the
variance of the process is equal to �2 and with constant v�.
The fact that BM is the basin of attraction of a large spec-
trum of random walks, independently of the specific choice
of the jump length pdf, can explain the success of Eq. �1� in
interpreting experimental contaminant transport data, at least
limited to homogeneous saturated materials �4�. Remark also
that Eq. �1� can be derived by building upon a constitutive
relationship for the particles flux �probability current�
F�,��x , t� of the process xt

�,� as recalled in Appendix D. In the
hydrodynamic limit, the flux converges to

F�x,t� = vP�x,t� − �xDP�x,t� , �2�

which is the well-known total flux for homogeneous D.
Then, mass conservation principle �tP�x , t�=−�xF�x , t�
yields Eq. �1�. This holds for infinite domains or for domains
limited by absorbing boundary conditions �walkers are re-
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moved upon touching the barriers�. For detailed accounts
concerning the derivation of Eq. �1�, see, e.g., �24,32,33�.

B. Dispersion with trapping events

Suppose now that the traversed material is affected by
small-scale heterogeneities. For instance, we might consider
unsaturated complex soils, where particles may be retained
by stagnation regions �9�. We might also think of biophysical
effects in porous materials �11� or chemical reactions taking
place on the surface of a duct traversed by fluid flow. The
homogeneous random walk proposed above is evidently in-
adequate to address such situations. From the point of view
of microscopic trajectories, a natural means of accounting for
sorption is that walkers are given the possibility of being
trapped at the end of each displacement, i.e., upon reaching a
new spatial site. The trapping probability h�x� is for sake of
generality space dependent, since traps may be nonuniformly
distributed. Previously, �18,20,23� considered constant trap-
ping probabilities. We further assume that the sojourn time at
the traps is itself a random variable tw. Experimental evi-
dences suggest that these retention times lack a characteristic
scale �i.e., their average is not defined�, so that it is com-
monly assumed that tw obeys a power-law decaying pdf
�9,15�.

We introduce the scaled variable tw=�1/�W, where W is a
random number obeying a pdf � and � a scaling exponent,
and denote by 	 the associated survival probability, 	�t�
=�t

+
��t��dt�. The quantity 	�t� expresses the probability
that the trapping time is longer than t. It follows that the
rescaled pdf of tw is ��=�−1/���t /�1/�� and the rescaled sur-
vival probability is 	�=	�t /�1/��. We now make the follow-
ing hypothesis for the pdf of the retention times:

H1: the pdf � is concentrated on R+, with survival prob-
ability of the kind 	�t�=�t−� /��1−��+K�t�, K being a func-
tion integrable over R+ with 0
�
1.

Assumption H1 is satisfied by pdfs whose asymptotic be-
havior is a power law. For instance, we might consider
Pareto laws �34,35�, or maximally skewed Lévy laws with
exponent �, which are concentrated on R+ precisely for 0

�
1 �36–39�. The functional form chosen in H1 is not
unique in any respect. However, it has been widely adopted
since it is the simplest choice which is both coherent with
experimental results �i.e., slower than exponential decay in
the BTCs� and amenable to analytical treatment. Intuitively,
the exponent � quantifies the degree of heterogeneity of the
porous media: small values of � denote strong deviations
from the usual Gaussian transport model, i.e., anomalously
long retention times. Unfortunately, at present the authors are
not aware of any conclusive relation between � and some
measurable physical quantity associated to the medium ge-
ometry or the flow conditions. Nonetheless, a huge body of
literature exists on this subject �see, e.g., the discussion in
�6��. In most cases, then, � is used as a fitting parameter on
the basis of observed data.

While the retention times correspond to the immobiliza-
tion of the walkers �immobile phase�, a more precise descrip-
tion of the time spent during displacements �mobile phase� is
needed. Several scenarios can be conceived depending on the

time of occurrence of the diffusive jump within a mobile
period �t−� , t�. For instance, the jump could take place in-
stantaneously at the beginning of the period or at the end; or
it could occur at a random time, uniformly distributed in �t
−� , t�. Also, we could imagine that the jump is not instanta-
neous and takes the whole time span �t−� , t� to be com-
pleted. On the other hand, the endpoints of successive dis-
placements do not depend on the considered scenario nor are
trapping events affected. As shown in Appendix A, all these
possible small-scale random walks converge to the same
scaling limit when � ,�→0. Then, for convenience we will
focus on the simplest case: we assume that walkers perform
a single instantaneous diffusive jump during the time interval
� taking place at the end of each mobile period. Finally, for
sake of generality, we also introduce a �possibly time- and
space-dependent� source term r�x , t� representing tracer in-
jection.

In the following, we will show that in the hydrodynamic
limit the walkers density P�x , t� for the process described
above satisfies

�tP = �x
2DH�,�,hP − �xvH�,�,hP + r . �3�

In Eq. �3�, the nonlocal in time operator H�,�,h is the inverse
of the �also nonlocal in time� mapping 1+�h�x�I0,+

1−�, which
entails the fractional integral of order 1−�, namely, I0,+

1−�,
whose definition is recalled in Appendix B. Here 1 denotes
the identity operator and ��0 is a constant parameter. In
fact, as shown in �20�, H�,�,h is the time convolution of the
kernel d

dtE1−��−�h�x�t1−��, where E� is the Mittag-Leffler
function described in �40–42�. In �20� it was shown that Eq.
�3� governs the evolution of the particle concentration for
constant v and uniform D, with h�x�	1, building upon the
results of �18�; for this case, and assuming r�x , t�=��t���x�,
Eq. �3� is equivalent to the fractal MIM model

��t + ��t
��P�x,t� = �x�D�x − v�P�x,t� �4�

introduced in �15�, where �t
� is the Caputo derivative of order

� �see Appendix B�. The exponent �
1 characterizes the
asymptotic behavior of the trapping times pdf �in H1� and
also the scaling of the plume spread; in this sense, � is the
signature of the anomalous transport process. Indeed, the so-
lutions of Eq. �4� have been shown to decrease at large times
as t−� �15�, which could possibly explain the long tails ex-
perimentally observed, e.g., by �9,7�. In unbounded domains,
and with constant and uniform coefficients, the spatial mo-
ments of the solute concentration in Eq. �4� were shown to
decrease as powers of time related to the exponent � �18�.

