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Uncovering the community structure exhibited by real networks is a crucial step toward an understanding of
complex systems that goes beyond the local organization of their constituents. Many algorithms have been
proposed so far, but none of them has been subjected to strict tests to evaluate their performance. Most of the
sporadic tests performed so far involved small networks with known community structure and/or artificial
graphs with a simplified structure, which is very uncommon in real systems. Here we test several methods
against a recently introduced class of benchmark graphs, with heterogeneous distributions of degree and
community size. The methods are also tested against the benchmark by Girvan and Newman �Proc. Natl. Acad.
Sci. U.S.A. 99, 7821 �2002�� and on random graphs. As a result of our analysis, three recent algorithms
introduced by Rosvall and Bergstrom �Proc. Natl. Acad. Sci. U.S.A. 104, 7327 �2007�; Proc. Natl. Acad. Sci.
U.S.A. 105, 1118 �2008��, Blondel et al. �J. Stat. Mech.: Theory Exp. �2008�, P10008�, and Ronhovde and
Nussinov �Phys. Rev. E 80, 016109 �2009�� have an excellent performance, with the additional advantage of
low computational complexity, which enables one to analyze large systems.
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I. INTRODUCTION

The modern science of networks is probably the most
active field within the new interdisciplinary science of com-
plex systems. Many complex systems can be represented as
networks, where the elementary parts of a system and their
mutual interactions are nodes and links, respectively �1,2�.
Complex systems are usually organized in compartments,
which have their own role and/or function. In the network
representation, such compartments appear as sets of nodes
with a high density of internal links, whereas links between
compartments have a comparatively lower density. These
subgraphs are called communities or modules and occur in a
wide variety of networked systems �3,4�.

Finding compartments may shed light on the organization
of complex systems and on their function. Therefore detect-
ing communities in networks has become a fundamental
problem in network science. Many methods have been de-
veloped, using tools and techniques from disciplines such as
physics, biology, applied mathematics, and computer and so-
cial sciences. However, it is still not clear which algorithms
are reliable and shall be used in applications. The question of
the reliability itself is tricky, as it requires shared definitions
of community and partition which are, at present, still miss-
ing. This essentially means that, despite the huge literature
on the topic, there is still no agreement among scholars on
what a network with communities looks like. Nevertheless,
there has been a silent acceptance of a simple network
model, the planted �-partition model �5�, which is often used
in the literature in various versions. In this model one
“plants” a partition, consisting of a certain number of groups
of nodes. Each node has a probability pin of being connected
to nodes of its group and a probability pout of being con-
nected to nodes of different groups. As long as pin� pout the
groups are communities, whereas when pin� pout the net-
work is essentially a random graph, without community
structure. The most popular version of the planted �-partition

model was proposed by Girvan and Newman �GN bench-
mark� �3�. Here the graph consists of 128 nodes, each with
expected degree 16, which are divided into four groups of
32. The GN benchmark is regularly used to test algorithms
for community detection. Indeed, algorithms can be com-
pared based on their performance on this benchmark. This
has been done by Danon et al. �6�. However, the GN bench-
mark has two drawbacks: �1� all nodes have the same ex-
pected degree; �2� all communities have equal size. These
features are unrealistic, as complex networks are known to
be characterized by heterogeneous distributions of degree
�1,2,7� and community sizes �8–12�. In recent papers
�13,14�, we have introduced a new class of benchmark
graphs �Lancichinetti-Fortunato-Radicchi �LFR� benchmark�
that generalize the GN benchmark by introducing power law
distributions of degree and community size. The new graphs
are a real generalization, in that the GN benchmark is recov-
ered in the limit case in which the exponents of the distribu-
tions of degree and community sizes go to infinity. Most
community detection algorithms perform very well on the
GN benchmark due to the simplicity of its structure. The
LFR benchmark, instead, presents a much harder test to al-
gorithms and makes it easier to disclose their limits. More-
over, the LFR benchmark graphs can be built very quickly:
the complexity of the construction algorithms is linear in the
number of links of the graph, so one can perform tests on
very large systems, provided the method at study is fast
enough to analyze them.

For these reasons, we believe that a serious assessment of
the goodness of community detection algorithms can be
made by evaluating their performance on the LFR bench-
mark. In this paper we propose a comparative analysis of this
kind. After explaining briefly the LFR benchmark and how
to compare partitions quantitatively we will pass to the de-
scription of the algorithms that we examined. We will
present the analysis of the algorithms’ performance first on
the GN benchmark and then on the LFR benchmark, in its
various versions including weighted and directed graphs,
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along with graphs with overlapping communities. Finally we
will consider the issue of whether the algorithms are able to
give a null result, i.e., how they handle networks without
expected community structure, such as random graphs. Our
analysis will reveal that there are, at present, algorithms
which are fast and reliable in many situations. We will con-
clude with a summary of our results and their consequences.

