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Revising the simple measures of assortativity in complex networks
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We find that traditional statistics for measuring degree mixing are strongly affected by superrich nodes. To
counteract and measure the effect of superrich nodes, we propose a paradigm to quantify the mixing pattern of
a real network in which different mixing patterns may appear among low-degree nodes and among high-degree
nodes. This paradigm and the simple revised measure uncover the true complex degree mixing patterns of
complex networks with superrich nodes. The alternate method indicates that some networks show a false
disassortative mixing induced by superrich nodes and have no tendency to be genuinely disassortative. Our
results also show that the previously observed fragility of scale-free networks is actually greatly exacerbated by
the presence of even a very small number of superrich nodes.
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I. INTRODUCTION

With increasing evidence of the ubiquity of scale-free net-
works, attention has recently shifted to the particular struc-
ture of experimentally observed networks [1-6]. One key
observation to arise has been that some networks display a
propensity for high-degree nodes to connect to other high-
degree nodes (assortativity) [7,8]. Conversely in certain
other types of networks the reverse is true: high-degree
nodes connect to low-degree nodes (disassortativity). In par-
ticular, numerical evidence from experimental data has
shown that many technological (i.e., communication net-
works), biological (e.g., protein and neural networks), and
certain social (online communities [9,10]) networks are
found to exhibit a negative assortativity coefficient and are
therefore claimed to be examples of disassortative mixing
[7,11].

A widely accepted way to determine the mixing pattern of
complex networks is to calculate the Pearson correlation co-
efficient of the degrees at both ends of the edges [3,12,13].
Although Newman’s assortativity coefficient is not a perfect
measure of assortativity, it is a very simple measure to ap-
proximately assess the degree mixing pattern of a network
and has been employed broadly. Another natural approach to
quantify mixing patterns is to calculate the correlations be-
tween two nodes connected by an edge [13]. There are two
ways to characterize the node degree correlations. One is the
conditional probability P(k’|k) that an arbitrary edge con-
nects a node with degree k to another node with degree k'
[14]. The other is the joint degree distribution P(k,k’) that
measures whether nodes with a given degree k prefer (or
avoid) to connect to nodes with degree k' [1,2,15]. Although
they can capture the mixing patterns by the two-dimensional
degree correlation plots [16-18], it is difficult for the two
methods to quantitatively evaluate the assortativities of com-
plex networks.

While the existing measures for assortativity are simple,
and the mathematical definition of what is meant by assorta-

*xiaokeeie @ gmail.com

1539-3755/2009/80(5)/056106(7)

056106-1

PACS number(s): 89.75.Hc, 89.75.Da, 89.75.Fb

tivity and disassortativity is clear and consistent, this is not
equivalent to the general understanding of these phenomena.
In particular, disassortativity can easily and often does arise
in situations when the degree of neighbors matches as
closely as possible. This is completely at odd with what is
commonly understood, and this needs to be addressed. The
current usage of degree correlation measures means that re-
searchers often conclude that node degree between neighbors
in physical and social systems is mismatched while in fact
the opposite is true.

In this paper we show that in a finite-size network super-
rich nodes cause a network to show an observed disassorta-
tive mixing in most cases, while they sometimes let a strong
disassortative network appear less disassortative property.
And superrich nodes often limit the assortativity coefficient
to be in a narrow range and mask the genuine mixing pattern
of complex networks. The superrich nodes, which exist in
many real networks, refer to the nodes whose degrees are far
larger than most other nodes. The assortativity coefficient in
certain experimentally measured networks is therefore due to
a small fraction of superrich nodes and is not caused by a
genuinely assortative (or disassortative) mixing. The mecha-
nism underlying degree mixing has not been properly under-
stood and many of these common indices misrepresent the
true assortativity of a network. We find that the assortativity
coefficient will give a “false” result of mixing patterns for
the networks with superrich nodes.

To overcome the effect of these aberrant and uncommonly
connected nodes, a new and more robust measure of degree-
degree mixing is needed. We choose a modification of New-
man’s assortativity coefficient so that our measure will be
simple and also as similar as possibly to what is already
being employed. We deliberately choose to change the exist-
ing measure as little as possible, so that the measure can be
best understood. We are not suggesting that the existing tools
be abandoned and only that they be computed twice: once as
is done now and again after removing the contribution of
superrich nodes.