As a special limit, setting �=1 in Eq. �4� yields the well-
known MIM model with retardation factor 1+� �25�, which
corresponds to tracers experiencing random retention periods
with finite characteristic �mean� duration, comparable to the
time spent in the average flow field. Nevertheless, the solu-
tions of the MIM model or ADE �1� fall off much more
rapidly than any power of t and are thus inadequate to inter-
pret experimental data showing heavy tails such as those of
�7,9�. We will see further below that, rather than representing
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the hydrodynamic limit of random walks satisfying H1 with
�=1, the MIM model corresponds to a pdf � with a finite
average.

The parameter � determines the relevance of the retention
mechanism with respect to the Fickian transport: when �
=0, all equations above collapse to the ADE. Moreover, it
provides the scaling parameter for � and carries dimensions
of a power � of time. This is easily seen in the Laplace
space, where ��s�
1−�s� in the limit s→0 according to
H1.

III. PROBABILITY DENSITIES FOR THE MOBILE
AND IMMOBILE PHASES AT SMALL SCALE

Particles performing such random walks with sorption can
conceptually be separated into two distinct “phases:” at each
time step, walkers that are trapped are said to be in the im-
mobile phase, whereas walkers that are not are said to be in
the mobile phase. In the following, we proceed to derive an
explicit relation that links the particles densities in the two
phases for definite values of length scales and time scales �
and �. The hydrodynamic limit will be addressed in next
section.

Let Pi
�,��x , t� be the density of trapped particles, at loca-

tion x at time t, and Pm
�,��x , t� the density of mobile walkers.

In order to establish the desired relation between the two
spatial densities Pi

�,� and Pm
�,�, we make use of the ancillary

pdfs pj
�,� of just arriving at point x at time t, and pm

�,� of just
being released by a sorbing site at time t.

Except just after having been injected into the system,
mobile particles at position x at time t have two alternatives.
Either they may have completed a mobile period at time t
− t��0
 t�
�� without being trapped; or, they may have been
trapped and then released at a distance �t−t�

t v���d� from x.
Both possible events are followed by a convective displace-
ment that may not be completed at time t. The displacement
completed at time t has amplitude L�t , t��=�t−t�

t v���d�. Re-
mark that L�t , t��=vt� if v is constant. Hence, we have the
following probability balance:

Pm
�,��x,t� = �

0

�

Tt�YL�t,t���f�,� + r��x,t�dt�, �5�

where the quantity

f�,��x,t� = pm
�,��x,t� + �1 − h�x��pj

�,��x,t�

is the pdf of just beginning a mobile period at time t and
position x after a previous mobile period �i.e., particles just
injected by the source are excluded�. Convective displace-
ments are represented by means of the operators Tu and Yw,
which denote translation in time and space, respectively; i.e.,
TuG�t�= �HG��t−u�, H being the Heaviside step function,
and Ywg�x�=g�x−w�. Equation �5� corresponds to scenario
�S1� of Appendix A, the diffusive jumps occurring at the end
of each mobile period.

Immobile particles that are in x at time t must have
jumped there previously, been trapped, and stayed there up to
t. Hence, denoting time convolutions of functions in R+ by �,
i.e., F�G�t�=�0

t F�t− t��G�t��dt�, we have

Pi
�,��x,t� = h�x�	� � pj

�,�. �6�

To complete the mass balance above we need another equa-
tion. Particles just arriving at x at time t�� may �i� have
jumped at the previous time step without being trapped, �ii�
have been trapped and released, or �iii� may have been
injected into the system by the source, in each case at time
t−�. Hence, for pj

�,��x , t�, which appears on the right-hand
side of Eq. �6�, we have

pj
�,��x,t� = T�YL�t,���f�,� + r� � �� �7�

for t��, where � denotes space convolution, i.e., f �g�x�
=�Rf�x−x��g�x��dx�. Note that the explicit dependence of
the convolution product on the variables �x , t� has been omit-
ted.

According to Eq. �5�, �−1Pm
�,��x , t� is the average of

Tt�YL�t,t���f�,�+r��x , t� over an interval of amplitude �, hence,
approximates T�YL�t,���f�,�+r��x , t� when � becomes small
at least for smooth functions of time. Since convolutions as
in Eqs. �6� and �7� have a smoothing effect, this latter as-
sumption is not necessary to ensure that replacing
T�YL�t,���f�,�+r� by �−1Pm

�,� results into a small error for Pi
�,�.

To check this argument, let us just split T�YL�t,���f�,�+r� into
�−1Pm

�,� and the remainder and estimate the influence of the
latter in pj

�,��x , t� and Eq. �6�. We obtain

Pi
�,��x,t� = h�x��R�,�Pm

�,��x,t� + E�,��x,t�� . �8�

Further below, we will address the limit of the operator R�,�

and check that E�,� tends to zero when � ,�→0. We have set

R�,�g�x,t� = �−1�	� � g � ����x,t� , �9�

E�,��x,t� = 	� � �� � ��,��x,t� , �10�

and

��,��x,t� = T�YL�t,���f�,� + r��x,t� −
Pm

�,��x,t�
�

= �
0

1

�T�YL�t,�� − T��YL�t,�����f�,� + r��x,t�d� .

�11�

The equations above provide the link between the mobile
and immobile walkers densities at small scale.

IV. GOVERNING EQUATIONS

In this section, we derive the hydrodynamic limit of the
small-scale processes described above and illustrate the mac-
roscopic governing equations. The starting point is the limit
of Eq. �8�.

