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We extend the asymptotic boundary layer �ABL� method, originally developed for stable resonator modes,
to the description of individual wave functions localized around unstable periodic orbits. The formalism applies
to the description of scar states in fully or partially chaotic quantum systems, and also allows for the presence
of smooth and sharp potentials, as well as magnetic fields. We argue that the separatrix wave function provides
the largest contribution to the scars on a single wave function. This agrees with earlier results on the wave-
function asymptotics and on the quantization condition of the scar states. Predictions of the ABL formalism are
compared with the exact numerical solution for a strip resonator with a parabolic confinement potential and a
magnetic field.
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I. INTRODUCTION

Semiclassical methods provide valuable insight into the
eigenmodes of electromagnetic microresonators and mesos-
copic electronic devices because they establish a direct rela-
tion to classical trajectories. For stable orbits the correspond-
ing wave functions are localized in the vicinity of the
trajectory and can be constructed by the elegant asymptotic
boundary layer �ABL� method, which is based on rectified
Gaussian beams and their harmonic transverse excitations
�1–4�. Describing wave functions associated with unstable
orbits is a considerably more difficult problem. For classi-
cally chaotic quantum systems �5�, the rapid stretching and
folding of the phase space translates into a randomization of
most eigenstates, which can be addressed through statistical
descriptions �6,7�. However, some eigenstates deviate sig-
nificantly from a random wave pattern in that they are en-
hanced in the vicinity of unstable orbits �5,8,9�. These so-
called scars are most pronounced for short periodic orbits,
and often dominate the individual properties of quantum sys-
tems. Their influence has been detected in numerous numeri-
cal investigations and experiments on a large variety of sys-
tems, such as microwave cavities �10�, resonant tunneling
diodes �11�, and, in particular, in the lasing modes of dielec-
tric microresonators �12�.

Pioneering theoretical investigations of individual scar
wave functions retained the assumption of a Gaussian trans-
verse profile and its harmonic excitations �8,9,13,14�. It was
soon realized that this requires to superpose a large number
of transverse excitations �15,16�. On average, the large-
distance asymptotic decay of the transverse profile is ex-
pected to follow a power law �17–20�. Studies of hyperbolic
fixed points �with effective period 0� also point into the di-
rection that the transverse profiles are essentially non-
Gaussian �21–23�. On the other hand, numerical investiga-
tions �24� have led to the conjecture that scar quantization
only involves a single �longitudinal� quantum number, which
means that the transverse mode profile is fixed.

In this paper we clarify the nature of scarred states from
the perspective the ABL method, which offers a systematic
semiclassical expansion for the Schrödinger equation in the
asymptotic boundary layer around a classical trajectory �1�.
Compared to other semiclassical methods, a main advantage
of the ABL method is its applicability to a broad class of
systems, including systems in external potentials and mag-
netic fields. ABL expansion up to quadratic terms of the ef-
fective potential yields the Gaussian wave packet solution,
originally proposed by Heller �8� as a convenient ansatz to
study dynamics of complex molecules. Subsequent math-
ematical studies �1,2,25� advanced the method into a power-
ful general tool to obtain asymptotic solutions to various
equations of theoretical and mathematical physics, ranging
from optics to gravity.

Most of these applications, however, focus on stationary
eigenstates associated with stable periodic orbits. The appli-
cation of the ABL formalism to unstable orbits faces the
problem that Gaussian beams fail to satisfy the periodicity
condition along such orbits. In principle, this problem can be
circumvented by numerical superposition of a large �ideally,
infinite� number of Gaussian solutions for an artificially sta-
bilized orbit �15�. However, as we will show, it is possible to
take a more direct analytic approach, which focuses on the
mathematical difference of the ABL equations for stable and
unstable trajectories. This allows to obtain closed analytical
expressions for individual wave functions localized around
unstable trajectories. A detailed analysis of these solutions
reveals the special role of the so-called separatrix solution in
the formation of scar states. This yields a transverse mode
profile that corresponds to an appropriately rectified specific
solution of the hyperbolic fixed-point problem �21–23� and
also satisfies the correct large-distance asymptotics �17,18�.
The periodicity condition for the separatrix solution leads to
a Bohr-Sommerfeld quantization formulas with a single lon-
gitudinal quantum number, in agreement with the earlier nu-
merical conjecture of Ref. �24�. These general considerations
are presented in Secs. II–IV.
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In Sec. V we illustrate the flexibility of the ABL approach
by applying it to the example of a two-dimensional strip
resonator in a magnetic field and a parabolic confinement
potential. Comparison of the ABL predictions with the re-
sults of numerical computations demonstrates excellent ac-
curacy of the method.