The superrich nodes can, and often will, have an ex-
tremely great effect on the network structure. Our results also
show that the previously observed fragility of scale-free net-
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works is actually greatly exacerbated by the presence of even
a very small number of superrich nodes. An attack targeting
the superrich nodes (rather than just the rich) of a network
can very quickly fragment, or at least stretch, a scale-free
network.

II. SUPERRICH NODES AFFECT DEGREE MIXING
PATTERNS

A. Superrich nodes in scale-free network

The superrich nodes refer to the nodes whose degrees are
far larger than most other nodes. Our finding in this study
can be applied to any degree distribution network and is not
limited for power-law and exponential degree distribution
networks, so there is no need to judge whether the degree
distribution obeys a power law strictly. While it is necessary
to supply a simple and operative definition of superrich
nodes in scale-free networks, for the power-law degree dis-
tribution broadly exists in real networks [19]. In terms of
networks with approximately power-law (or exponential) de-
gree distribution, superrich nodes are defined as the nodes
whose degrees are larger than the natural cutoff value. It
should be noticed that the nodes with degree that is predicted
by the power law only are rich nodes.

The natural cutoff degree k. is an important concept in
finite-size scale-free networks [20]. It is defined as the value
of the degree k. above which one expects to find at most one
node [21], that is,

NJxP(k)dk~ 1, (1)

k,

c

where N is the number of nodes. For a scale-free network,
this expression provides a dependence of the natural cutoff
with N and the slope 7y as

k. (N) ~ N"O=), (2)

Here, we obtain the slope vy by fitting the real data excluding
the potential superrich nodes.

B. Adding superrich nodes to BA model

First we utilize the BA model [19] to demonstrate the
significant effect of superrich nodes. We generate a small
size of BA network (nodes n=200 and average degree (k)
=6) and then the maximal assortative mixing (MAM) and
maximal disassortative mixing (MDM) networks are gener-
ated from the original BA network using the rewiring method
[22]. These three networks have the same degree distribu-
tions but with different mixing patterns. The MAM network
reveals a beautiful assortative structure in which nodes with
similar degrees connect to one another as shown in Fig. 1(a).
In contrast, the MDM network shows that high-degree nodes
link to low-degree ones in Fig. 1(b). However, the addition
of only one superrich node (k=100 and random linking) se-
verely affects the entire topology of the network, as shown in
Figs. 1(c) and 1(d). Our results in Fig. 1 also show that the
clustering coefficient [23] and the average path length are
extremely changed by the only one superrich node.
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FIG. 1. (Color online) Networks without and with a superrich
node show greatly different topological structure, average path
length [, and clustering coefficient ¢: (a) maximal assortative mix-
ing network, /=9.73 and ¢=0.23; (b) maximal disassortative mixing
network, /=8.19 and ¢=0.02; (c) maximal assortative mixing net-
work with one superrich node (k=100) added randomly, /=2.88 and
¢=0.30; and (d) maximal disassortative mixing network with one
superrich node (k=100) added randomly, /=2.75 and ¢=0.10.

Now we demonstrate how superrich nodes bias the mix-
ing pattern of a network. The assortativity coefficient r [7] is
given by
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where j; and k; are the degrees of the two end points of the
ith edge and M is the total number of edges in the network.
If r>0, the network is claimed to be assortative mixing;
while, if r<<0, the network is called disassortative mixing.
A large-scale BA network (n=5000 and (k)=6) is gener-
ated, and the MAM and MDM networks are obtained by the
rewiring method [22]. The r values for these networks are
listed in Table I. The above three networks exhibit the rea-
sonable mixing coefficients: assortative, neutral, and disas-
sortative. Then we add five superrich nodes (k=1000) to
each of the three networks. For the MAM network, superrich
nodes are connected to high-degree nodes, while for the
MDM network, superrich nodes are linked to low-degree
nodes; for the original BA network, random linking is
adopted. As can be seen in Table I, all r are negative for
these networks, which runs against our intuition. Take the
MAM network, for example; the strong positive r (0.320) is
replaced with a negative value (—0.136), although the super-
rich nodes are attached to the high-degree nodes (assortative
adding). Moreover, the fluctuation of r becomes narrow for
the networks with superrich nodes ([-0.189,0.320]=[
-0.169,-0.136]). This result shows that superrich nodes can-
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TABLE 1. Assortativity coefficients r of different mixing pat-
terns for BA networks without and with superrich nodes.