A. Mobile and immobile densities

Our aim is to show that the mapping R�,�, defined by Eq.
�9�, converges to a fractional integral, whereas in Appendix
C we prove that the quantity E�,� can be neglected provided
that Pm

�,� and f�,� converge sufficiently smoothly when � ,�
→0. Indeed, the mapping R�,� combines convolutions in
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time and space with kernels �−1	� and ��. The space con-
volution with kernel �� converges to the 1 operator �43�. The
time convolution with kernel �−1	� splits into the sum of a
singular term and a mapping that vanishes when �→0. In-
deed, hypothesis H1 imposes

�−1	� = �t−�/��1 − �� + �−1K�t/�1/�� , �12�

K being an integrable kernel. Moreover, in view of Appendix
B, the time convolution of kernel �t−� /��1−�� is precisely
the fractional integral �I0,+

1−�. For the second term, we have
��−1K�t /�1/���L1�R+�=�1/�−1�K�L1�R+�; hence, Young’s inequal-
ity �see Appendix C� implies that the convolution of kernel
�−1K�· /�1/�� is a mapping of L1��0,T� ,X� that vanishes when
�→0 for 0
�
1. Therefore, recollecting the previous re-
sults, in the hydrodynamic limit we have

Pi�x,t� = �h�x�I0,+
1−�Pm�x,t� �13�

and

Pm�x,t� = H�,�,hP�x,t� . �14�

Expressions �13� and �14� provide the governing equations
for the mobile and immobile particles densities, respectively,
at the macroscopic scale. When the pdf � satisfies �� t−�−1

with ��1, so that it has a finite average, the survival prob-
ability 	 is integrable and we have �=�0

+
t��t�dt
=�0

+
	�t�dt. Then, the time convolution of the kernel
�−1	�t /�� approximates the identity operator 1 when �→0.
Hence, the scaling tw=�W leads to Pi�x , t�=�h�x�Pm�x , t�.
Moreover, Eq. �14� still holds with H�,��1,h=1 / �1+�h�x��.
Thus, when the sticking times have a finite average, we re-
cover the standard MIM model �25� with a retardation factor
1+�h �provided that h is uniform�.

B. Particles fluxes

In Appendix D, we show that the probability current
F�,��x , t� can be written as v�t�Pm

�,��x , t�+FD
�,��x , t�, up to an

additive contribution that vanishes when � ,�→0, and
FD

�,��x , t�→−�xDPm. Then, using Eq. �14� and the definition
P= Pm+ Pi yields the explicit expression for the total tracers
flux

F�x,t� = vH�,�,hP − �xDH�,�,hP , �15�

which generalizes Eq. �2� to spatially distributed trapping
events and variable velocity fields: this expression actually
represents the total flux as applied to Pm. Combining this
equation with mass conservation finally gives Eq. �3�.

The consistency of Eqs. �13� and �15� will be verified by
showing that solutions to Eq. �3� indeed describe the density
of a plume of walkers performing the random walks in Sec.
II and that the associated particle fluxes satisfy Eq. �15�.

V. NUMERICAL SIMULATIONS AND COMPARISONS

In a previous work, some of the authors discussed the use
of numerical schemes discretizing Eq. �3� for the case of
constant advection field v and unit probability of undergoing
a trapping event at the end of each displacement, i.e., h=1

�20�. In this particular case, Eq. �3� is equivalent to the
widely adopted Eq. �4�, whose Caputo derivatives can be
discretized according to various existing numerical schemes
�44,45�. An alternative integration method was proposed in
�20�, so as to take advantage of the conservative form of Eq.
�3�. This scheme can be easily extended to the more general
situation addressed here, i.e., the fractal MIM Eq. �3� with
time-varying velocity and spatially dependent sorption prob-
ability. Therefore, we proceed now to display numerical so-
lutions of Eq. �3� and to compare them to Monte Carlo simu-
lations of the microscopic-scale random walks described in
Sec. II. Indeed, in the hydrodynamic limit, the mobile frac-
tion of an ensemble of random walkers undergoing the sto-
chastic process described in Sec. II approximates the quan-
tity Pm, whereas the immobile fraction approximates Pi.
After briefly revising the essential features of numerical in-
tegrations and random walk simulations, we will present
comparisons to illustrate the theoretical results of Sec. IV,
i.e., Eqs. �13� and �14� and the subsequent Eqs. �3� and �15�.
In particular, we will focus on cases where �although D is
uniform� the fractal MIM formulation �3� is not equivalent to

��t + ��t
��P�x,t� = �x��xD − v�P + H�,�,hr ,

which is the version of the more popular fractional differen-
tial equation �4� suitable to deal with general source rates
r�x , t�. Comparisons between partial differential equations
and random walks were presented in �18� for infinite do-
mains; here, we focus exclusively on bounded domains.

A. Numerical methods

Numerical integration of Eq. �3� can be based on an im-
plicit method with centered finite differences schemes for
space derivatives, described in �20�, when P�x , t� is smooth,
which is the case if h�x� does not show discontinuities. The
nonlocal in time mapping H�,�,h is approximated by invert-
ing a discrete version of the integral operator �1+�h�x�I0,+

1−��
�20�. Fluxes of tracers are finally given by applying Eq. �15�.

The Monte Carlo particle-tracking approach to the fractal
MIM model described above consists in computing the tra-
jectories of a �large� number N of independent particles per-
forming successive displacements, whose rules are defined in
Sec. II. More precisely, let us denote by xn the location after
the nth displacement of a particle that originated in x0 at time
t0. This walker leaves xn at time tn and we have

xn+1 = xn + �
tn

tn+�

v�t��dt� + 
2D�� ,

where � is a random Gaussian number with zero mean and
unit variance, and either

tn+1 = tn + � + �1/�W

with probability h�xn+1� or

tn+1 = tn + �

with probability 1−h�xn+1�.
For the case of constant v and uniform h=1, the results in

�20� show that random walk simulations are in excellent
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agreement with numerical integrations of Eq. �4�. The same
holds for fluxes as in Eq. �15�, obtained from both methods.
In the following, we focus our attention on time-dependent
velocities, and nonuniform probabilities h�x�, in one-
dimensional domains �xl ,xr� with various boundary condi-
tions.

B. Time-dependent velocity

We perform comparisons for a periodical velocity v
=sin �t and h=1. In Fig. 1 we display the breakthrough
curve �i.e., the outgoing flux from the domain� as a function
of time. In the context of solutes transport in porous media,
this physical quantity is the most easily accessible by experi-
ments, either at the outlet of laboratory-scale column setups
or at boreholes �wells� for large field-scale measurements.
We consider a 1d bounded domain of length L=1, with a
reflective boundary condition at the left, xl=0, and an ab-
sorbing boundary condition at the right, xr=L. Velocity is
positive pointing toward the right, so that we measure the
outgoing flux at the right outlet of the domain. A point source
is set at the center of the domain, x0=L /2. An excellent
agreement is found between Monte Carlo simulation results
and numerically integrated equations.