II. LFR BENCHMARK

The LFR benchmark �13,14� is a special case of the
planted �-partition model, in which groups are of different
sizes and nodes have different degrees. The node degrees are
distributed according to a power law with exponent �1; the
community sizes also obey a power law distribution, with
exponent �2. In the following, N indicates the number of
nodes of the network. In the construction of the benchmark
graphs, each node receives its degree once and for all and
keeps it fixed until the end. In this way, the two parameters
pin and pout of the planted �-partition model in this case are
not independent. Once the value of pin is set one obtains the
value of pout and vice versa. It is more practical to choose as
independent parameter the mixing parameter �, which ex-
presses the ratio between the external degree of a node with
respect to its community and the total degree of the node. Of
course, in general one may take different values for the mix-
ing parameter for different nodes, but we will assume, for
simplicity, that � is the same for all nodes, consistently with
the standard hypotheses of the planted �-partition model.

The benchmark graphs are built with a fast procedure,
which requires a time proportional to the number of links of
the graph. Here we briefly sketch the construction process for
the case of undirected and unweighted graphs, without over-
lapping communities, of which the other cases are simple
generalizations and/or refinements. First, one has to assign
the sizes of the communities �s��. This is done by picking
random numbers from a power law distribution with expo-
nent �2. Obviously, the sum of the sizes of the communities
has to match the number of nodes N of the graph �except in
the case of overlapping communities, in which case the total
“area” covered by the communities exceeds N�. Then, one
treats each community as an isolated graph and assigns to
each node i of a community an internal degree �1−��ki,
where ki is the degree of node i, which is taken by a power
law distribution with exponent �1. In this way, each node i
has a number of stubs �1−��ki that need to be attached to
nodes of the same community. This is done according to the
configuration model �15�, i.e., by randomly attaching pairs of
randomly selected stubs to each other until no more stubs are
“free.” Next, communities have to be linked to each other.
For that, one adds to each node i a number of stubs �ki �so
that the degree of the node is finally ki= �1−��ki+�ki� and
attaches them to each other again according to the configu-
ration model. In this way, the final graph satisfies the condi-
tions we imposed at the beginning on the distributions of
degree and community size.

By construction, the groups are communities when
pin� pout. This condition can be translated into a condition
on the mixing parameter �. Let us label ki

in and ki
out the

internal and external degrees of node i with respect to its
community �which we denote with c�. By definition, ki

in is
the number of neighbors of i that belong to its community c
and ki

out is the number of neighbors of i that belong to the
other communities. The number of available connections kc

out

�kc
in� outside �inside� c is given by the sum of the degrees of

the nodes outside �inside� the community. If the numbers of
nodes inside and outside c are not too small, the sum of their
degrees can be approximated by the product of the average
degree �k� by the number of nodes. We indicate with nc the
number of nodes of the community c of node i, so we have
that kc

out	�N−nc��k� and kc
in	nc�k�. By definition of the

linking probabilities pin and pout we deduce that

pout =
ki

out

kc
out 	

ki
out

�N − nc��k�
�1�

and

pin =
ki

in

kc
in 	

ki
in

nc�k�
. �2�

In this way, the condition for the existence of communities
pin� pout becomes

ki
in

nc�k�
�

ki
out

�N − nc��k�
, �3�

from which we get

ki
in �

ncki
out

N − nc
. �4�

On the other hand, by definition we have that

� =
ki

out

ki
in + ki

out . �5�

By comparing Eq. �5� with Eq. �4� we obtain the desired
condition on �,

� �
N − nc

N
. �6�

The condition expressed in Eq. �6� is general and applies
to any version of the planted �-partition model. When com-
munities are different in size, the upper bound on � depends
on the specific community at hand. However, if nc

max is the
size of the largest community, we can safely assume that,
whenever �� �N−nc

max� /N, all communities are well de-
fined. In the GN benchmark, where nc=32 and 128, the con-
dition becomes ��3 /4. This is interesting, as in most works
using the GN benchmark, one usually assumes that commu-
nities are there as long as ��1 /2, whereas they are not well
defined for ��1 /2. Instead, we see that communities are
there, at least in principle, up until �=3 /4. However, we
stress that, even if communities are there, methods may be
unable to detect them. The reason is that, due to fluctuations
in the distribution of links in the graphs, already before the
limit imposed by the planted partition model it may be im-
possible to detect the communities and the model graphs
may look similar to random graphs. This issue of the actual
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significance of communities and their detectability a priori is
very important and has been recently discussed in the litera-
ture �16–18�. We notice that, on large networks, when nc
�N, the limit value of � below which communities are de-
fined approaches 1. In our tests with the LFR benchmark, we
will often be in this regime.

III. COMPARING PARTITIONS

Testing an algorithm on any graph with built-in commu-
nity structure also implies defining a quantitative criterion to
estimate the goodness of the answer given by the algorithm
as compared to the real answer that is expected. This can be
done by using suitable similarity measures. For reviews of
similarity measures see Refs. �19–21�. In the first tests of
community detection algorithms, one used a measure called
fraction of correctly identified nodes, introduced by Girvan
and Newman �3�. However, it is not well defined in some
cases �e.g., when a detected community is a merger of two or
more “real” communities�, so in the last years other measures
have been used. In particular, measures borrowed from infor-
mation theory have proved to be reliable.