Section VI contains discussion and conclusions. Details of
the derivations are presented in the Appendix.

II. ABL FORMALISM

In the following two sections we provide the main results
of the ABL formalism and cast them into an outfit which
naturally contrasts states localized around stable and unstable
trajectories. Details of the derivation of the main formulas
are given in the Appendix. To make the presentation compact
we concentrate on two-dimensional quantum systems in a
constant perpendicular magnetic field B, with vector poten-
tial A=B�−y ,x� /2.

We employ a curvilinear system of coordinates associated
with the main classical trajectory r0�s�, which is parameter-
ized by its arclength s. A pair of coordinates �s ,n� defines the
position vector in the vicinity of the trajectory as r=r0�s�
+en�s�n, where en is the normal unit vector and n measures
the distance from the trajectory. The ABL formalism seeks a
solution in an asymptotically small boundary layer of width
��� around the main trajectory, which introduces a natural
scaling of the distance as n=���. The solution of the
Schrödinger equation is sought in the form

��s,�� = e�i/���S0�s�+S1�s������
j=0

�

� j/2��j��s,�� , �1�

which represents an expansion in half-integer powers of
Planck’s constant � �in contrast to the text-book WKB ex-
pansion in integer powers of ��. This expansion of the
Schrödinger equation �see Appendix� yields the exponent in
Eq. �1� in the form of the classical action functions

S0 = �
0

s

�a�s� + e�Axen
y − Ayen

x�	ds , �2a�

S1 = e�Axen
x + Ayen

y� , �2b�

a�s� = �2m�E − u„r0�s�…� , �2c�

where u�r� is the scalar potential. For ��j� one obtains a
hierarchical set of equations. If the expansion of the effective
potential in the system can be restricted to the terms of sec-
ond order in n �the standard assumption in the linear theories
�9,14��, one can restrict the series in Eq. �1� to the leading
term �
��0� and obtains the so-called boundary layer
Schrödinger equation

i�̇�s,�� = �−
1

2a
��

2 +
ad

2
�2 −

i

2
a���s,�� , �3�

d�s� =
2mu2

a2 +
m2u1

2

a4 −
2mu1

�a2 −
eB

�a
.

Here the dot denotes the partial derivative �s, while � is the
geometric radius of curvature of the trajectory. The functions
u1,2 are obtained from the expansion

u�r�  u0�r0�s�� + u1�s���� + u2�s���2. �4�

Equation �3� is analogous to the Schrödinger equation for
a one-dimensional nonstationary oscillator, where s, a�s�,
and d�s� take the role of time, mass, and harmonic frequency,
respectively. As shown in the Appendix, a general form of its
partial solutions can be constructed by establishing their re-
lation with the classical trajectories in the vicinity of the
main one. The final result yields a set of solutions of the
form

�	�s,�� �
z̄	�
 − 
̄�	/2

�az
D	��
 − 
̄

2i
��e�i/4��
+
̄��2

, �5�

where D	 are parabolic cylinder functions with arbitrary in-

dex 	, while 
= p /z and 
̄= p̄ / z̄ are defined by two indepen-
dent solutions of the Hamilton equations in variation

ż =
p

a
, ṗ = − adz , �6�

that satisfy pz̄− p̄z=w �w is the Wronskian, which here is a
constant�. A pair �z , p� describes the classical trajectories in
the vicinity of the main trajectory. Once Eqs. �6� are solved,
Eqs. �1�, �2�, and �5� define semiclassical solutions of the
Schrödinger equation. A second class of partial solutions is
found by interchanging z↔ z̄ in Eq. �5�.