Then, to further substantiate this analysis, in Fig. 2 we
display the spatial concentration profiles P�x , t� for the total
tracers concentration �at fixed times�. In physical terms, these
curves allow quantifying the average displacement and the
spread of an initially close plume of injected solutes. Again,
a very good agreement is found between Monte Carlo simu-
lations and numerically integrated equations.

Sinusoidal velocities v=A sin �t, aside from providing a
simple, yet nontrivial example of time-dependent functions,

play a key role in understanding some fundamental proper-
ties of Eq. �3�. Indeed, similarly as for the fractional trans-
port equation �Eq. �8�� analyzed in �46�, the memory effects
due to the nonlocal operator H�,�,h in Eq. �3� deeply affect
the response of the system to an external forcing function.
For normal diffusion, the first moment m1�t� of the concen-
tration P would just follow the oscillations of v �with some
phase shift� with zero average. On the contrary, the moment
m1�t� associated to Eq. �3� shows the so-called death of the
linear response �46�, i.e., damped oscillations converging to
a finite limit, different from zero. Moreover, the second mo-
ment m2�t� is also influenced by the nonlocal operator and
behaves asymptotically as t� �field-induced dispersion �46��.
A proof is given in Appendix E.

Finally, we remark that transport equation �3� can be also
obtained from the standard FPE by resorting to subordina-
tion, when the field v depends on t, and h�x�=1. This is
detailed in Appendix F.

C. Nonuniform trapping probability

In the context of underground contaminant migration, a
space-dependent sorption probability h�x� may be expedient
to represent many different physical pictures, among which a
transition between zones of low and high permeability, as
well as an alternation of saturated and stagnant regions. The
disparate mechanisms lying at the origin of the trapping pro-
cesses for solutes and water parcels are still poorly under-
stood. For instance, one can imagine that the micropores
present at the surface of some grains may capture water and
tracers. Hence, a nonuniform distribution of the trapping
sites is expected to be the most common situation in geologi-
cal formations and complex soils. Conceptually, the simplest
case is given by an abrupt variation between h=0 and h=1 in
two adjacent portions of a given domain: this could corre-
spond to the traversed medium being homogeneous and satu-
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FIG. 1. �Color online� Breakthrough curve F�x , t� at the right
outlet of a domain with length L=1. The time-dependent velocity is
v�t�=2 sin��t�, with D=1, h	1, �=1, and �=0.5. A point source is
located in x0=L /2 at time t=0. The left outlet has reflective bound-
ary conditions, while the right outlet has absorbing boundary con-
ditions. Symbols represent Monte Carlo simulation �dots ��=5�,
squares ��=25�, and crosses ��=50��, and the solid line numerical
integration.
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FIG. 2. �Color online� Total concentration profiles P�x , t� in do-
main with length L=1 at fixed times. The time-dependent velocity
is v�t�=2 sin��t�, with D=1, h	1, �=1, �=50, and �=0.5. Initial
data and boundary conditions are as in Fig. 1. Symbols represent
Monte Carlo simulation �squares �t=0.1�, crosses �t=0.2�, and dots
��t=0.3��, and solid lines numerical integration.
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rated in the former region, and unsaturated and/or heteroge-
neous in the latter, where retention and sticking effects
dominate.

Then, the plume migration is Fickian where h=0
�memory effects are absent, and transport is ruled by the
standard ADE dynamics, as seen from Eq. �3�� and anoma-
lous where h=1 �transport is ruled by the memory kernel
contained in the fractional integral�. In the following, we
illustrate this case by considering a 1d domain of length L
=1, whose left portion �0,xd� is characterized by h=0 and
whose right portion �xd ,L� is characterized by h=1. We as-
sume xd=L /2 and set absorbing boundary conditions at both
ends of the domain. A point source is located in x0=L /4 at
time t=0; i.e., the particles are injected in the homogeneous
and saturated region. In Fig. 3 we display the spatial concen-
tration profiles for the total tracers concentration P�x , t� �at
fixed times�. Aside from being interesting from a physical
point of view, the case of abrupt variations in the parameters
also provides a severe test of Eq. �3� as well as of the nu-
merical methods.

The most striking feature of this transport process is the
appearance of discontinuities in the resident concentration
profiles at the interface between the two portions of the do-
main, whereas the profiles displayed in �20� for h=1 are
continuous. A similar behavior has already been reported
elsewhere in the context of the CTRW formulation �see, e.g.,
the discussions in �47–50��. The parameter h�x� condenses
the “stickiness” of each region with respect to the solutes
flow, i.e., the local strength of sorption effects. An abrupt
variation in the retention times when crossing an interface
may thus lead to a sharp accumulation of solutes, which in
turn appears as a discontinuity in the mass profile. This is
due to the fact that the residence times vary as a function of
h�x�: as a consequence, the regions with weaker sorption
effects will be depleted in solutes as compared to those with

stronger sorption effects. These findings may possibly ex-
plain the asymmetries in water flow when traversing regions
with sharp variations in the physical properties as reported in
�47,51�.

While the implementation of random walks for this case
is straightforward, some care is necessary in discretizing
densities for numerical integration. More precisely, the total
concentration P�x , t� is discontinuous at xd; hence, directly
discretizing Eq. �3� is not convenient. Using instead Eq. �14�,
which links P and Pm, and then the flux expression applied
to Pm, is much more expedient, because Pm is smooth. Com-
bining Eqs. �3� and �14� yields

�tPm�x,t� = H�,�,h�− �xvPm + �x
2DPm + r�x,t�

− �h�x�
t−�

��1 − ��
Pm�x,0+�� , �16�

which is easily discretized following the same lines as in
�20�.