Network r
Maximal disassortative mixing -0.189*+0.029
Original BA network —-0.047 = 0.004
Maximal assortative mixing 0.320=0.088
Maximal disassortative mixing with five superrich

nodes (disassortative adding) —-0.169 = 0.002
Original BA network with five superrich nodes

(random adding) -0.163 =0.002
Maximal assortative mixing with five superrich

nodes (assortative adding) -0.136 =0.002

not only make a strong assortative network to show a nega-
tive assortativity coefficient, but can also make a strong dis-
assortative network to appear less disassortative.

C. Superrich nodes in experimental networks

Many complex networks exhibit a scale-free degree dis-
tribution [19,24], such as the two real networks in Figs. 2(a)
and 2(b). And the slope of power law is obtained by fitting
the real data excluding the potential superrich nodes. For the
collaboration network in computational geometry [25], its
degree fits the power-law distribution perfectly, while for the
language network [26], from Darwin’s “The Origin of Spe-
cies,” superrich nodes exist in it because the maximum de-
gree (k,,,,=2568) is far larger than the natural cutoff (k.
=105). The results of r for four mixing patterns of the two
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A Maximal disassortative mixing

(© O Random mixing
o Original network
v Maximal assortative mixing

Collaboration % & v
Language =57 A — 4 ‘
-029 -027 -025 -023 -021
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Assortativity coefficient

FIG. 2. (Color online) Degree distributions of two real networks
and their assortativity coefficients for different mixing patterns: (a)
author collaboration network in computational geometry (nodes n
=7343, edges m=11 898, and maximum degree k,,,,=102) [25]; (b)
language network, which is a word adjacency network of texts from
Darwin’s The Origin of Species (n=7724, m=46 281, and k,,,,
=2568) [26]; and (c) assortativity coefficients of different mixing
patterns for the above two networks.
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FIG. 3. (Color online) Average degree (K,,) of the nearest
neighbors of a node depending on its degree k for different mixing
patterns of the language network: (a) maximal disassortative mix-
ing, (b) random mixing, (c) original network, and (d) maximal as-
sortative mixing.

networks are shown in Fig. 2(c). The original collaboration
network is assortative like most social networks [7,8], while
for all mixing patterns of the language network, r is strong
negative and is confined to a narrow range, which is similar
to the BA network with superrich nodes. According to the
results of the theoretical model (BA network) and the lan-
guage network, we conclude that » cannot determine mixing
patterns of networks with superrich nodes accurately, and
superrich nodes lead r to be strong negative and within a
Very narrow range.

One method to characterize the node degree correlations
is the conditional probability P(k’|k) that an arbitrary edge
connects a node with degree & to another node with degree k'
[14]. It is difficult for this method to quantitatively evaluate
mixing patterns of complex networks with superrich nodes
because the finite network size and the small amount of su-
perrich nodes will lead to an unstable result [13,22]. This
problem can be partially solved by calculating the average
degree of the nearest neighbors of nodes with a given degree
k [17,18], which is given by

(K = 2 k' P(K'[K). (4)

k'

Here, an increasing (K,,) with k indicates that nodes with
high degree tend to connect to nodes with high degree, and
the network is classified as assortative, whereas a decreasing
(K, with k indicates that nodes with high degree tend to
connect to nodes with low degree, and the network is disas-
sortative.

The average degree (K,,) for different mixing patterns of
the language network is shown in Fig. 3. For the MDM,
original, and random mixing networks, (K,,) all decrease
with k, which shows a disassortative property. For the MAM
network, (K,,,) first increases and then decreases, and thus it
is difficult to tell whether the network is assortative or dis-
assortative. These results indicate that neither r nor (K,,,) can
characterize the intrinsic mixing patterns of complex net-
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FIG. 4. (Color online) Results of two alternative measures for
different mixing patterns of the language network: (a) modified as-
sortativity coefficient to quantitatively measure mixing patterns
among the nodes whose degrees are below natural cutoff degree and
(b) qualitative measure for the links between superrich nodes and
other nodes (including links among superrich nodes).

works with superrich nodes, for the degree of a superrich
node is far larger than those of other nodes.