The similarity of Eq. �5� with a standard oscillator can be
seen by assuming constant a �“mass” m� and d �squared
“frequency” �2�. If one also chooses solutions to Eq. �6� as
z�exp�i�s�, Eq. �5� yields familiar oscillator wave func-
tions. In the general case, the detailed dependence of a and d
on s results in nontrivial modulations of the wave-function
profile along the trajectory.

III. PERIODIC ORBITS

Since there are two partial solutions of Eq. �6�, the general
solution Eq. �5� for the wave function possesses one degree
of freedom. For closed periodic orbits, however, this freedom
is restricted by an additional periodicity condition. As we
shall see, this condition naturally distinguishes between
stable and unstable orbits.

For stable orbits we follow a standard procedure, the first
step of which is to find the Floquet solutions of Eq. �6�,
which fulfill the conditions z�T�=exp�i��z�0� and p�T�
=exp�i��p�0�. Here T is the period of the orbit and � is a
real Floquet phase. If �z1,2 , p1,2� are two independent solu-
tions with initial conditions �1,0� and �0,1�, respectively, the
general solution is a linear combination
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�z

p
� = 1�z1

p1
� + 2�z2

p2
� . �7�

Floquet solutions are found by determining 1, 2, and �
=exp�i�� from the eigenvalue problem

M�1

2
� = ��1

2
�, M = �z1�T� z2�T�

p1�T� p2�T�
� . �8�

Here M is the monodromy matrix �with a unit determinant�,
which depends on the stability of the orbit.

For stable orbits �Tr M��2, and M has two complex con-
jugate eigenvalues with a unit absolute value. The corre-
sponding Floquet solutions are also complex conjugate, �z , p�
and �z̄ , p̄�= �z� , p��. We use the convention that �z , p� is the
solution with Im 
�0. This choice is well defined since
Im 
� �z�−2 does not change sign along the trajectory. With
this choice, Eq. �5� is restricted to normalizable harmonic
oscillator functions, which are also referred to as the Gauss-
ian beam �or ray� solutions �1,2�. The periodicity condition
for the solution defined by Eqs. �1�, �2�, and �5� is obtained
from the phase increment for a single round trip along the
orbit, which depends on the classical action S0 and the
phases of the various powers of z , z̄ in the expressions. This
yields the Bohr-Sommerfeld quantization formula for stable
orbits,

�
0

T

a�s�ds + � = ��2�n + �m + 1/2���E�� , �9�

where � is the magnetic flux through the orbit, while n and
m are longitudinal and transverse quantum numbers.

For unstable orbits, �Tr M��2. In this case the eigenvec-
tors and eigenvalues of M are real, such that ��=exp����
where � is the dimensionless Lyapunov exponent �corre-
sponding to a time-domain Lyapunov exponent �T=� /T�.
For this case the harmonic oscillator functions with integer
index m in Eq. �5� violate the periodicity condition. How-
ever, the periodicity can still be achieved with the choice of
the 	=−1 /2+ i� �where � is real�. The resulting functions
are similar to those for an inverted �negative� harmonic po-
tential.

The periodicity requirement of the wave function then
results in the Bohr-Sommerfeld like quantization condition
for unstable trajectories

�
0

T

a�s�ds + � = ��2�n � ���E� + �/2� . �10�

The Maslov index  counts singular points along the trajec-
tory, where z or z̄ vanishes. Since 
�z−1, these points pro-
duce a square-integrable singularity �z−1/4 in the wave func-
tion �see also Eq. �13�, below�, which can be further
regularized by uniform approximations �see, e.g., Refs.
�26,27��.

IV. CONTRIBUTION TO SCAR STATES

The ABL solutions defined by Eqs. �5� and �6� are only
valid in a boundary layer of width �n�=�����=O���� around

the orbit. In order to construct eigenstates associated with the
unstable trajectory, the semiclassical wave function has to be
matched to a quasirandom background beyond this layer
�28�, which in principle can mix solutions with different val-
ues of � and n. The number of contributing solutions is de-
fined by the interplay between the coupling of the solutions
with the background, and the energetics of the different
states as determined by the quantization condition in Eq.
�10�. In essence, one therefore deals with a scattering prob-
lem. As confirmed in recent works on quantum resonance
wave functions �16,29,30�, an important scale in this context
is the Ehrenfest time �31�, defined by the time of a wave
packet of initial size of de Broglie wavelength to spread
across the entire accessible phase space of the system,

tEhr = �T
−1 ln Nph. �11�

Here �T=� /T is the time-domain Lyapunov exponent, and
Nph=L�2mE /��1 is a dimensionless measure �in units of
Planck’s constant� of the total accessible volume of the phase
space, where L is the characteristic size of the system.