In Fig. 4 we display the spatial concentration profiles
Pm�x , t� for the mobile tracers concentration �at fixed times�.
In this case, the curves are smooth across the interface. This
is because the particle flux is applied to Pm and the ADE
does not allow for concentration discontinuities at the inter-
face. Indeed, the flux contrasts local variations of Pm. Sup-
pose that the profiles of P and Pm have slopes of different
signs �e.g., positive for Pm and negative for P� at x: then, the
particle flux through x is negative and flattens out the spatial
increase in Pm. On the contrary, the spatial decrease in P has
no direct effect on the flux, which therefore does not act on
this quantity. For both total and mobile concentrations, a
very good agreement is found between Monte Carlo simula-
tions and numerically integrated equations. Finally, Fig. 5
shows the breakthrough curves at the column right outlet for
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FIG. 3. �Color online� Total tracers concentration P�x , t� at fixed
times on a domain of length L=1. In �0,L /2� we have h�x�=0 and
h�x�=1 in �L /2,L�. A point source is located in x0=L /4 at time t
=0. Both ends of the domain have absorbing boundary conditions.
The simulation parameters are �=0.8, �=1, v=0.5, and D=0.2.
Curves are plotted at times t=0.25 �squares�, t=0.5 �crosses�, and
t=0.75 �dots�.
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FIG. 4. �Color online� Mobile tracers concentration Pm�x , t� on a
domain of length L=1 at fixed times with h�x�; initial data and
boundary conditions are as in Fig. 3. The simulation parameters are
�=0.8, �=1, v=0.5, and D=0.2. Curves are plotted at times t
=0.25 �squares�, t=0.5 �crosses�, and t=0.75 �dots�.
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different values of the exponent � in the absorbing region:
again, good agreement is found between Monte Carlo simu-
lations and numerically integrated equations. The asymptotic
behavior described by �15� in infinite domains with h�x�=1
is recovered: even with h�x��0 in some intervals only,
P�x , t�� t−�, Pm�x , t�� t−�−1, and F�x , t�� t−�−1 when
t→+
. While density profiles obtained for a given value of
� with arbitrary h�x� show qualitative differences, fluxes
look similar. Hence, BTCs alone are not enough to discrimi-
nate between cases.

VI. CONCLUSIONS

In this work, we have discussed a model of contaminant
particle flow with trapping events in porous media. Building
on the framework of the fractal MIM model, which describes
advection-diffusion processes with sticking events in homo-
geneous flows, we have considered time-varying velocities
and space-dependent sticking probabilities. We have first de-
rived the small-scale particle dynamics on the base of a func-
tional relationship between the densities of trapped and non-
trapped walkers. This relationship stems directly from the
asymptotic behavior of the trapping times distribution and
gives rise to a modified flux law with memory for particle
fluxes. Then, recalling the mass conservation principle, we
have obtained the corresponding governing equations for the
evolution of the mobile and immobile phase densities.

These equations have been derived by considering the hy-
drodynamic �scaling� limit of the underlying microscopic
stochastic processes, i.e., by letting the space and time scale
of the particles displacements be vanishing small, while pre-
serving the macroscopic diffusion and advection coefficients.
The transport equations, which contain nonlocal in time ker-
nels in the form of fractional integrals, have been discretized

and solved numerically by resorting to ad hoc algorithms.
Finally, in order to corroborate our results, the contaminant
concentration profiles and the breakthrough curves thus ob-
tained by numerical integration have been compared with
Monte Carlo particle-tracking simulations.

The relevance and broad applicability of transport equa-
tion �3� for the case of nonconstant parameters have been
emphasized in both theoretical derivations and numerical ex-
amples. In particular, we have addressed the case of time-
varying velocity fields v�t� and space-dependent trapping
probabilities h�x�. In fact, the method developed here is more
general and may apply also when the equation coefficients
�e.g., h� depend on the densities of trapped and mobile walk-
ers, which would result in a nonlinear version of Eq. �3�,
similarly as in �12,52�. Other methods, based upon the
Langevin picture and the subordination theory, corroborate
our results in the case of a uniform trapping probability h.

Further extensions of our work will address the coexist-
ence of several kinds of traps within the same porous me-
dium, each trap being characterized by a distinct sticking
time pdf. This approach would then give rise to slightly more
complex mappings H�,�,h with fractional integrals of distrib-
uted order �53�. The simplest case would correspond to two
kinds of traps occurring with probabilities h1 and h2, respec-
tively, and sticking time pdfs ��1

and ��2
�satisfying hypoth-

esis H1 with �1
�2�. Such a model could represent, e.g.,
multiple phases or regions, with distinct retention properties.
Then, the residence times of the solutes would be governed
by the mapping H�1,�2,�1,�2,h1,h2

defined as being the inverse
of 1+�1h1�x�I0,+

1−�1 +�2h2�x�I0,+
1−�2. Moreover, while at interme-

diate times the solute dynamics is rather involved, at late
times the total density would asymptotically decrease as t−�1;
i.e., transport would be dominated by the “slower” retention
process.
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APPENDIX A: SOME SCENARIOS FOR DIFFUSIVE
JUMPS

During a given mobile displacement between times t−�
and t, we have a single diffusive jump, whose length is a
random variable obeying ��. At the scale of microscopic
particle trajectories, diverse scenarios may be conceived,
which we denote by label �Si�. Let xt

�i,�,����� be the associ-
ated walkers paths.

The source of randomness in each sample � arises from
the series of successive diffusive jump lengths Jn �n�1� and
from that of trapping times Tn; for convenience, we set Tn
=0 if there is no trapping event after the nth mobile period.
Concerning diffusion, we might consider instantaneous
jumps occurring at the end of each mobile period �S1�, at the

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t

B
T
C

FIG. 5. �Color online� Breakthrough curve F�x , t� at the right
outlet of a domain with length L=1. A point source is located in
x0=L /4 at time t=0. Both ends of the domain have absorbing
boundary conditions. The simulation parameters are �=5, v=2, and
D=1. Symbols represent Monte Carlo simulations ��=0.8
�squares�; �=0.5 �crosses�; �=0.3 �dots��, and solid lines the cor-
responding numerical integration.
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beginning �S2�, or at a random time uniformly distributed in
the interval �t−� , t� �S3�. Alternatively, the diffusive jump
might be thought of as being distributed along the total dis-
placement taking, therefore, a time �t−� , t� to be completed
�S4�.