To evaluate the Shannon information content �22� of a
partition, one starts by considering the community assign-
ments �xi� and �yi�, where xi and yi indicate the cluster labels
of vertex i in partitions X and Y, respectively. One assumes
that the labels x and y are values of two random variables X
and Y, with joint distribution P�x ,y�= P�X=x ,Y =y�=nxy /n,
which implies that P�x�= P�X=x�=nx

X /n and P�y�= P�Y =y�
=ny

Y /n, where nx
X, ny

Y, and nxy are the sizes of the clusters
labeled by x, y, and of their overlap, respectively. The mutual
information I�X ,Y� of two random variables is defined as

I�X,Y� = 

x



y

P�x,y�log
P�x,y�

P�x�P�y�
. �7�

The measure I�X ,Y� tells how much we learn about X if we
know Y and vice versa. Actually I�X ,Y�=H�X�−H�X �Y�,
where H�X�=−
x P�x�log P�x� is the Shannon entropy of X
and H�X �Y�=−
x,y P�x ,y�log P�x �y� is the conditional en-
tropy of X given Y. The mutual information is not ideal as a
similarity measure: in fact, given a partition X, all partitions
derived from X by further partitioning �some of� its clusters
would all have the same mutual information with X, even
though they could be very different from each other. In this
case the mutual information would simply equal the entropy
H�X� because the conditional entropy would be systemati-
cally zero. To avoid that, Danon et al. adopted the normal-
ized mutual information �6�,

Inorm�X,Y� =
2I�X,Y�

H�X� + H�Y�
, �8�

which equals 1 if the partitions are identical, whereas it has
an expected value of 0 if the partitions are independent. The
normalized mutual information is currently very often used
in tests of community detection algorithms. We have recently
proposed a definition of the measure to evaluate the similar-
ity of covers, i.e., of divisions of the network in overlapping
communities, which one needs for the tests of Sec. VI D. The

details can be found in the Appendix in Ref. �12�. We stress
that our definition is not a proper extension of the normalized
mutual information, in the sense that it does not recover ex-
actly the same value of the original measure for the compari-
son of proper partitions without overlap, even though the
values are close. For consistency we used our definition in all
tests, although in the tests involving benchmarks without
overlapping communities the classic expression of Eq. �8�
could be used. For this reason, we warn that in the plots
showing the performance of the algorithms on the GN
benchmark, the curves are not identical to those already seen
in previous papers �for, e.g., modularity-based methods�,
where Eq. �8� was used, although they are rather close.

IV. ALGORITHMS

We have tested a wide spectrum of community detection
methods. In some cases the software to implement the algo-
rithms was publicly available; in other cases the original de-
velopers have let us use their own code, otherwise we have
created the software on our own. We wanted to have a rep-
resentative subset of algorithms, which exploit some of the
most interesting ideas and techniques that have been devel-
oped over the last years. Obviously we could not by any
means perform an analysis of all existing techniques, as their
number is huge. Some of them were excluded a priori, if
particularly slow, as our tests involve graphs with a few
thousand nodes, which old methods are unable to handle. On
the other hand, the code to create the LFR benchmark is
freely available �23� and scholars are welcome to test their
algorithms on it and compare their performance with that of
the algorithms analyzed here. Here is the list of the algo-
rithms we considered.

Algorithm of Girvan and Newman �3,24�. It is the first
algorithm of the modern age of community detection in
graphs. It is a hierarchical divisive algorithm in which links
are iteratively removed based on the value of their between-
ness, which expresses the number of shortest paths between
pairs of nodes that pass through the link. In its most popular
implementation, the procedure of link removal ends when
the modularity of the resulting partition reaches a maximum.
The modularity of Newman and Girvan is a well known
quality function that estimates the goodness of a partition
based on the comparison between the graph at hand and a
null model, which is a class of random graphs with the same
expected degree sequence of the original graph. The algo-
rithm has a complexity O�N3� on a sparse graph. In the fol-
lowing we will refer to it as GN.

Fast greedy modularity optimization by Clauset et al.
�11�. This method is essentially a fast implementation of a
previous technique proposed by Newman �25�. Starting from
a set of isolated nodes, the links of the original graph are
iteratively added such to produce the largest possible in-
crease of the modularity of Newman and Girvan at each step.
The fast version of Clauset et al., which uses more efficient
data structures, has a complexity of O�N log2 N� on sparse
graphs.

Exhaustive modularity optimization via simulated anneal-
ing �26–29�. The goal is the same as in the previous algo-
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rithm, but the precision of the final estimate of the maximum
is far higher, due to the exhaustive optimization, at the ex-
pense of the computational speed. The latter cannot be ex-
pressed in closed form, as in the cases above, as it depends
on the parameters used for the optimization. We will stick to
the procedure used by Guimerà and Amaral �29�.

Fast modularity optimization by Blondel et al. �30�. This
is a multistep technique based on a local optimization of
Newman-Girvan modularity in the neighborhood of each
node. After a partition is identified in this way, communities
are replaced by supernodes, yielding a smaller weighted net-
work. The procedure is then iterated until modularity �which
is always computed with respect to the original graph� does
not increase any further. This method offers a fair compro-
mise between the accuracy of the estimate of the modularity
maximum, which is better than that delivered by greedy
techniques like the one by Clauset et al. above, and compu-
tational complexity, which is essentially linear in the number
of links of the graph.