The Ehrenfest time defines an energy window

E = En0
�

2��

tEhr
, �12�

over which partial ABL solutions are strongly mixed among
each other via the background states. Here En0

=En0,�=0 is the
characteristic energy following from the Bohr-Sommerfeld
quantization condition �10�, with �=0. Earlier numerical ob-
servations provide evidence that scars are quantized with en-
ergies close to En0

�24�. This is the energy of the symmetric
separatrix solution,

��s,�� �� �

zz̄
J−1/4�w�2

4zz̄
�e�i/4��
+
̄��2

. �13�

Separatrix solutions without trajectory-specific z and z̄ were
earlier discussed in the context of scarring phenomenon as
the solution of the hyperbolic fixed-point problem �21–23�.
The asymptotic form of Eq. �13� for large �

��s,�� �
1
��

cos�w�2

4zz̄
� , �14�

recovers the well known result of Bogomolny �17� �again,
generalized to contain the trajectory-specific z�, which is of-
ten interpreted as the profile of a scarred wave function as-
sociated with few closely located unstable orbits �5�. We also
note that the description of scars in earlier works �15� em-
ployed the ABL formalism for stable orbits together with the
variational procedure to minimize the squared transverse en-
ergy. This effectively determines the wave function closest to
the separatrix solution �13�, but represents this as a sum of
harmonic oscillator functions.

Expanding the quantization condition �10� around E
=En0

one obtains
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E  En0
+

2��

T
�n + ��T� , �15�

where �n=n−n0. The approximate “level spacing” of states
with different � can be estimated from the asymptotics of
Eq. �5� at �→�,

���s,�� �
1
��

exp�i



2
�2 − i� ln���
 − 
̄

2
�� . �16�

Assuming that the mixing occurs when the state spreads to a
transverse distance Ltr=O�L�, the typical spacing of solutions
with different � is

�� � ln�Ltr��
�s − �
̄�s

2�
� , �17�

where � �s denotes averaging over the trajectory.
Under certain conditions, only a single solution �5� is

found in the Ehrenfest window �12�. From the longitudinal
quantization one obtains the standard condition

T � tEhr. �18�

The transverse quantization gap �17� implies

T � O��T
−1Nph

� � , �19�

with ��0 depending on the precise choice of Ltr. This con-
dition is satisfied for all T� tEhr, and therefore is weaker than
the longitudinal quantization condition. Consequently, as
long as the period of the orbit T is less than the Ehrenfest
time, only a single ABL solution will contribute to the semi-
classical eigenstate.

The arguments from the above procedure of matching of
the ABL solution to the random background therefore recov-
ers the main phenomenological result on the strong scarring
along unstable trajectories, Eq. �18�, which was earlier ob-
tained by analysis of time-dependent Gaussian packets �32�.
Because of the conceptual relation to a scattering problem,
this argumentation can be enforced by taking the transverse
probability flux across the scar into account. This can be
studied using the probability current in curvilinear coordi-
nates,

j = �js, j�� = �a���,
i

2
�������

� − ��
�����	� , �20a�

�sjs + ��j� = 0. �20b�

For truly stable orbits the wave functions are exponen-
tially localized, resulting in a minimal leakage of the prob-
ability from the orbit boundary layer. For unstable orbits the
localization is given by a power law, following from the
asymptotic expansion in Eq. �16�; the ABL wave functions
then are not square integrable, and the escape rate increases
logarithmically with the system dimensions. The symmetric
separatrix solution �13� combines a large maximal value in
the vicinity of the orbit with a small transverse probability
current. At ��0 the maximum of Eq. �5� shifts from the
orbit, eventually moving out of the boundary layer. At �
�0 the transverse profile of the solution becomes flat and its

weight shifts from the main trajectory. �Interestingly, the
separatrix solution is also best behaved in the vicinity of
focal points �where zz̄=0�; for ��0 the ABL solutions dis-
play a jump by a factor exp����.� The dominance of the
separatrix solution therefore has a simple physical origin: the
�-dependent term in the quantization condition �10� controls
the transverse momentum of the solutions, which in turn de-
termines the leakage out of the boundary layer.