Each � corresponds to two sequences of numbers, which
are the values drawn for the Jn and Tn. Of course, these
points are identical for all the trajectories xt

�i,�,����� started
from x0 at time t=0. All trajectories pass through points �tn
+� ,xn+1� and �tn+1 ,xn+1�, with tn+1= tn+�+Tn and xn+1=xn

+Jn+�tn
tn+�v���d�: trapping periods correspond to segments

beginning at point �tn+� ,xn+1� and ending at �tn+�
+Tn ,xn+1�, which are common to all scenarios. Hence, the
immobile walkers density Pi

�,��x , t� does not depend on the
scenario. Moreover, �xt

�i,�,�����−xt
�j,�,������=0 when t belongs

to a trapping period and �xt
�i,�,�����−xt

�j,�,������
 �Jn� when t
belongs to the nth mobile period. Jumps Jn obey �� and
�weakly� converge to zero when �→0. Hence, theorem 3.1
of �54� implies that, if one among the possible processes
xt

�i,�,�� converges to the scaling limit xt when �→0, then the
same holds for all the other paths xt

�i,�,��.
Hence, it follows that the walkers density P�x , t� does not

depend on the specific scenario in the hydrodynamic limit
nor does the immobile walkers concentration Pi�x , t�. Then,
the mobile Pm and immobile densities Pi do not depend on
the scenario.

APPENDIX B: FRACTIONAL INTEGRALS
AND DERIVATIVES

The fractional integral I0,+
� f of order ��0 is

I0,+
� f�t� =

1

�����0

t

�t − t���−1f�t��dt�,

which generalizes the usual multiple integrals to noninteger
order �43,55�. Observe that I0,+

� is bounded in Lp�0,T� for
1� p�
 �43�.

The Caputo fractional derivative �t
�f of order n
�
n

+1 appearing in Eq. �4� is defined by

�t
�f�t� = I0,+

n+1−��t
n+1f�t� ,

n being an integer �40,42,43�.

APPENDIX C: ESTIMATES AND LIMITS

In this appendix, we will prove that E�,�→0 when � ,�
→0 provided that Pm and f�,� converge. We will make use of
some technical results, which will also be used later in Ap-
pendix D for fluxes.

1. Hypotheses

We will need some regularity assumptions for the source
rate r, the velocity v, and the densities Pm

�,� and f�,�.
Hypothesis H2. r�x , t� is the time derivative of some func-

tion ��x , t��L1�R+ ,X�, i.e., r�x , t�=�t��x , t�, and v is uni-
formly continuous.

Observe that initial data of the kind P�x ,0+�= P0�x� lie
within this assumption, with r�x , t�=��t�P0�x�.

Hypothesis H3. �i� When � ,�→0 with D=�2 /2�, the den-
sity Pm

�,� converges to Pm in L1��0,T� ,X� and �xPm belongs to
this space. �ii� The distribution f�,� is the time derivative of
some F�,� that belongs to L1��0,T� ,X�: f�,�=�tF

�,�, and F�,�

→F in L1��0,T� ,X� when � ,�→0, with f =�tF. Moreover,
�iii� �x�F�,�+�� tends to �x�F+�� in L1��0,T� ,X�. Observe
that point �iii� is not needed if v is constant.

2. Statements

We will make use of Young’s inequality, which we repro-
duce here for convenience �56�:

Young’s inequality. Let 1�q� ,q ,q��
, with 1 /q�+1 /q�
=1+1 /q. Then, for F�Lq��0,T� and G�Lq��R�, we have

�F � G�Lq�R� � �F�Lq��0,T��G�Lqq��R�,

and for F�Lq��R� and G�Lq���0,T� ,Q� we have

�F � G�Lq��0,T�,Q� � �F�Lq�R�G�Lq���0,T�,Q�,

where Q is a Banach space.
We will prove the following proposition:
Proposition 1. Suppose that hypotheses H1, H2, and H3

are satisfied. Then, �i� 	�������,�→0 in L1��0,T� ,X�.
Moreover, �ii� �H�� ·

� �����,�→0 in the set S���0,T� ,X� of
tempered distributions.

Note that point �i� implies E�,�→0 in the hydrodynamic
limit. The proof will use the following lemmas.

Lemma 1. �i� Let w be a continuous function. Then, for g
in L1��0,T� ,X�, Tt�Yw�t��g is a continuous function of t�, with
values in L1��0,T� ,X�. Moreover, �ii� the mapping Tt�Yw�t��
is a contraction in L1��0,T� ,X�.

Lemma 2. If g�L1��0,T� ,X�, then �0
1�T�YL�t,��

−T��YL�t,����g�x , t�d�→0 in L1��0,T� ,X�, when �→0.
Consequence. If hypotheses H2 and H3 are satisfied, then

�0
1�T�YL�t,��−T��YL�t,�����F�,�+���x , t�d�→0 in L1��0,T� ,X�

when �→0.

3. Proofs

Proof of proposition 1. Due to H2 and H3, we have

��,��x,t� = �t�
0

1

�T�YL�t,�� − T��YL�t,�����F�,� + ��d� + I1,

�C1�

where

I1 = �
0

1

��v�t� − v�t − ���T�YL�t,��

− �v�t� − v�t − ����T��YL�t,�����x�F�,� + ��d� .

Therefore, we obtain

	� � ��,� = �� � �
0

1

�T�YL�t,�� − T��YL�t,�����F�,� + ��d�

+ 	� � I1. �C2�

The second integral I1 on the right-hand side of Eq. �C1�
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vanishes if v is constant. If v is not constant, it tends to zero
when �→0 in L1��0,T� ,X�, in view of H2 and H3 �iii�. Then,
since 	��t� is bounded �by 1�, 	�� I1→0 in L
��0,T� ,X�,
hence, in L1��0,T� ,X� since T is finite. Moreover, since �� is
normalized, the consequence and Young’s inequality imply
that the first term on the right-hand side of Eq. �C2� vanishes,
which proves point �i�.

For nonconstant v, hypothesis H3 �iii� implies that

��·/�� � I1 = �� � �
0

1

��v�t� − v�t − ���T�YL�t,��

− �v�t� − v�t − ����T��YL�t,�����f�,� + ���x,t�d�

→ 0

in L1��0,T� ,X�, since I1→0 while �� is normalized. Besides,
U=��· /����t�0

1�T�YL�t,��−T��YL�t,�����F�,�+���x , t�d� may
not belong to L1��0,T� ,X�. Nevertheless, U is the time de-
rivative of ��· /����0

1�T�YL�t,��−T��YL�t,�����F�,�+���x , t�d�,
which vanishes in this space. This proves point �ii�.