Algorithm by Radicchi et al. �31�. This algorithm is in the
spirit of that by Girvan and Newman above. In fact, it is a
divisive hierarchical method, where links are iteratively re-
moved based on the value of their edge clustering coeffi-
cient, which is defined as the ratio between the number of
loops based on the link and the largest possible number of
loops that can be based on the link. The edge clustering
coefficient is a local measure, so its computation is not so
heavy as that of edge betweenness, which yields a significant
improvement in the complexity of the algorithm, which is
O�N2� on a sparse graph. Another major difference from the
GN algorithm is the stopping criterion of the procedure,
which depends on the properties of the communities them-
selves and not on the values of a quality function such as
modularity. Radicchi et al. considered two types of commu-
nities: strong communities are groups of nodes such that the
internal degree of each node exceeds its external degree;
weak communities are groups of nodes such that the total
internal degree of the nodes of the group exceeds their total
external degree.

Cfinder �8�. This is a local algorithm proposed by Palla et
al. that looks for communities that may overlap, i.e., share
nodes. It was the first paper in the physics literature on com-
munity detection to address this problem, which is important
in many systems such as, e.g., social networks. Communities
are defined as the largest possible subgraphs that can be ex-
plored by rolling k cliques across the network, where a k
clique rolls by rotating about any of its component �k−1�
cliques �which are links when k=3�. The complexity of this
procedure can be high, as the computational time needed to
find all k cliques of a graph is an exponentially growing
function of the graph size �32�, but in practical applications
the method is rather fast, enabling one to analyze systems
with up to 105 nodes.

Markov cluster algorithm �33�. This is an algorithm de-
veloped by van Dongen, which simulates a peculiar diffusion
process on the graph. One starts from the right stochastic
matrix �or diffusion matrix� of the graph, which is obtained
from the adjacency matrix of the original graph by dividing
the elements of each row by their sum. Then one computes
an integer power of this matrix �usually the square�, which

yields the probability matrix of a random walk after a num-
ber of steps equal to the number of powers of the right sto-
chastic matrix considered. This step is called expansion.
Next, each element of the matrix is raised to some power 	
in order to enhance �artificially� the probability of the walker
to be trapped within a community. This step is called infla-
tion. The expansion and inflation steps are iterated until one
obtains the adjacency matrix of a forest �i.e., a disconnected
tree�, whose components are the communities. This method,
widely used in bioinformatics, is strongly dependent on the
choice of the parameter 	. Its complexity can be lowered to
O�Nk2� if, after each inflation step, only the k largest ele-
ments of the resulting matrix are kept, whereas the others are
set to zero. In the following we will refer to the method as
MCL.

Structural algorithm by Rosvall and Bergstrom �34�. Here
the problem of finding the best cluster structure of a graph is
turned into the problem of optimally compressing the infor-
mation on the structure of the graph, so that one can recover
as closely as possible the original structure when the com-
pressed information is decoded. This is achieved by comput-
ing the minimum of a function which expresses the best
tradeoff between the minimal conditional information be-
tween the original and the compressed information �maximal
faithfulness to the original information� and the maximal
compression �least possible information to transmit�. The op-
timization of the function is carried out via simulated anneal-
ing, which makes the algorithm quite slow, although one
could always go for a faster and less accurate optimization.
In the following we will refer to the method as Infomod.

Dynamic algorithm by Rosvall and Bergstrom �35�. This
technique is based on the same principle as the previous one.
The difference is that before one was compressing the infor-
mation on the structure of the graph, here one wishes to
compress the information of a dynamic process taking place
on the graph, namely, a random walk. The optimal compres-
sion is achieved again by optimizing a quality function,
which is the minimum description length �36,37� of the ran-
dom walk. Such optimization can be carried out rather
quickly with a combination of greedy search and simulated
annealing. In the following we will refer to the method as
Infomap.

Spectral algorithm by Donetti and Muñoz �DM� �38�. This
is a method based on spectral properties of the graph. The
idea is that eigenvector components corresponding to nodes
in the same community should have similar values if com-
munities are well identified. Donetti and Muñoz focused on
the eigenvectors of the Laplacian matrix. They considered a
limited number of eigenvectors, say g, and represented each
node of the graph as a geometric point in an Euclidean
g-dimensional space, whose coordinates are the eigenvector
components corresponding to the node. The points are then
grouped with traditional hierarchical clustering techniques.
Of the resulting partitions, one picks the one that maximizes
the modularity by Newman and Girvan. The method is rather
quick when only a few eigenvectors are computed, which is
usually the case, as this can be done via the Lanczos method
�39�. In the following we will refer to the method as DM.

Expectation-maximization �EM� algorithm by Newman
and Leicht �40�. Here Bayesian inference is used to deduce
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the best fit of a given model to the data represented by the
actual graph structure. The goodness of the fit is expressed
by a likelihood that is maximized by means of the
expectation-maximization technique �41�. This leads to a
system of self-consistent equations, which can be solved by
iteration starting from suitable initial conditions. The equa-
tions can be solved rather quickly and fairly large systems
can be analyzed in this way �up until 106 nodes�. A nice
feature of the method is that it finds the most relevant group
structure of the graph, whether the groups are communities
or not �in graphs with multipartite structure the classes are
rather anticommunities, as there are very few links inside the
groups�. A drawback of the method is the fact that one needs
to feed the number of groups, which is usually not known a
priori. In the following we will refer to the method as EM.