V. APPLICATION TO A QUANTUM RESONATOR MODEL

In order to assess the predictive power of the above ABL
formalism for the description of individual scarred eigen-
functions we now turn to a specific system: a two-
dimensional strip resonator �quantum wire� in a longitudinal
confinement potential and a perpendicular magnetic field B.
In the x direction, the system is confined by two parallel
impenetrable walls at x=0 and x=d, while in the y direction
the confining potential is parabolic, U�y�=m�0

2y2 /2. In the
computations we set d=10lB and �0=2�c, where �c

= �eB� /m and lB=�� /m�c are the cyclotron frequency and
the Landau magnetic length, respectively.

The classical dynamics of this system is of the generic,
mixed, type, where stable orbits coexist with unstable orbits
�see phase-space portraits in the middle subpanels of Figs.
1�a�–1�d��. It was demonstrated previously for a similar sys-
tem �4� that the ABL method provides an accurate descrip-
tion of quantum states associated with stable orbits. Here we
analyze an energy-dependent family of unstable bell-shaped
orbits with two reflection points �0,0� and �d ,0� at the hard
walls �see white curves in the right subpanels of Figs.
1�a�–1�d��. The orbits consist of an upper and a lower arc,
which are symmetrical to each other and are indexed in the
following by i=1,2.

We solve the equation in variation �6� on each arc and
then link these solutions together using a reflection matrix,
which for nonvanishing magnetic field takes the form

R = � − 1 0

− 2�c tan � − 1
� , �21�

where � is the angle of reflection. The monodromy matrix of
the full orbit is found from the product M =RM2RM1, where
Mi is the fundamental matrix of arc i. There are eight singu-
lar points, where zz̄=0: four well isolated focal points around
x�0.5�0.15� d, y �0.5 d, and two pairs of closely
spaced focal points around x�0.5�0.01� d, y �0.65 d.
The stretching factor for the orbit �the largest eigenvalue of
the monodromy matrix� is �4.6, corresponding to �
1.53.

Semiclassically, the eigenstate is found as the sum of the
two separatrix solutions �13� along each arc,

� = �1�z1,s,�� + r�2�z2,s,�� . �22�

Here the coefficient r follows from the continuity condition
at the reflection points, and simply takes the value r=−1 for
unstable orbits. The condition �=0 at the boundaries x=0
and x=d of the resonator can be taken into account by adopt-
ing a mirror reflection method �1,2�. In this method, the wave
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function with the required boundary condition is obtained as
the difference between the original solution and its mirror
reflection at the boundary. In principle, the presence of the
magnetic field requires to introduce an additional gauge field
to eliminate the phase jump associated to the difference 
2
−
1=2�c entering the off-diagonal element of the reflection
matrix Eq. �21�. However, this affects only a small neighbor-
hood ��� of the point of reflection.

In order to compare the resulting ABL solutions with ex-
act quantum mechanics, we construct numerical eigenstates
in an orthogonalized basis spanned by the exact solutions of
the quasi-one-dimensional system without the hard walls,
which separates in the gauge A=−Byex. The boundary con-
ditions ��x=0,d ;y�=0 are imposed via a singular value de-
composition �for details on such methods see, e.g., Ref.
�33��.

Our numerical computations reveal that the family of bell-
shaped unstable orbits supports a long sequence of scarred
wave functions, which are found at almost equidistantly
spaced energies. Four consecutive examples �with longitudi-
nal quantum numbers n=66, 67, 68, 69� are shown in the left
subpanels of Figs. 1�a�–1�d�. The corresponding ABL wave
functions �right subpanels� accurately capture the typical
spatial extent of the scar signature, including the position of

the focal points, where the scar structure shrinks while the
amplitude is significantly enhanced �close to the almost-
degenerate pairs of focal points the wave function could be
further regularized by adapting the general techniques of uni-
form approximations; see, e.g., Refs. �26,27��.

