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We present an experimental study of the effect of an electromagnetically generated vortex flow on para-
metrically amplified waves at the surface of a vertically vibrated fluid layer. The underlying vortex flow,
generated by a periodic Lorentz force, creates spatiotemporal fluctuations that nonlinearly interact with the
standing surface waves. We measure the power spectral density of the surface wave amplitude and we char-
acterize the bifurcation diagram by recording the subharmonic response of the surface to the external vibration.
We show that the parametric instability is delayed in the presence of spatiotemporal fluctuations due to the
vortex flow. In addition, the dependence of the amplitude of the subharmonic response on the distance to the
instability threshold is modified. This shows that the nonlinear saturation mechanism of the waves is modified
by the vortex flow.
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I. INTRODUCTION

Waves on fluid interfaces are affected by the structure of
the bulk flow �1�. Surface waves of wavelength � and phase
velocity c� can experience advection and eigenfrequency
shifts due to the presence of a mean flow, thus changing the
behavior and the properties of wave patterns. In the case of
strongly fluctuating or even turbulent flows, the degree of
complexity of wave propagation increases. Wave motion on
the surface of a turbulent fluid has been a problem of interest
since the early work of Phillips �2� on the scattering of a
gravity surface wave of wavelength � and phase velocity
c�=�g� /2�, by turbulent velocity fluctuations ut in the limit
ut�c�. He pointed out the possibility of wave generation and
wave dissipation induced by turbulent fluctuations, which
has been experimentally studied later �3�. The aim of our
work is to characterize the effect of turbulent fluctuations on
a standing-wave pattern generated by a parametric instability.
To that end we have studied parametrically amplified waves
on a vertically vibrated fluid layer in the presence of an elec-
tromagnetically generated vortex flow.

It has been observed by Faraday that surface waves on a
layer of fluid can be excited by periodically vibrating the
fluid container �4�. When the vibration amplitude exceeds a
critical value, he observed a standing-wave pattern oscillat-
ing at half the forcing frequency over the surface of the fluid.
In the case of an inviscid fluid, it has been shown by Ben-
jamin and Ursell that the amplitude of each normal mode of
the free surface obeys a Mathieu equation; thus the instabil-
ity mechanism is parametric amplification �5�. The effect of
fluctuations on parametric instabilities has been studied theo-
retically �6� and experimentally �7–9�. In all these cases, the
source of fluctuations has been either spatial or temporal. To
our knowledge, the effect of externally imposed spatiotem-
poral fluctuations on a parametric instability has not been
experimentally studied. Here, parametrically amplified sur-
face waves are randomly forced by means of a periodic vor-
tex flow. This fluctuating background flow is generated by a
periodic Lorentz force acting on the fluid which supports the
surface waves. In our experimental setup, the electromag-

netically induced velocity fluctuations of the vortex flow
��v� are small with respect to c�, as in �2�: the Froude num-
ber, Fr=��v�2 /c�

2 is small �Fr�0.05�. The typical surface
energy of the parametrically amplified waves is much larger
than the kinetic energy of the fluctuating flow, as shown by
the value of the Weber number, We=���v�2� /��0.01,
where � is the fluid density and � is its surface tension.
Although we are in the limit of low We and Fr, the effect of
the fluctuations of the vortex flow on the properties of para-
metrically amplified waves is not negligible.

In this paper, we show that the action of a fluctuating
velocity field on parametrically amplified surface waves can
inhibit the growth of the standing-wave pattern, thus increas-
ing the instability threshold above its deterministic value.
The manuscript is organized as follows. In Sec. II, we
present the experimental setup and we describe the methods
used to measure the velocity field v1 generated by a periodic
Lorentz force and the amplitude h1 of the surface waves. In
Sec. III, we study separately the effect of the parametric
excitation and of the Lorentz force on the fluctuations of the
free surface. The combined effect of both excitation mecha-
nisms is studied in Sec. IV. We show that the parametric
instability threshold increases when the underlying vortex
flow is stronger. Finally, in Sec. V we present the conclu-
sions and perspectives of this work.