Potts model approach by Ronhovde and Nussinov �RN�
�42�. This method is based on the minimization of the Hamil-
tonian of a Potts-like spin model, where the spin state repre-
sents the membership of the node in a given community. A
resolution parameter enables one to span several community
scales from very small to very large communities. The rel-
evant scales are identified by checking for the stability of the
partitions obtained for given values of the resolution param-
eter. This is done by computing the similarity of partitions
obtained for the same resolution parameter but starting from
different initial conditions. Peaks in the similarity spectrum
correspond to stable and/or relevant partitions. The method is
rather fast; its complexity is slightly superlinear in the num-
ber of links of the graph. In the following we will refer to the
method as RN.

V. TESTS ON THE GN BENCHMARK

We begin by showing the performance of the algorithms
on the GN benchmark. As we have explained in Sec. II, for
the GN benchmark communities are well defined �in prin-
ciple� up until a value 3 /4=0.75 for the mixing parameter.
We will indicate the mixing parameter with the symbol �t to
mean that we refer to topology. In Sec. VI C we will focus
instead on the mixing parameter �w, which considers the
weights of the links. In Fig. 1 we show the results of our
analysis. Each point of every curve corresponds to an aver-
age over 100 realizations of the benchmark. For the algo-
rithms by Radicchi et al. and by Newman and Leicht �EM�,
we have put two curves instead of one �likewise in Sec.
VI A�. In the first case, we showed the outcome of the
method when one uses both possible stopping criteria, corre-
sponding to a partition consisting of strong �black curve� and
weak �red curve� communities, respectively. In the case of
the EM method, we show the curves delivered by the itera-
tive solution of the EM equations when one starts from a
random partition �red curve� and from the planted partition
of the benchmark �black curve�. As one can see, results are
different in these cases even if they are solutions of the same
equation. This shows how sensitive the solution is to the
choice of the initial condition. Moreover, the maximum like-
lihood achieved when one makes the “intelligent guess” of
the real partition is higher compared to the maximum likeli-
hood obtained starting from a random partition. This indi-

cates that the greedy approach to the solution of the EM
equations suggested by Newman and Leicht is not an effi-
cient way to maximize the likelihood, as one may expect.

Most methods perform rather well, although all of them
start to fail much earlier than the expected threshold of 3/4.
The Cfinder fails to detect the communities even when �t
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FIG. 1. �Color online� Tests of the algorithms on the GN bench-
mark. Each plot shows the normalized mutual information as a
function of the mixing parameter �t between the planted partition of
the benchmark and the one found by a given algorithm. The trend is
generally the same: for small values of �t communities are well
separated and most algorithms do a good job, so the normalized
mutual information is 1 or close to 1. When �t increases, commu-
nities are more mixed and harder to detect, so the normalized mu-
tual information is quite different from 1, indicating that the parti-
tion found by the algorithm is sensibly different from the planted
partition of the benchmark.
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	0 when they are very well identified. This is due to the fact
that, even when �t is small, the probe clique that explores the
system manages to pass from one group to the other and
yields much larger groups, often spanning the whole graph.
The method by Radicchi et al. does not have a remarkable
performance either, as it also starts to fail for low values of
�t, although it does better than the Cfinder. The MCL is
better than the method by Radicchi et al. but is outperformed
by modularity-based methods �simulated annealing, Clauset
et al. and Blondel et al.�, which generally do quite well on
the GN benchmark, something that was already known from
the literature. The DM and RN methods have a comparable
performance as the exhaustive optimization of modularity
via simulated annealing. The GN algorithm performs about
as well as the MCL. Both methods by Rosvall and Bergstrom
have a good performance. In fact, up until �t	0.4, they
always guess the planted partition in four clusters.

VI. TESTS ON THE LFR BENCHMARK

In this section we will present the tests on the LFR bench-
mark. For a thorough analysis, we have considered various
versions of the benchmark, in which links can have or not
weights and/or direction. We have also examined the version
which allows for community overlaps. In each test, we have
averaged the value of the normalized mutual information
over 100 realizations for each value of the mixing parameter.

A. Undirected and unweighted graphs

The plots of Fig. 2 illustrate the results of the analysis.
The following input parameters are the same for all bench-
mark graphs used here, as well as in Secs. VI B–VI D: the
average degree is 20, the maximum degree is 50, the expo-
nent of the degree distribution is −2, and that of the commu-
nity size distribution is −1. In each plot, except for the GN
and the EM algorithms, we show four curves, corresponding
to two different network sizes �1000 and 5000 nodes� and,
for a given size, to two different ranges for the community
sizes, indicated by the letters S and B: S �stays for “small”�
means that communities have between 10 and 50 nodes and
B �stays for “big”� means that communities have between 20
and 100 nodes. For the GN algorithm we show only the
curves corresponding to the smaller network size, as it would
have taken too long to accumulate enough statistics to
present clean plots for networks of 5000 nodes due to the
high computational complexity of the method. For the EM
method we have plotted eight curves as for each set of
benchmark graphs we have considered the two outcomes of
the algorithm corresponding to the different choices of initial
conditions we have mentioned in Sec. VI, namely, random
�bottom curves� and planted �top curves� partitions. In this
case, the difference in the performance of the algorithm in
the two cases is remarkable. The fact that, by starting from
the planted partition, the final likelihood is actually higher as
compared with a random start, as we have seen in Sec. VI,
confirms that the method has a great potential if only one
could find a better way to estimate the maximum likelihood
than the greedy approach currently adopted. Nevertheless we

remind that the EM also has the big drawback to require as
input the number of groups to be found, which is usually
unknown in applications.