The clear correspondence between the exact quantum
states and the ABL separatrix solutions is further confirmed
by the Husimi representations H�y , py�= ��y , py ��x��x

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

|ψ
|2

x/d

layer ABL
exact

FIG. 2. �Color� Profile of the exact and semiclassical wave func-
tions calculated along the line y=0. The width of the boundary
layer where the ABL approach is valid is indicated in the upper left
corner.
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FIG. 1. �Color� �a�–�d� Sequence of scarred wave functions localized around the bell-shaped unstable orbit in an electronic strip resonator
with a parabolic longitudinal potential and a transverse magnetic field. Left subpanels: color-coded modulus of the exact wave functions
���x ,y�� �blue: small amplitude, red: large amplitude�. Right subpanels: the corresponding semiclassical ABL wave functions. The white
curves depict the bell-shaped orbit, computed at the semiclassical energy. Upper middle subpanels: color-coded Husimi representations of the
exact wave functions. Lower middle subpanels: classical phase-space portraits, computed at the energy of the exact wave functions. The red
dot denotes the position of the bell-shaped orbit. The white circle in the Husimi representations delimits the energetically accessible region
of the classical phase space.
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=0,y���2, which are obtained by overlapping the derivative
of the exact wave function at the left wall with coherent
states �minimal-uncertainty wave packets� that are param-
eterized in Birkhoff coordinates y , py. The Husimi represen-
tation, shown in the upper middle subpanels of Figs.
1�a�–1�d�, in all cases displays a clear maximum at the posi-
tion of the bell-shaped orbit �red dot in the chaotic part of the
phase-space portraits�, which lies in the chaotic part of phase
space.

Besides the visual agreement, the separatrix solutions also
recover the following essential characteristics of the numeri-
cal solutions: �i� the wave functions are of the right symme-
try with respect to inversion around x=0.5 d, y=0 �as there
are eight focal points, wave functions are symmetric under
this operation when n is odd, while they are antisymmetric
when n is even�. �ii� The profile of the wave function along
the line y=0 extracted from the ABL and the numerical so-
lution �after spatial averaging over a range of 0.05 d to
eliminate the speckle fluctuations due to the random back-
ground in the numerical solution� shows very good agree-
ment within validity region of the ABL solution, x /d�0.15.
The ABL captures well both the period and the relative
strength of the oscillations in the numerical solution �Fig. 2�.
�iii� The exact energies are in excellent agreement with En0

,
i.e., the semiclassical prediction from Eq. �10� with �=0.
These energies are almost equidistantly spaced, and the
semiclassical error is less than 5% of this spacing �the error
is also small compared to the mean level spacing of all
states�. �iv� For each longitudinal wave number n the nu-
merical computations only deliver a single scarred wave
function localized around the unstable trajectory �in contrast,
many transversely excited wave functions are supported by
the stable trajectories in the island around y0, py
0.3m�0d�. In other words, we do not find any other scarred
states on this orbit. Therefore, the actual scar quantization
window is reduced beyond the constraint obtained by the
propagation of time-dependent Gaussian states �32�, which
predicts scarring in a larger window �E��T. However,
one cannot exclude that signatures of off-resonant scarring
show up in the wave-function statistics of the states in this
larger window, which is a question beyond our focus on
individual wave functions.

VI. CONCLUSIONS

In this work we extended the asymptotic boundary layer
�ABL� method for semiclassical wave functions, originally
developed for the description of Gaussian beams guided by
stable trajectories, to the case of scarlike states localized in
the vicinity of unstable periodic orbits. We focus on wave
functions scarred by a single short trajectory and derive ex-
pressions of a universal form, valid up to order �3/2, which
apply to general systems which may combine hard walls,
external potentials and magnetic fields. The ABL equations
are formulated in a curvilinear coordinate system associated
with the classical trajectory. The system- and orbit-specific
information enters via the solution of the classical equations
in variations, which describe the stability of the trajectory. At
fixed energy, the profile of the wave function is determined

by a periodicity condition, which results in a Bohr-
Sommerfeld quantization formula.