II. EXPERIMENTAL SETUP AND MEASUREMENT
TECHNIQUES

The experimental setup is displayed in Fig. 1. A Plexiglas
container of 70�70 mm2 is filled with mercury �density �
=13.6�103 kg /m3, kinematic viscosity 	=1.2
�10−7 m2 /s, and surface tension �=0.48 N /m� up to a
height h0=5 mm. At the bottom of the cell, alternating ver-
tical polarity magnets �diameter 
=5 mm, height h
=8 mm� made of neodymium and nickel coated are placed
with a 1 mm gap between them in a hexagonal array �wave-
length �=6 mm�. The magnetic field strength at the surface
of the fluid on top of a magnet is 500 G. Two nickel-
barnished copper electrodes are glued at opposite sides of the
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cell. A fine layer of Ni is deposited over them to prevent
chemical reaction between mercury and copper. A dc current
I of a few Amperes is applied through these electrodes, giv-
ing rise to a current density j, and therefore a Lorentz force
FL= j�B, as shown in Fig. 1. The surface is kept clean by
maintaining the fluid in a nitrogen-filled atmosphere and is
temperature regulated by circulating water at 20.0�0.1 °C.
An electromagnetic vibration exciter, driven by a frequency
synthesizer though a power amplifier, provides a clean verti-
cal sinusoidal acceleration �horizontal acceleration less than
1% of the vertical one�. The effective gravity in the reference
frame of the container is then gef f�t�=g+a cos�2�fext�,
where g is the acceleration of gravity, a is proportional to the
applied tension V with a 1.0 Vs2 /m sensitivity, and fex is the
excitation frequency. The sinusoidal modulation of g is mea-
sured by a piezoelectric accelerometer and a charge ampli-
fier. The surface wave amplitude is measured by two induc-
tive sensors �eddy-current linear displacement gauge, Electro
4953 sensors with EMD1053 DC power supply�. Both sen-
sors, 3 mm in diameter, are screwed to the Plexiglas plate
perpendicularly to the fluid surface at rest. They are put 0.7
mm above the surface on one diagonal of the cell, each one
15 mm away from its center �see Fig. 1�. The linear sensing
range of the sensors allows distance measurements from the
sensor head to the fluid surface up to 1.27 mm with a 7.9
V/mm sensitivity. The linear response of these inductive sen-

sors in the case of a wavy liquid metal surface has been
checked in a previous study �10�.

In addition, local velocity fluctuations of the flow are
measured by means of two Vivès probes �11�. They are
placed on opposite sides of the container, 15 mm �respec-
tively 20 mm� far from the closest walls and thus 50 mm far
one from each other, as shown in Fig. 1. Each probe is made
up by two copper wire electrodes plunging 2 mm into the
fluid, separated by a distance l=3 mm and isolated com-
pletely from the liquid metal, except at the very end, where
the electrical contact is made. A small cylindrical magnet
�
=5 mm� is placed 5 mm above the electrodes, generating
a magnetic field strength of 500 G at the electrical contact
points. The whole system is integrated into a cylindrical rod
that is screwed to the Plexiglas plate. For velocity fluctua-
tions of length scales larger than l, the voltage difference
measured between the electrodes is proportional to v1B0l,
where v1 is the velocity orthogonal to the vertical magnetic
field B0 generated by the probe’s magnet �11,12�. For scales
much smaller than l, the small-scale velocity fluctuations are
spatially integrated by the probe. In frequency domain, this
means that the transfer function of the probe is constant up to
a cutoff frequency fc=��v1� /2�l, where ��v1� is the rms
value of the local velocity fluctuations. For frequencies
larger than fc, the transfer function of the probe decreases as
f−2 �12�. For the data presented below, we have taken v1
=�
lB0, where �
 is the voltage difference measured be-
tween the electrodes. The small voltage difference �
 of the
order of a few microvolts is amplified by a factor of order
105 and acquired with the local height fluctuations and ac-
celeration signals. The dc component of the signals is elimi-
nated in the acquisition. The sampling frequency is fixed at
500 Hz in order to resolve the temporal fluctuations of the
measured quantities and the acquisition time is 800 s, much
larger than the typical time scales of the acquired signals.

III. EXPERIMENTAL RESULTS

We start by describing the flows generated when each
forcing mechanism is applied alone. First, we describe the
properties of the local wave amplitude of the parametrically
amplified surface waves. Then, we consider the spatially pe-
riodic electromagnetic forcing alone.