III. ALTERNATIVE PARADIGM OF MEASURING MIXING
PATTERNS

A. Alternative paradigm

Since superrich nodes are widely observed in real net-
works, a new statistic is needed to appropriately classify
whether a network with superrich nodes is genuinely assor-
tative or not. In this paper, we manage to determine the mix-
ing patterns of complex networks with two measures. The
first one is a modified definition of assortativity coefficient,
which is given by

1 2
MZIE Jiki— [MZIE E(]z + ki)‘|

r (5)

c
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where M, which is different to the original M, is the total
number of edges among the nodes whose degrees are lower
than k.. In accordance with r, positive r. indicates that a
network is assortative, and negative r, represents a network
is disassortative. When calculating r, in Eq. (5), we exclude
superrich nodes whose degrees are greater than k.. In con-
trast with the failure of r, r. can determine the genuine mix-
ing patterns of complex networks with superrich nodes and
distinguish the four mixing patterns very effectively as dem-
onstrated in Fig. 4(a). Especially, r, of the original language
network is neutral, which is different to the strong negative r
that we have observed in Fig. 2(c).

Although our statistic r,. can effectively measure the mix-
ing patterns among the nodes whose degree is below the
natural cutoff value, it is not an optimal solution to neglect a
very small number but the most important superrich nodes.
Moreover, a real network may exhibit assortative mixing
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among low-degree nodes and disassortative mixing among
superrich nodes, and it is not accurate to assert whether the
network is assortative or disassortative. It is necessary to
propose a paradigm to measure the mixing pattern of low-
and high-degree nodes, respectively, especially for the net-
work with superrich nodes, because the assortativity coeffi-
cient of a very small number of superrich nodes will mask
the mixing pattern of larger number of low-degree nodes.

We have used the modified assortativity coefficient to
quantitatively measure the mixing pattern of low-degree
nodes, so the second measure is proposed to quantify the
mixing pattern between low-degree nodes and superrich
nodes (including links among superrich nodes). Because the
degrees of superrich nodes are far larger than most other
nodes and superrich nodes have to link to many low-degree
nodes, it is meaningless to say that the mixing pattern of
superrich nodes is always disassortative. To find the genuine
mixing pattern of superrich nodes, here we test that superrich
nodes tend to link to high or low rank nodes. If superrich
nodes tend to link to high rank nodes, we consider that they
are assortative mixing. Conversely, if superrich nodes tend to
link to low rank nodes, we believe that they show a disas-
sortative property.

First nodes are ranked in an increasing order according to
the degrees. If two nodes have the same degrees, we rank
their orders randomly. The nodes are divided into ten bins
according to their ranks. Then the number of links connect-
ing superrich nodes to the nodes in each bin is calculated. We
cannot calculate the assortativity coefficient of the orders af-
ter ordering all nodes because of a false result given by the
large number of links of superrich nodes. For different mix-
ing patterns, the distributions of linking numbers are shown
in Fig. 4(b). The MAM network shows assortative for super-
rich nodes tend to connect to high rank nodes. On the con-
trary, the MDM network shows disassortative for superrich
nodes tend to link to low rank nodes. The original and the
random mixing networks are both neutral mixing for super-
rich nodes have no obvious tendency to connect with high or
low rank nodes.

Figures 4(a) and 4(b) show the coincident results for dif-
ferent mixing patterns, which indicates that the two measures
are both effective. Furthermore, our two measures compose
an effective paradigm to quantify a real network in which
different mixing patterns may appear among low-degree
nodes and among high-degree nodes. They quantify the ef-
fect of superrich nodes on the mixing pattern of complex
networks. The alternative paradigm can capture the rich na-
ture of the mixing properties in a real network and distin-
guish whether the disassortativity of a network is derived
from superrich nodes.