Far away from the guiding trajectory, the ABL wave func-
tion decays as the inverse square-root of the distance, and
therefore is not normalizable, but couples to the quasirandom
background of other modes in the system. This coupling is
the weakest for the symmetric separatrix state, which is as-
sociated to a particularly simple quantization condition.
Since the separatrix state is also the most visibly localized
ABL wave function, one can expect that it typically provides
the dominant contribution to scars guided by a single short
trajectory. In general, we estimate that the number of wave
functions of different profile participating in the scar forma-
tion increases logarithmically with the system dimensions,
and therefore depends on the relation of the Ehrenfest time
and the period of the trajectory.

We verified our conclusions by comparison with exact
numerical solution for a quantum strip resonator with the
quadratic confining potential and a perpendicular magnetic
field. In this system, a family of unstable periodic orbits
supports a long sequence of scarred states, with energies in
excellent agreement with the simple quantization condition
for the separatrix solution. We find that this solution captures
all the essential characteristics of the exact scarred states.
The studied system is of the generic type, with a mixed
phase space, which raises the expectation that the ABL for-
malism is applicable to a large class of quantum-dynamical
systems.

An open question concerns the generalization of the for-
malism to scars supported by many trajectories, as well as
the contribution of ABL solutions to off-resonant scars �typi-
cally revealed in wave function statistics�.
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APPENDIX: ABL EXPANSION FOR SCHRÖDINGER
EQUATION

In this appendix we outline the main steps in the deriva-
tion of the ABL formalism. Further details on the formalism
can be found in Refs. �1,2�. Here, we present a straightfor-
ward derivation based on the direct expansion of the
Schrödinger equation.

The main trajectory r0�s�, which is parameterized by its
arclength s, generates an orthogonal coordinate system
spanned by the normal unit vector en�s� and the longitudinal
unit vector et�s�, which we express in the component form

en�s� 
 ��x

�y
�, et�s� 
 � �y

− �x
� . �A1�

Recalling the conversion formulas for the partial derivatives
in curvilinear coordinates,

�x =
�y

	
�s + �x�n, �y = −

�x

	
�s + �y�n,
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	 = 1 −
n

��s�
, �A2�

where ��s� is the curvature radius of the trajectory, we write
the Schrödinger equation as

�ss

	2 −
n�̇

	3�2�s −
�n

	�
+ �nn +

ieB

�	
��r0en� + n��s

+
ieB

�
�r0el��n −

e2B2

4�2	3 �r0 + enn�2� =
2m

�2	3 �U − E�� ,

�A3�

where U�s ,n� is the potential inside the resonator.
The central idea of the ABL approach is to search the

solution to Eq. �A3� in an asymptotically small boundary
layer of the width ��� in the vicinity of the main trajectory.
A straightforward way to derive the corresponding semiclas-
sical expansion for the wave function follows two steps: �i�
scaling the normal variable as n=��� and �ii� expanding the
resulting equation in powers of ��, as written in Eq. �1�,
where each term ��j� is uniquely defined.

We substitute Eq. �1� into Eq. �A3�, expand the resulting
equation, and match the coefficients of the resulting series,
which yields a hierarchical set of equations for S0�s�, S1�s�,
and ��j��s ,��. If the expansion of the effective potential can
limited to second order �a standard assumption in linear scar
theories �9,14��, one can terminate the series in Eq. �1� at the
leading term ��0��s ,��. This is equivalent to obtaining a
semiclassical wave function to the order of �3/2 �1�. The first
three terms of the series expansion of Eq. �A3� read

�−2:A��0� = 0, �A4a�

�−3/2:A��1� + 2iB��
�0� + C���0� = 0, �A4b�

�−1:C���1� + 2iB��
�1� + D = 0, �A4c�

with coefficients

A = a2 −
r0

2e2B2

4
− eB�r0el�S1 − S1

2 + eB�r0en�Ṡ0 − Ṡ0
2,

�A5a�

B =
eB

2
�r0el� + S1, �A5b�

C =
S1

2 − Ṡ0
2

�
− 2Ṡ0Ṡ1 − eBṠ0

2 − eBṠ1�r0en� −
eB

�
�r0el�S1

− 2mu1 −
a2

�
+

e2B2

4�
r0

2 −
e2B2

2
�r0en� , �A5c�

D = 2ia�̇�0� + iȧ��0� + ���
�0� − da2�2��0�. �A5d�

Equation �A4a� yields A=0. Equation �A4b� is solved by
setting B=0, since C=0 is satisfied identically if A=B=0,
which yields the classical action solution �2�. Finally Eq.
�A4c� is equivalent to D=0, which yields Eq. �3�. After the

substitution �=a−1/2��0� this equation take the form of a non-
stationary Schrödinger equation, which we write as