A. Parametric excitation

The fluid container is vertically vibrated at frequency fex
=23.8 Hz and the amplitude a is increased. At a given
threshold ac, the flat surface becomes unstable to small per-
turbations and stationary surface waves appear, generating a
pattern that oscillates at half the forcing frequency fex /2
=11.9 Hz. In this experimental configuration, the geometry
of the standing pattern is made of squares with a wavelength
� of order 7–8 mm without any defect. At this wavelength,
gravity and capillarity are of comparable importance in the
dispersion relation of the surface waves. The square pattern
at onset is consistent with previous studies using mercury
�13�. This results from the very low kinematic viscosity of
mercury �one order of magnitude less than water�. For fluids

Acc.

amp.amp.

h (t)h (t)

v (t)v (t)
a(t)

2

21

1

fex

Frequency
synthesizer

Shaker

PC

III
DCDCDC

III DCDCDC

amp.

Power
Supply

Array of
Magnets

II
DCDC

(a)

(b) 1

1

2

2

3

30
m
m

20mm

70mm

7
0
m
m

20mm

15mm

15mm (c)

FIG. 1. �Color online� �a� Experimental setup. �b� Bottom of the
experimental cell showing the hexagonal array of alternating polar-
ity magnets, used to generate the periodic Lorentz force FL. The
black arrow shows the sense of the applied dc current. �c� Top view
of the cell showing the positions of the sensors: �1� Vivès probes,
�2� inductive sensors, �3� accelerometer.
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with larger viscosities, patterns with different rotational or-
ders have been observed and predicted �14�. The excitation
frequency is chosen in order to have an eigenmode of stand-
ing surface waves over the container with a wavelength com-
parable to the one of the magnetic field B. In the explored
frequency range �20� fex�30 Hz�, the wavelength of para-
metrically amplified waves is roughly eight to ten times
smaller that the size of the container. The frequency differ-
ence between two successive resonance tongues is about 1
Hz. By tuning the excitation frequency within a 1 Hz inter-
val, it is easy to work in the vicinity of the minimum of a
resonance tongue, i.e., without detuning between half the
excitation frequency and the natural oscillation frequency of
the surface waves. In this parameter range, the local ampli-
tude of the surface waves �h1� does not present large scale
modulations. We have used the Fourier amplitude of h1�t� at
fex /2 by taking

�h1� = lim
T→�
	 1

2T



−T

T

h1�t�e�ifextdt	 ,

where T is the acquisition time, much larger than the oscil-
lation period � / fex �Tfex�104�. The bifurcation diagram of
the nonlinearly saturated wave amplitude is shown in Fig. 2.
Its dependence on the reduced control parameter �= �a
−ac� /ac is proportional to �1/4, as it has been previously re-
ported �15�. This unusual scaling is observed because cubic
nonlinearities vanish at zero detuning for parametric ampli-
fication in the limit of small dissipation. No distinguishable
hysteresis loop is found in the measured bifurcation dia-
grams. Although the velocity signal related to the waves is
rather small �mm/s�, velocity measurements using the Vivès
probes display the same bifurcation threshold for parametri-
cally amplified waves as local amplitude recordings. The
weakly nonlinear regime, with a nonlinearly saturated sta-
tionary standing wave, will be studied when fluctuations in
space and time are added to the wave system, through an
underlying vortex flow.

B. Vortex flow

We now study the fluctuations of the surface of the layer
of mercury driven by a spatially periodic Lorentz force.
When a current density j is applied through a liquid metal in
the presence of a magnetic field B, a Lorentz force density
FL= j�B sets the fluid in motion. In the present configura-
tion, the current density j is generated by a constant dc cur-
rent I applied through the mercury layer and its value is
externally controlled by means of a power supply. As ex-
plained above, the magnetic field B is created by alternating
polarity magnets arranged in a hexagonal lattice at the bot-
tom of the container. Hence, FL presents the same periodicity
of B and generates a vortex flow which develops throughout
the fluid perturbing the flat free surface and creating local
height fluctuations. Small scale excitation using electromag-
netic forcing has been used to study vortex dynamics �16,18�
and quasi-two-dimensional turbulence �17�. The waves at the
interface being of very small amplitude with respect to the
depth of the mercury layer in our experimental setup, the
current density j can be estimated as j= �I /S�e, where S
=3.5�10−4 m2 is the surface crossed by the current and e is
a unit vector pointing normally from one electrode �the cath-
ode� to the other one �the anode�. The velocity field v of the
vortex flow can be estimated by balancing FL and ��v ·��v
in the Navier-Stokes equation

�� �v

�t
+ �v · ��v
 = − � p + �	�v + FL,

where � is the fluid density and 	 is its kinematic viscosity.
The order of magnitude for such velocity fluctuations at the
forcing scale �the wavelength � of the periodic magnetic
field B� for a current I of order 1 A is 10−2 m /s, thus giving
a Reynolds number Re of order 100. Even at low Re, the
velocity field creates deformations on the free surface. Both
surface and bulk fluctuations present large amplitude events
and low-frequency fluctuations, as it is shown below.