We now have to prove the lemmas. In lemma 1, point �i�
follows from the proof of theorem 9.5 of �57�, stating that
YaG is a continuous function of a, with values in L1�R�,
provided that we have G�L1�R�. Point �ii� is obvious.

For lemma 2, the function T��YL�t,���g�x , t� belongs to
L1��0,T� ,X� and depends continuously on � by lemma 1 �i�.
Hence, it is Bochner integrable �56� from �0,1� to
L1��0,T� ,X�. Moreover, by lemma 1 �ii�, T��YL�t,���g�x , t�
→g�x , t� pointwise, whereas �T��YL�t,���g�x , t�−g�Y � �g�Y in
Y =L1��0,T� ,X� norm, so that dominated convergence proves
the lemma.

Finally, the consequence is immediate from lemma 2,
since we have �0

1�T�YL�t,��−T���YL�t,����F+���x , t�d�→0 in
L1��0,T� ,X� by lemma 2 and �0

1�T�YL�t,��−T��YL�t,�����F�,�

−F��x , t�d�→0 due to H3 and lemma 1.

APPENDIX D: PROBABILITY CURRENT

1. Fickian case

The particle flux �probability current� F�,��x , t� of the pro-
cess xt

�,� is directly related to the average net number of
walkers crossing point x at time t. Its diffusive and advective
components are

F�,��x,t� = FD
�,��x,t� + v�t�P�,��x,t� , �D1�

where FD
�,��x , t� denotes the contribution of diffusive jumps

and P�,��x , t� is the density of the process xt
�,�. Since each

walker performs one diffusive jump per time step �, we have

FD
�,� = �

0

+
 P�,��x − y,t� − P�,��x + y,t�
�

�� y

�
�dy , �D2�

where the function ��y /��=�y/�
+
���z�dz represents the prob-

ability that diffusive jump length is larger than y. Then, re-
calling that �� is symmetric, we can rewrite FD

�,��x , t�
=FD,+

�,� �x , t�−FD,−
�,� �x , t�, where

FD,�
�,� = 2�

0

+
 �DP�,���x � y,t� − �DP�,���x,t�
�2 �� y

�
�dy ,

�D3�

with D=�2 /2�. Hence, the contribution of diffusive jumps to
the probability current is expressed through convolutions,
whose kernel has a form �−�−1K�y /��. Under some assump-
tions on K, such mappings have a limit when �→0, that is a
derivative of order � �58–61�. For the case considered here,
�=1, the lemma below shows that FD

�,� converges in the
hydrodynamic limit to −�xDP. The lemma applies to Eq.
�D3� if DP has a uniformly bounded derivative with respect
to x provided that also P�,�− P→0 more rapidly than �. In
domains limited by reflecting boundaries, the diffusive flux
needs corrections with respect to Eq. �D2� on the small scale
due to particles bouncing back at the walls �62�. Neverthe-
less, Eq. �2� still holds for symmetric �� with a finite second
moment. Also, care must be taken when dealing with absorb-
ing boundary conditions if �� has a diverging second mo-
ment �63�.

Lemma 3. Let � be a differentiable function, integrable
over R+, positive and decreasing. Then, for any integrable
function g whose derivative is uniformly bounded,

�
0

+
 g�x + �y� − g�x�
�

��y�dy → −
1

2

dg

dx
�

0

+


���y�y2dy ,

pointwise when �→0.
This proposition appears in �62� within a slightly different

context. Moreover, since ��y�=�y
+
�1�z�dz, we have ���y�

=−�1�y�.
Proof. Let us denote A��� a function, such that A���

→+
 when �→0, with �A���→0. For instance, we can
assume A���=�−a, with 0
a
1. Then, we have

�
0

+
 g�x + �y� − g�x�
�

��y�dy ,

which can be written as I���+J���, with

I��� = �
0

A��� g�x + �y� − g�x�
�y

y��y�dy

and

J��� = �
A���

+
 g�x + �y� − g�x�
�y

y��y�dy .

Then, I���→ dg
dx �0

+
y��y�dy, which integrating by parts
yields �0

+
y��y�dy=− 1
2�0

+
���y�y2dy.
Finally, for J��� we have �J�����M��A���

+
 ��y�dy�, with
M denoting the sup norm of the derivative of g. This term
vanishes in the hydrodynamic limit in view of the above
choice of A���.

2. Case of diffusion with immobile periods

An explicit expression for the particle flux can be derived
also for random walks with immobile periods. We will do it
within scenario �S1�. We further assume that Pm

�,� and f�,�
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converge according to hypothesis H3 of Appendix C on the
basis of the probability for a tagged particle to cross x to the
left/right during a small time interval.

Particles that cross point x toward the right during time
interval �t , t+dt� must be mobile and have spent a time t�
� �0,�� in the mobile period. Moreover, they may �i� or may
not �ii� have completed the single diffusive jump. In the
former case �i�, they spent exactly a time � in that period,
which began at point x−y−L�t ,�� between instants t−� and
t+dt−�, if the jump length is larger than y. Collecting all
positive contributions y�0 gives for case �i� the probability

�
0

+


T�YL�t,���f�,� + r��x − y,t��� y

�
�dydt .

Case �ii� cannot occur if v�t�
0. For positive v�t�, it corre-
sponds to particles that entered the mobile period between
points x−v�t�dt−L�t , t�� and x−L�t , t��, for all values of t�
� �0,��, which yields the probability

�
0

�

Tt�YL�t,t���f�,� + r��x,t�dt�v�t�dt .

Upon dividing by dt, we recognize v�t�Pm
�,��x , t� according to

Eq. �5�. If v�t��0, crossings toward the left correspond to
diffusive jumps and we only have

�
0

+


T�YL�t,���f�,� + r��x + y,t��� y

�
�dydt .