L̂� 
 �i�s +
��

2

2a
−

ad

2
�2�� = 0. �A6�

The fact that Eq. �5� is a solution to Eq. �3� can be
checked by a direct substitution. Here we present a direct
derivation, which provides deeper insight into the nature of
the ABL solution. First, we obtain a “ground state” solution
to Eq. �A6� by using the ansatz

�0 = ��s�exp�i

�s�

2
�2� , �A7�

which is similar to the thawed Gaussians introduced by
Heller �34� to describe the time evolution of localized quan-
tum wave packets. Substituting Eq. �A7� into Eq. �A6� yields
equations for the unknown quantities 
 and �,


̇ +

2

a
+ ad = 0, �A8a�

� = exp�−
1

2
�

0

s 


a
ds� . �A8b�

The Ricatti Eq. �A8a� is solved by a standard substitution

= p /z, after which one finds equations for p and z as given
by Eq. �6�. As we mentioned above, this Hamiltonian equa-
tions in variations define relative coordinates z and momen-
tum p for classical trajectories in the vicinity of the guiding
trajectory. Once Eq. �6� is solved, Eq. �A8b� delivers �
=z−1/2. Equation �6� has two linearly independent solutions,
�z , p� and �z̄ , p̄�, which define the constant Wronskian pz̄
− p̄z=w.

The classical origin of Eq. �6� can be established from the
reduced classical action constructed for the trajectory n�s� in
the vicinity of the guiding trajectory. In curvilinear coordi-
nates this action reads

S = �
0

s

�2m�E − U�r����1 −
n

�
�2

+ ṅ2�1/2
ds

+
eB

2
�

0

s

�xẏ − yẋ�ds , �A9�

where x=x0�s�+�x�s�n�s� and y=y0�s�+�y�s�n�s�. Expand-
ing Eq. �A9� to second order in the small quantity n, one
obtains

S = S0 − �
0

s

�nds +
1

2
�

0

s

�aṅ2 − adn2�ds , �A10�

where

��s� = eB +
a

�
+

au1

2�E − u0�
. �A11�

The linear term in this expansion vanishes identically, �=0,
because n=0 is also a trajectory �the main trajectory�. The
linear coefficient in Eq. �A10� is related to Eq. �A5c� as C
=2a�, which explains why C vanishes. The Euler-Lagrange
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equation for the action �A10� is equivalent to the Hamil-
tonian system �6�.

A sequence of partial solutions to Eq. �3� can be con-
structed with the help of creation and annihilation operators
�1,25�

�̂ =� i

w
�− iz�� − p�� , �A12a�

�̂† =� i

w
�− iz̄�� − p̄�� , �A12b�

which satisfy the following algebra

��̂,L̂� = ��̂†,L̂� = 0, ��̂,�̂†� = 1. �A13�

General solutions are then obtained from �m=�†m�0. This
procedure leads to a recurrence relation, which is solved by
wave functions of the explicit form

�m�s,�� �
z̄m�
 − 
̄�m/2

�z
Hm��
 − 
̄

2i
��e�i/2�
�2

,

�A14�

where Hm are Hermite polynomials.
The presented derivation allows for an unambiguous ana-

lytical continuation of the recurrence relation and its solu-
tions to arbitrary indices m→	. This yields Eq. �5�, where
the parabolic cylinder functions D	 take the place of the Her-
mite polynomials Hm, and the coefficient a−1/2 is accounted

for. Finally, we note that recalling the definition of 
 and 
̄
as well as that for the Wronskian, the solution can be com-
pactly written as

�	�s,�� �
e�i/4��
+
̄��2

�z
� z̄

z
�	/2

D	�� w

izz̄
�� . �A15�
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