1. Probability density functions

To study the statistical properties of the local response of
the fluid to the periodic Lorentz force, we compute the prob-
ability density function �PDF� of both the local surface am-
plitude h1 and the velocity field fluctuations v1. We show
their PDFs in Figs. 3 and 4 for different values of the dc
current I. Increasing the value of I, larger and larger fluctu-
ating events of local height and velocity occur. The rms
value of local surface fluctuations ��h1� increases with in-
creasing current, as does the rms value of the local velocity
fluctuations ��v1�. Their dependence on I is roughly linear
�left inset in Figs. 3 and 4�.

When plotted in the rescaled variables h1 /��h1� and
v1 /��v1�, all the PDFs collapse on one single curve �right
inset in Figs. 3 and 4�. No clear asymmetry is found in the
normalized PDFs of both variables. A slight departure from
the statistics of a random Gaussian variable is observed in
both signals �the computed kurtosis is close to 3.2�, but this
is not large enough to discard gaussianity.
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FIG. 2. �Color online� �a� Bifurcation diagram for the nonlin-
early saturated wave amplitude �h1� as a function of a. �b� Bifurca-
tion diagram for �h1�4 as a function of �= �a−ac� /ac.
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2. Power spectral densities

As I is increased, low-frequency fluctuations dominate the
response of the fluid motion to the Lorentz force FL. This is
apparent in the power spectral densities �PSDs� of both h1
and v1 as shown in Fig. 5. When I is less than 1 A �not
shown�, there are peaks related to the lower normal modes of
the surface waves in the container, excited by the fluctuations
of the velocity field. At higher values of I �I�5 A�, this
coherent response is completely lost. This shows that even at

moderate value of the Reynolds number �Re�100�, a cha-
otic behavior in time and space is achieved. We note that a
qualitative difference between the spectra of surface defor-
mation and velocity is visible despite their extension is less
than half a decade. The spectra of h1 display an exponential
behavior and no power laws have been found even at large
values of I �up to 20 A, not shown here�. This is not the case
for the spectra of v1 that neither have an exponential nor a
power-law behavior. Experiments with a larger setup will be
performed to check whether this difference persists.

Rescaling the frequency by the typical turn-over time of
the vortex flow, � /��v1� �� is the wavelength of the mag-
netic field� and the PSDs of the normalized variables
h1 /��h1� and v1 /��v1� by their inverse frequency, we can try
to collapse all the data on one single curve, as shown in Fig.
6. For the fluctuations of the local wave amplitude, there is a
large dispersion for small values of I, due to the persistence
of the cavity modes. As stated above, this coherent response
is lost once the forcing is large enough �I�5 A�. On the
other hand, all the velocity spectra collapse on one single
curve.

IV. EFFECT OF SPATIOTEMPORAL FLUCTUATIONS
INDUCED BY THE VORTEX FLOW ON PARAMETRIC

SURFACE WAVES

Let us now study the effect of the velocity fluctuations
driven by the periodic Lorentz force FL on the growth, satu-
ration, and statistics of parametrically forced surface waves.
The wavelength of the standing pattern is chosen to be of the
same order of magnitude as the one of the periodic vortex
flow, forced at wavelength �. This is done to maximize the
effect of the vortex flow on the standing-wave pattern. In the
presence of the spatiotemporal fluctuations generated by the
vortex flow, the local amplitude h1 of the surface waves
strongly fluctuates as shown in Fig. 7. The PSD of h1 is
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FIG. 3. �Color online� Probability density functions of the local
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displayed in Fig. 8 for increasing values of the current I that
generates the vortex flow. We observe that the amplitude of
the subharmonic response of the surface waves decreases
when I is increased. Correspondingly, the width of the sub-
harmonic response increases �see the inset of Fig. 8�. On the
other hand, the low-frequency part of the spectrum, which
corresponds to the fluctuations generated by the Lorentz
force, increases. For larger currents �I�2 A�, the amplitude
of the subharmonic response disappears under the noise level
of the fluctuations generated by the Lorentz force. The para-
metric amplification of surface waves is thus inhibited by the