As a general remark, we see that the LFR benchmark
enables one to discriminate the performances of the algo-
rithms much better than the GN benchmark, as expected.
Modularity-based methods have a rather poor performance,
which worsens for larger systems and smaller communities
due to the well known resolution limit of the measure �43�.
The only exception is represented by the algorithm by
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FIG. 2. �Color online� Tests of the algorithms on the LFR
benchmark with undirected and unweighted links. Each plot shows
the normalized mutual information as a function of the mixing pa-
rameter �t between the planted partition of the benchmark and the
one found by a given algorithm. The general trend is qualitatively
the same as in the analysis on the GN benchmark �Fig. 1�.
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Blondel et al., whose performance is very good probably
because the estimated modularity maximum is not a very
good approximation of the real one, which is more likely
found by simulated annealing. The Cfinder, the MCL, and
the method by Radicchi et al. do not have impressive perfor-
mances either and display a similar pattern, i.e., the perfor-
mance is severely affected by the size of the communities
�for larger communities it gets worse, whereas for small
communities it is decent�, whereas it looks rather insensitive
to the size of the network. The DM has a fair performance,
but it gets worse if the network size increases. The same
trend is shown by Infomod, where the performance worsens
considerably with the increase of the network size. Infomap
and RN have the best performances, with the same pattern
with respect to the size of the network and of the communi-
ties: up to values of �t	1 /2 both methods are capable to
derive the planted partition in the 100% of cases.

We conclude that Infomap, the RN method, and the
method by Blondel et al. are the best performing algorithms
on the LFR undirected and unweighted benchmark. Since
Infomap and the method by Blondel et al. are also very fast,
essentially linear in the network size, we wonder how good
their performance is on much larger graphs than those con-
sidered in Fig. 2. For this reason we carried out another set of
tests of these two algorithms on the LFR benchmark by con-
sidering graphs with 50 000 and 100 000 nodes. We have
done so also because in the tests that can be found in the
literature on community detection one typically uses very
small graphs, and the performance can change considerably
on large graphs. In Fig. 3 we show the performance of the
two methods. Due to the large network size, we decided to
pick a broad range of community sizes from 20 to 1000
nodes. In this way, the heterogeneity of the community sizes
is manifest. The maximum degree here was fixed to 200.
Remarkably, the performance of the method by Blondel et al.
is worse than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.

B. Directed and unweighted graphs

Directedness is an essential features of many real net-
works. Ignoring direction, as one often does or is forced to

do, may reduce considerably the information that one can
extract from the network structure. In particular, neglecting
link directedness when looking for communities may lead to
partial or even misleading results. In the literature there has
been no benchmark for directed graphs with communities for
a long time. However, we have recently extended the LFR
benchmark to directed networks �14�, so we are in the posi-
tion to evaluate the performance of community detection al-
gorithms in this case. The presence of directed links is a
serious obstacle toward a generalization of an algorithm for
community detection. Therefore, very few algorithms cur-
rently available are able to handle directed graphs. In the set
of methods we consider here, only five can be used as well
for directed networks: Clauset et al., simulated annealing for
modularity, Cfinder, Infomap, and EM. For some of the other
algorithms one may think of possible extensions which are,
at present, still missing. The EM method, in its original defi-
nition in Ref. �40�, has actually problems to deal with di-
rected graphs �44�. We present here a comparison of the per-
formances of two methods, exhaustive modularity
optimization via simulated annealing and Infomap. The re-
sults are in Fig. 4. Here the topological mixing parameter �t
refers to the indegree of the nodes which are distributed ac-
cording to a power law as in the original undirected bench-
mark, while the outdegree is kept constant for all nodes, a
choice made to avoid an unnecessary proliferation of input
parameters. Again, we considered two different network
sizes and ranges for the community size, which are the same
as those in Fig. 2. The other input parameters for the bench-
mark are the same that we have given in Sec. VI A. As
expected, modularity optimization shows the same limits that
emerged in Fig. 2. On the other hand, the performance of
Infomap is still very good.

C. Undirected and weighted graphs

In this section we focus on undirected graphs with
weighted links.