Hence, in view of Eq. �11� the probability current will be
given by the sum of two terms

�
0

+
 Pm
�,��x − y,t� − Pm

�,��x + y,t�
�

�� y

�
�dy + v�t�Pm

�,��x,t� ,

which tends to −�xDPm+v�t�Pm as shown above and

�
0

+


��,��x − y,t��� y

�
�dy − �

0

+


��,��x + y,t��� y

�
�dy .

This latter expression vanishes, according to proposition 1 of
Appendix C, which proves Eq. �15�.

APPENDIX E: FIRST AND SECOND MOMENT, DEATH
OF THE LINEAR RESPONSE, AND FIELD-

INDUCED DISPERSION

Following �29,30,46�, restricting our attention to the case
h�x�=1 in an infinite domain, with v=A sin �t and r�x , t�
=��x���t�, we will show that m1�t�=�RP�x , t�xdx tends to a

finite limit when t→
 �death of the linear response�. Simi-
larly, we will see that m2�t�=�RP�x , t�x2dx contains a contri-
bution due to the sinusoidal forcing, proportional to A2 and
behaving asymptotically as t�, thus entailing a subdiffusive
spread due to the memory effects �field-induced dispersion�.

Proving this is made easier by resorting to the Laplace
symbol 1 / �1+�s�−1�=sf�s� of the operator H�,�,1, which is a
time convolution of the kernel d

dtE1−��−�t1−��. We have set
f�z�=1 / �z+�z��.

Note that the moments mn�t� of order n satisfy m0�t�=1
and

�tm1�t� = v�t��H�,�,1�1���t� ,

�tmn�t� = nv�t��H�,�,1�mn−1���t� + n�n − 1�D�H�,�,1�mn−2���t� ,

with �H�,�,1�1���t�=E1−��−�t1−��.
Hence, we have

m1�t� = �
0

t

v�t��E1−��− �t�1−��dt�.

Substituting v=A sin �t, the shift theorem yields the
Laplace transform

m̃1�s� = A f�s − i�� − f�s + i��
2is

. �E1�

When s→0 �i.e., t→+
�, we easily check that f�s− i��
− f�s+ i�� has a finite �imaginary� nonvanishing limit, so that
m1�t� also converge to a finite nonvanishing limit.

The second moment splits into m2�t�=m2
�1��t�+m2

�2��t�,
with

m2
�1��t� = 2�

0

t

v�t���H�,�,1�m1���t��dt�,

m2
�2��t� = 2D�

0

t

E1−��− �t�1−��dt�.

This latter expression represents the anomalous spread
purely due to memory effects, since m̃2

�2��s�=2D / �s2

+�s�+1� is proportional to s−�−1, when s→0. In other words,
m2

�2��t�� t� when t→+
.
The Laplace transform of the oscillatory contribution is

m̃2
�1��s� =

A
is

�H̃�,�,1m̃1�s − i�� − H̃�,�,1m̃1�s + i���

by the shift theorem. Then, recalling Eq. �E1�, we have

−
m̃2

�1��s�
A2 =

f�s − i���f�s − 2i�� − f�s�� + f�s + i���f�s + 2i�� − f�s��
2s

=
f�s�
2s

�2i�a + �s�b − �c� ,
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with

a = f�s − i��f�s − 2i�� − f�s + i��f�s + 2i�� ,

b = f�s − i��f�s − 2i�� + f�s + i��f�s + 2i�� ,

c = �s − 2i���f�s − i��f�s − 2i��

+ �s + 2i���f�s + i��f�s + 2i�� .

For s=0, we have f�i��f�2i��=A+ iB=N /D, with

N = �2�2�2�� cos �� − 2�2 − ���+1 sin
��

2
�2 + 2��

+ i��� cos
��

2
���2 + 2�� + �2�+1�� sin

��

2
�

and

D = ��2�2�2�� cos �� − 2�2 − ���+1 sin
��

2
�2 + 2���2

+ ���� cos
��

2
���2 + 2�� + �2�+1�� sin

��

2
��2

.

Finally,

m̃2
�1��s�
A2 � −

f�s�
s
�B�2� + ��2��� sin

��

2
�

− A��2��� cos
��

2
� ,

when s→0. Since f�s� /s�s−�−1, it follows that m2
�1��t� scales

as A2t� when t→
.

APPENDIX F: SUBORDINATED BROWNIAN MOTION

In analogy with �29�, the proper subordination technique
has to account for the fact that the forcing v�t� corresponds

to the real, physical time. In �64�, it is shown that, if the
nonlocal �in time� mapping � has Laplace symbol s / w̃�s�,
the equation

�tP = �x
2�P − �xv�P + ��t���x� �F1�

governs the evolution of the pdf P of process

Y�t� = X�Sw̃�t�� .

Here, X��� is defined by

dX��� = v�Tw̃����d� + dB��� , �F2�

B being a Brownian motion of diffusivity D, and Tw̃ a strictly
increasing Lévy process, with inverse �or first passage time
process� Sw̃ �i.e., �Sw̃�t����= �Tw̃���� t��. More precisely,
Tw̃��� is defined via its Laplace transform e−�w̃�s�, w̃ being the
Lévy exponent of the infinitely divisible random variable T
concentrated on R+ �i.e., −w̃ is the logarithm of the Laplace
transform of the pdf of T �64��. Moreover, 1 / w̃�s� is assumed
to be the Laplace transform of a pdf, so that the renewal
function �Sw̃�t�� has a density. Under these assumptions, the
moments qn�t� of Y�t� satisfy

qn�t� = n�
0

t

v�t���qn−1�t�� + n�n − 1�D�qn−2�t�� .

Taking w̃�s�=s+�s�, we have �=H�,�,1, Eqs. �F1� and �3�
coincide, and 1 / w̃�s� is the Laplace transform of E1−��
−�t1−��. Hence, the above recalled results of �64� apply and
the qn coincide with the mn of Appendix E, i.e., with the
moments of the pdf solution of Eq. �3�. Hence, the pdf of
Y�t� solves Eq. �3�. This choice of w̃�s� generalizes to time-
dependent forces the results of �20�: Tw̃��� is a process that
combines mobile periods of duration � followed by immobi-
lizations of random duration equal to �1/� times a maximally
skewed Lévy’s law of stability exponent �.
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