spatiotemporal fluctuations generated by the vortex flow.
In other words, the threshold of the parametric instability,

i.e., the critical acceleration ac�I� for the onset of the subhar-
monic response, shifts to higher values with increasing val-
ues of I. This is shown by the bifurcation diagram displayed
in Fig. 9, where we have plotted the Fourier coefficients at
frequency fex /2 of the local wave amplitude, as described
above. No distinguishable hysteresis loop is found. The sub-
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harmonic response �h1� is plotted as a function of the re-
duced control parameter ��I�= �a−ac�I�� /ac�I� in the inset of
Fig. 9. We observe that the dependence of �h1� on ��I�
changes when fluctuations related to the vortex flow in-
crease: the 1/4 exponent for deterministic parametrically ex-
cited waves changes to 1/2 in the presence of the electromag-
netic forcing. This is a strong indication of the modification
of the saturation mechanism of parametrically amplified sur-
face waves in the presence of spatiotemporal fluctuations
generated by the vortex flow. From these bifurcation dia-
grams, we compute the threshold value ac�I� as a function of
I in the range 0� I�2.0 A. ac�I� is displayed in Fig. 10. We
observe that the value of the parametric instability threshold
is shifted by 20% for I=2 A.

Two simple mechanisms can be considered in order to
explain the shift in threshold and the modification of the
exponent from 1/4 to 1/2 of the scaling of the parametric
wave amplitude. First, random advection of the waves by the
fluctuating vortices detunes the system away from parametric
resonance. This leads to an increase of threshold. For in-
stance, this type of mechanism explains the increase of
threshold observed for parametric forcing in the presence of
phase noise �15�. The modification of the exponent can be
also ascribed to an effective detuning if it has the correct sign
with respect to the nonlinear frequency correction. However,
this has not been observed in the presence of phase noise.
Another explanation for both the frequency shift and the
modification of the exponent can be based on an increased
effective viscosity of the waves related to the underlying
flow. It is indeed known that the 1/4 exponent is observed at
zero detuning only in the limit of small dissipation. It is

likely that both mechanisms are involved, as for instance in
the case where amplitude noise is added to parametric forc-
ing. This indeed leads to both an effective detuning and dis-
sipation �6�.

V. CONCLUSIONS

We have studied two experimental configurations related
to the problem of wave-vortex interaction. We have first
shown how an electromagnetically driven array of vortices in
a layer of mercury generates surface waves and we have
studied their statistical properties. We have observed that
they qualitatively differ from the ones of surface waves gen-
erated by vibrating paddles �19�. Although broad band spec-
tra of the local wave amplitude are easily obtained as soon as
the underlying flow is spatiotemporally chaotic, they display
an exponential cutoff instead of a power-law decay observed
for waves generated by vibrating paddles. The probability
density functions of the local wave amplitude are also differ-
ent: quasinormal PDFs, with a standard deviation linearly
increasing with the driving current, are observed with elec-
tromagnetic forcing, whereas asymmetric PDFs have been
reported in the case of vibrating paddles. We have also ob-
served that the correlation length between the waves and the
underlying flow is smaller than the size of the container in
the presence of the fluctuating vortex flow. This has been
also reported for waves generated by shear flows �20�. In our
experiment, the forcing of the waves by the array of vortices
inhibits freely propagating waves. Thus, a regime of weak
turbulence is not observed.
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FIG. 10. �Color online� Normalized threshold growth �ac�I�−ac� /ac as a function of I ���.
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Second, we have shown that the underlying vortex flow
acts as a source of spatiotemporal fluctuations that inhibits
parametrically amplified surface waves. It modulates the am-
plitude of the subharmonic response in a random way. The
main effect of fluctuating vortices is to delay the threshold of
the parametric instability. The vortex flow also affects the
saturation mechanism of the local wave amplitude and quali-
tatively modifies the scaling of the amplitude of the paramet-
ric waves as a function of the reduced control parameter ��I�.
In the presence of the vortex flow �h1����I�1/2, whereas
�h1����I=0�1/4 for parametrically amplified surface waves
without forcing by the vortices. This shows that the nonlinear

saturation mechanism of the parametric waves qualitatively
depends on the vortex flow.
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