Weights are also precious sources of information �45�.
Just as in the case of link directedness above, neglecting
weights may imply a significant limitation of the information
on graph’s properties, concealing features of real systems
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FIG. 3. �Color online� Tests of the algorithm by Blondel et al.
and Infomap on large LFR benchmark graphs with undirected and
unweighted links.
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which may be very important and not deducible from the
mere topology. Ideally, one should exploit the information
from both topology and weights for a reliable analysis of a
network. The LFR benchmark has been extended to
weighted graphs as well �14�. Now there are two mixing
parameters, one for topology, which is the same �t we have
defined and used so far, and the other for the weights, �w,
which is the weighted counterpart of �t, i.e., it expresses the
fraction of the strength of the node that lies on links connect-
ing the node to the nodes outside its community, with respect
to the total strength of the node. We remind that the strength
of the node is the sum of the weights of its links. Moreover,
there is an additional parameter, i.e., the exponent of the
distribution for the strength: we set it to 1.5 for all realiza-
tions. All other parameters are the same specified in Sec.
VI A. Since we wish to show the results of the test on two-
dimensional plots, as we have done so far, we need to keep
fixed one of the two parameters and study the dependence on
the other. Here we freeze the topological mixing parameter
�t and study the dependence of the results on �w, so that we
see how the performance of an algorithm varies when only
the weights are redistributed but the topology is fixed. The
results are in Fig. 5, where we consider only three methods:
Infomap, MCL, and exhaustive modularity optimization via
simulated annealing. The other methods have no weighted
counterpart or the code for the weighted version was not
available. In each plot we show four curves, corresponding
to two choices for the topological mixing parameter �t and
the two usual ranges of small �S� and big �B� communities
that we have used so far. The network size is 5000 nodes in
each case. The Infomap by Rosvall and Bergstrom has, once
more, a remarkable performance, although it worsens if com-
munities are topologically more mixed �higher �t� and larger
in size �B�. The MCL has a fair performance only in the case
for �t=0.5 and small communities, whereas in the other ex-
treme of big topological mixture and big communities it fails
for any value of �w. Modularity optimization seems to be
more sensitive to the community size than to the other pa-
rameters.

D. Undirected and unweighted graphs with overlapping
communities

The fact that communities in real systems often overlap
has attracted a lot of attention in the last years, leading to the
creation of new algorithms able to deal with this special cir-
cumstance, starting from the first work by Palla et al. �8�.
Meanwhile, a few methods have been developed
�12,40,46–51�, but none of them has been thoroughly tested
except on a bunch of specific networks taken from the real
world. Indeed, there have been no suitable benchmark graphs
with overlapping community structure until recently �14,52�.
In particular, the LFR benchmark has been extended to the
case of overlapping communities �14�, and we use it here. Of
our set of algorithms, only the Cfinder is able to find over-
lapping communities. In principle also the EM method as-
signs to each node the probability that it belongs to any
community, but then one would need a criterion to define
which, among such probability values, is significant and
shall be taken or is not significant and shall be neglected. For
this reason we report the results of tests carried out with the
Cfinder only.

In Figs. 6 and 7 we show the results. The topological
mixing parameter �t is fixed and one varies the fraction of
overlapping nodes between communities. We have run the
Cfinder for different types of k cliques �k indicates the num-
ber of nodes of the clique�, with k=3,4 ,5 ,6. In general we
notice that triangles �k=3� yield the worst performance,
whereas four and five cliques give better results. In the two
top diagrams community sizes range between 10 and 50
nodes, whereas in the bottom diagrams the range goes from
20 to 100 nodes. By comparing the diagrams in the top with
those in the bottom we see that the algorithm performs better
when communities are �on average� smaller. The networks
used to produce Fig. 6 consist of 1000 nodes, whereas those
of Fig. 7 consist of 5000 nodes. From the comparison of Fig.
6 with Fig. 7 we see that the algorithm performs better on
networks of larger size.

VII. TESTS ON RANDOM GRAPHS

An important test of community detection algorithms,
usually ignored in the literature, consists of applying them to
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FIG. 5. �Color online� Tests of Infomap, MCL, and the exhaus-
tive modularity optimization via simulated annealing on the LFR
benchmark with undirected and weighted links.
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random graphs. In random graphs, by definition, the linking
probabilities of the nodes are independent of each other. In
this way one does not expect that there will be inhomogene-
ity in the density of links on the graphs, i.e., there should be
no communities. For instance, in Erdös-Rényi random
graphs �53� nodes are equivalent, as they have the same
probability to get connected to each other. Therefore there
are a priori no groups of nodes with special and/or stronger
relationships between them. Things are not that simple
though. It is certainly true that on average this is what hap-
pens. On the other hand, specific realizations of random
graphs may display pseudocommunities, i.e., clusters pro-
duced by fluctuations in the link density. This is why, for
instance, the maximum modularity of partitions in random
graphs is not small �26,54–56�. However, a good method
should distinguish between such pseudocommunities and
meaningful modules. The comparison with random graphs is
therefore mandatory. If the subgraphs found by a community
detection technique on a network are not different from those
found on a randomized version of the network, we should
deduce that those subgraphs are not communities. We stress
that this is also valid for small subgraphs, such as, e.g., tri-
angles, even if they are very different objects than commu-
nities. Such small subgraphs can be found on random graphs
as well, however finding many more subgraphs on a network
than on a randomized version of it may indicate that those
subgraphs are motifs, i.e., elementary building blocks of the
system �57–59�.