B. Comparison with correlation profile

The joint degree distribution P(k,k’) is another way to
characterize the node degree correlations, which can measure
whether nodes with a given degree k prefer (or avoid) to
connect to nodes with degree k’. The two-dimensional de-
gree correlation profile [1,15] is a suitable way to use the
joint degree distribution to capture the mixing patterns. We
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FIG. 5. (Color online) Correlation profile for different mixing patterns of the language network: (a) maximal disassortative mixing, (b)
original network, and (c) maximal assortative mixing. These figures show the ratio R(k;,k,)=N(k;,k,)/ N, (k;,k,), where N(k;,k,) is the total
number of edges in the links of the language network with degrees k; and k,, while N,(k,k,) is the same value in a randomized version of

this network.

visualize the correlation profile for different mixing patterns
of the language network by plotting the ratio R(k,k,)
=N(k,,ky)/N(k;,k,) in Fig. 5, where N(k,,k,) is the total
number of edges in the links of the language network with
degrees k, and k,, while N,(k;,k,) is the same value in a
randomized version of this network.

Observing the results in Fig. 5, we find the correlation
profile effectively captures the degree correlations of neigh-
boring nodes. The left-upper corner of Fig. 5(a) shows that
high-degree nodes tend to link to low-degree nodes (disas-
sortative) in the MDM network. Conversely, the MAM net-
work obviously shows that low-degree nodes prefer to con-
nect to low-degree nodes (assortative) in the left-lower
corner of Fig. 5(c). All the values of R(k,,k,) for the original
language network are in a very narrow range [0.82,1.15] in
Fig. 5(b), which means this network is near neutral mixing.
These results are consistent with those in Figs. 4(a) and 4(b),
which shows that the two-dimensional degree correlation
profile is an effective way to capture the mixing patterns and
it is more robust than original r and (K,,) to capture the
mixing patterns of complex networks with superrich nodes.

Comparing the correlation profile with our paradigm, we
can find that the advantage of two-dimensional correlation
profile is describing the detailed information of degree cor-
relations. But the correlation profile is only a qualitative
method and is difficult to quantitatively evaluate the assorta-
tivities of complex networks. The assortativity coefficient is
a very simple and the most widely accepted quantitative way
to determine the degree mixing pattern. We choose a modi-
fication of Newman’s assortativity coefficient r, as the mea-
sure for real networks, so that our measure will be simple
and also as similar as possible to what is already being em-
ployed. And this measure avoids replacing the existing
simple and useful measures with something entirely differ-
ent.

IV. RESULTS OF EXPERIMENTAL NETWORKS

The results of r and r, for nine real networks are listed in
Table II. Like most social networks, networks (a) and (b)

have positive r, for the nodes tend to connect to one another
belonging to the same community [8], and there are no su-
perrich nodes. But r of Wealink.com is negative, which is
consistent with other online communities [9,10]. And k, of
Wealink.com is 150, so a person who has more than 150
links is a superstar. Although the number of superstars in
Wealink.com is only 166 (0.07%), surprisingly r, becomes
more negative (—0.08=-0.42) after excluding these super-
stars. The above result indicates that a very small number of
superrich nodes mask the genuine degree mixing information
of the online community. And superrich nodes that do not
always make a strong assortative network to show a negative
assortativity coefficient. On the contrary, sometimes they
will make a strong disassortative network to appear as a less
disassortative property, just like in this case.

Usually it is believed that technological and biological
networks tend to be disassortative [7,11], such as networks
(e), (f), and (i). We find that superrich nodes lead r of these
networks to be negative. After filtering superrich nodes, ()
and (i) show neutral mixing properties, while r, of (f) turns
more negative. The above results show that r. can reveal the
intrinsic mixing patterns masked by superrich nodes. Since
previous works do not take the effect of superrich nodes into
consideration, many networks exhibit “false” negative r and
decreasing (K,,,). The advantage of r, over the previous mea-
sures is that it is not affected by superrich nodes. The modi-
fied definition of assortativity coefficient r, is more suitable
to characterize the mixing pattern of any degree distribution
network, especially for a network with superrich nodes.

One possible explanation for the disassortative mixing in
these nonsocial networks is the structural constraint: two
nodes have no more than one edge connecting them [15]. But
the structural constraint cannot explain why not all nonsocial
networks are disassortative. Actually, further research has
found that the prohibitively multiedged mechanism cannot
generate the same correlation as the real Internet, and only
part of degree correlations can be obtained in this way [16].
And it is difficult to distinguish which part of disassortativity
is derived from the structural constraint. As far as we know,
the intrinsic mechanism why these nonsocial networks ex-
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TABLE II. Properties of real undirected networks: number of nodes n, edges m, natural cutoff degree k.,
maximal degree k,,,,, original assortativity coefficient r, and modified assortativity coefficient r.. Note that,
for the networks without superrich nodes, k.=k,,,, and r.=r, and thus the values of k. and r, are not listed.
Social networks: (a) network of electronic mail interchanges between members in a university [27]; (b)
collaboration network of scientists who work on the condensed matter [28]; (c) online social network of
Wealink.com [29]. Technological networks: (d) network of Roget’s thesaurus [25]; (e) network of articles by
and citing Lederberg from 1945 to 2002 [25]; (f) Internet snapshot at the level of autonomous systems [28].
Biological networks: (g) network of metabolic pathways for E. Coli [30]; (h) network of protein folding [30];

(i) neural network of C. Elegans [23].

Network n m k. Knax r T
(a) e-mail 1134 10902 71 0.08

(b) arXiv.org 40421 175693 278 0.19

(c) Wealink.com 223624 273395 150 1657 -0.08 -0.42
(d) Roget’s thesaurus 1022 5103 28 0.18

(e) Citation network 8843 41609 105 1103 -0.10 -0.02
(f) Internet 22963 48436 110 2390 -0.20 -0.29
(g) Metabolic pathway 896 964 18 0.15

(h) Protein folding 1287 33813 319 0.17

(i) Neural net 307 2359 38 134 -0.16 0.03

hibit disassortative properties is not entirely clear [3,4].

The effect of superrich nodes on mixing patterns can ex-
plain why some technological and biological networks tend
to have a negative r. Superrich nodes exist in these networks
more commonly than in social networks, so many techno-
logical and biological networks exhibit a negative r induced
by superrich nodes and are therefore claimed to be examples
of disassortative mixing. Furthermore, we find that the tech-
nological and biological networks (without superrich nodes)
have no tendency to be disassortative, such as networks (d),
(g), and (h), for a positive r is commonly found in these
networks. Our results indicate the conjecture that the disas-
sortativity of degree is the normal state of a network in [16]
may not be right. The normal state of degree mixing pattern
in nonsocial networks is more like the neural mixing based
on our paradigm.

V. CONCLUSION AND DISCUSSION

We show that in a finite-size network a very small number
of superrich nodes will bias traditional measures of mixing
patterns. We not only report that the traditional measures are
not perfect measures but also propose a revised measure,
which is better than the original one and reveals the real
pattern of assortativity. First we propose a straightforward
modification to the existing assortativity coefficient to both
measure and counteract the effect of superrich nodes. Then,
we develop an effective paradigm to quantify a real network
in which different mixing patterns may appear among low-
degree nodes and among high-degree nodes. Our method can
capture the rich nature of the mixing properties in a real
network. We can distinguish that the disassortativity of a
network derives from the structural constraint or other rea-
sons such as social and engineering factors.

Our results also indicate that the “robust yet fragile” na-
ture of real networks (e.g., Internet) does not depend on the
power-law degree distribution only, and superrich nodes
have the same effect. For the random failure of the networks,
a very small fraction of nodes with a very large degree will
make any degree distribution network more robust than ran-
dom graphs. On the other hand, superrich nodes are the real
Achilles’ heel of the Internet. The attack targeting these rich-
est nodes causes the Internet to collapse faster than the [Er-
dhés and Rényi (ER)] graph, even the scale-free model with-
out superrich nodes [Barabdsi and Albert (BA) network] as
shown in Fig. 3 in [31]. Moreover, the cascade failure of one
superrich node can lead more than 20% nodes of the Internet
to be disconnected [32].

We demonstrate that superrich nodes critically change the
way in which complex networks behave, and we have re-
vised the false disassortative mixing in some nonsocial net-
works induced by superrich nodes. Revealing the intrinsic
mixing patterns of complex networks masked by superrich
nodes is crucial to study epidemic spreading, percolation on
complex networks, and error and attack tolerance of real
physical systems. Superrich nodes are one of the principal
factors determining many aspects of the behavior of the
overall network, although they are minority in number. We
suggest that greater attention should be paid to the richest
nodes when analyzing finite-size network data.
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