If one feeds a good community detection method with a
random graph, the method should not find nontrivial parti-
tions and ideally deliver only one community including all
nodes of the graph or as many communities as there are
nodes. This is what we want to check here. We considered
two types of graphs: Erdös-Rényi random graphs �53�, which
have a binomial degree distribution, and random graphs with
power law degree distributions �scale-free�. The latter have
been built via the configuration model �15�, starting from a
fixed degree sequence for the nodes obeying the predefinite
power law distribution. The exponent of the distribution is
−2; the maximum degree was fixed to 200. The size of all

graphs, Erdös-Rényi and scale-free, is fixed to 1000 nodes.
In Fig. 8 we show the number of modules found by various
algorithms as a function of the average degree of the graph.
Each point corresponds to an average over 100 graph real-
izations. We do not show the results of the EM method be-
cause the number of modules must be given by input and of
the GN algorithm because it is too slow to be used for the
analysis.

The best performance is that of the method by Radicchi et
al., which always finds a single cluster comprising all nodes.
The MCL, instead, finds as many clusters as there are nodes,
which is still reasonable. Here, however, the answer depends
on the average degree �k� of the graph: if �k� is very low or
very large the number of modules is smaller than 1000, i.e.,
the method finds small groups of nodes. This is particularly
evident for scale-free graphs. Modularity-based methods,
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such as Clauset et al., the exhaustive optimization via simu-
lated annealing, and the algorithm by Blondel et al., are not
so good, as they always find a few clusters, even in the limit
of large �k�: this is actually well known �55�. This is also the
case for the DM method, which performs a sort of modular-
ity optimization on the restricted set of partitions delivered
by hierarchical clustering. Infomod finds just one community
on Erdös-Rényi graphs for any value of �k�, while it delivers
nontrivial partitions on scale-free graphs up until �k�	60.
The RN method finds nontrivial partitions for any value of
�k�. The Cfinder finds a single module for very low values of
�k� and then a rapidly rising number of modules as �k� in-
creases. Since the modules are strongly overlapping in this
case, they may exceed the number of nodes, as we see from
the plot. Instead, Infomap always finds a single module com-
prising all nodes except when �k� is low.

VIII. SUMMARY

We have carried out a comparative analysis of the perfor-
mances of some algorithms for community detection on vari-
ous graphs: the GN and LFR benchmarks and random
graphs. Link direction, weights, and the possibility for com-
munities to overlap have been taken into account in dedi-
cated tests. We conclude that the Infomap method by Rosvall
and Bergstrom �35� is the best performing on the set of
benchmarks we have examined here. In particular, its results
on the LFR benchmark graphs, which are much more diffi-
cult to examine than the GN benchmark graphs, as clearly
shown by Figs. 1 and 2, are encouraging about the reliability
of the method in applications to real graphs. Among the other
things, the method can be applied to weighted and directed
graphs as well, with excellent performances, so it has a large
spectrum of potential applications. The algorithms by
Blondel et al. �30� and by RN �42� also look very good from
our analysis and could be used as well. In fact, for a study of
the community structure in real graphs, one could think of
using all three methods to be able to extract some algorithm-
independent information. Furthermore, as we have seen in
Sec. IV, these methods have a low computational complexity,
so one could use them on graphs with millions of nodes and
links. On the other hand, the algorithms are not able to ac-
count for overlapping communities, so they need to be prop-
erly refined to deal with this possibility, which is common in
many real systems.

One may object that, despite the features planted in the
LFR benchmark, i.e., the fat-tailed distributions of degree
and community size, which are actually observed in real net-
works, our artificial graphs are still different from real sys-
tems. For instance, the clustering coefficient �60� of the LFR
benchmark is very low due to the very small number of

triangles, whereas real networks are characterized by many
triangles and consequently a high clustering coefficient. On
the one hand the GN benchmark also has very few triangles
and low clustering coefficient �the LFR benchmark is just a
generalization of the GN benchmark�; nevertheless people
have used it extensively for testing algorithms. On the other
hand, nothing forbids to modify the building mechanism of
the LFR benchmark so that it does include triangles. This is
actually a potentially interesting improvement of the bench-
mark, which deserves some attention in the future.

Another important remark is in order. Our whole analysis
has made use of graphs with a “flat” community structure,
without hierarchy. Many real networks instead have a hier-
archical community structure, with communities inside other
communities. Good methods must be able to understand
when a network has no communities, a flat or a hierarchical
community structure. For an analysis of this kind we would
need hierarchical benchmarks. There is actually a hierarchi-
cal version of the GN benchmark �61�, not yet one of the
LFR benchmark, which is sorely needed. Methods to find
communities in multipartite graphs have yet to be tested as
well.

From all of the above it is clear that this paper does not
“kill” the issue of the actual efficiency and reliability of com-
munity detection methods. Our analysis represents a step, but
it is clear that much more needs to be done along these lines.
We are also aware that our subset of algorithms, while it
includes the most popular methods used and discussed in the
literature, is still a very limited sample of the endless variety
of existing algorithms, whose number has literally exploded
over the last few years. A thorough analysis of all existing
methods would require years of work �during which many
new methods would appear�, and we do not believe it is
feasible. On the other hand, we hope that the developers of
algorithms not included in our analysis will try to perform
themselves the tests on our benchmark graphs �the code to
build the graphs can be freely downloaded �62�� and com-
pare their results with the ones presented in this analysis for
a fair evaluation. We are ready and willing to provide all
necessary information and the sets of graphs used for this
paper. More generally we hope that in the future scholars
will submit new methods to the same type of strict tests
before presenting them to the community.
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