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We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A
reliable trajectory is defined as a sequence of states, which is independent of the order in which the nodes are
updated. We explored numerically the topology, the update functions, and the state space structure of these
networks, which we constructed using a minimum number of links and the simplest update functions. We
found that the clustering coefficient is larger than in random networks and that the probability distribution of
three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a
subset of all possible functions occurs, and they can be classified according to their probability. More homo-
geneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the
entire state space of the networks. We observed that with increasing systems size, fixed points become more
dominant, moving the networks close to the frozen phase.
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I. INTRODUCTION

Boolean networks �BNs� are used to model the dynamics
of a wide variety of complex systems, ranging from neural
networks �1� and social systems �2� to gene regulation net-
works �3�. BNs are composed of nodes with binary states
coupled among each other. The state of each node evolves
according to a function of the states from which it receives
its inputs, similarly, to what is done when using cellular au-
tomata �4�; but in contrast to cellular automata, BNs have no
regular lattice structure and not all nodes are assigned the
same update function.

The simplest type of BNs are random BNs �5�, where the
connections and the update functions are assigned at random
to the nodes. These random models have the advantage of
being accessible to analytical calculations, thus, permitting a
deep understanding of such systems �6�. Random BNs can
display three types of dynamical behavior, none of which is
very realistic: in the “frozen” phase, most or all nodes be-
come fixed in a state which is independent of the initial
conditions. In the “chaotic” phase, attractors of the dynamics
are extremely long, and dynamics is very sensitive to pertur-
bations. At the critical point between these two phases, at-
tractor numbers are huge and depend strongly on the update
scheme used �7,8�.

In contrast to random BNs, real biological networks typi-
cally display a highly robust behavior. For instance, the main
dynamical trajectory of the yeast cell-cycle network model
derived by Li et al. �9� changes little when the nodes are
updated in a different order, and the system returns quickly
to this trajectory after a perturbation. In fact, whenever the
functioning of a system depends on the correct execution of
a given sequence of steps, the system must be robust with
respect to the omnipresent effects of noise.

Motivated by this requirement, we focus in the present
paper on the robustness of dynamical trajectories under fluc-

tuations in the time at which the nodes are updated. We con-
sider the extreme case, where we require the system to have
a trajectory that is completely robust under a change in the
update sequence. This means that at any time, all but one
node would remain in their present state when they are up-
dated. Recently, this question was also analyzed, albeit with
a different approach, by Aracena et al. �10�, where specific
network constructions were investigated, which have this
same property.

In contrast to the standard approach to BNs, where first
the network structure �i.e., the topology and update func-
tions� is defined and then the dynamics is investigated, we
define first the dynamical trajectory and then construct net-
works that satisfy this trajectory, with the trajectory being
robust under changes in the update sequence. A similar
method has been used in �11�. In the next section, we will
define the model and methods used. Then, we will discuss
the properties of the networks constructed by these methods,
considering the topology, the update functions, and the state
space structure. Finally, we will outline directions for further
investigations.

II. MODEL

A BN is defined as a directed network of N nodes repre-
senting Boolean variables �� �1,0�N, which are subject to a
dynamical update rule,

�i�t + 1� = f i„��t�…ui�t� + �i�t��1 − ui�t�� , �1�

where f i is the update function assigned to node i, which
depends exclusively on the states of its inputs. The binary
vector u�t� represents the update schedule and has compo-
nents ui�t�=1 if node i should update at time t, or ui�t�=0 if
it should retain the same value. The update functions f i are
conveniently indexed by the outputs of their truth table as
follows. Given an arbitrary input ordering, each input value
combination � j = ��0 ,�1 , . . . ,�k−1� will have an associated
index c���=�i�i2

i, which uniquely identifies it. Any update
function f can in turn be uniquely indexed by f
=� j f�� j�2c��j�, where f�� j� is the output of the indexed
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function given the input value combination � j.
The update schedule can be chosen in three different

ways: �a� synchronous �parallel update�, where u�t�=1, and
all nodes are updated simultaneously every time step; �b�
asynchronous and deterministic, where, for instance, u�t�
= �1−���t+ ti

0�mod ti��, where ti is the period with which ver-
tex i is updated, ti

0 is a local phase, and ��x� is the Heaviside
step function; and finally �c� asynchronous and stochastic,
where uj =1 and ui�j =0; in the fully stochastic case, j is a
random value in the range �1,N�, chosen independently at
each time step.

The choice of update schedule should take into account
the fact that processes in biological �cellular� networks are
subject to stochastic fluctuations, which can affect the timing
of the different steps. In principle, a network could be orga-
nized such that the time interval between subsequent updates
is so large that the update sequence is not affected by a small
level of noise in the update times. In this case, an asynchro-
nous deterministic updating scheme would be appropriate.
However, more generally, the noise will also affect the se-
quence in which nodes are updated, suggesting an updating
scheme that contains some degree of stochasticity.

In principle, networks can respond in different ways to
stochasticity in the update sequence �see Fig. 1�. �a� The
system has no specific sequence of states, and it quickly
looses memory of its past states. �b� The system has some
degree of ordering in the sequence of states, with “check-
point” states that occur in a given order and with certain
groups of states occurring in between. �c� The system has
entirely reliable dynamics, where the sequence of states is
always the same on the attractor, no matter in which order
the nodes are updated.

In this paper, we will focus on systems that have an at-
tractor that has entirely reliable dynamics. Many cellular pro-

cesses, such as the response to some external signal or the
cell cycle, can only function correctly if the system goes
through the required sequence of states in the correct order.
Therefore, considering the idealization of fully reliable dy-
namics is biologically motivated. Furthermore, studying net-
works with entirely reliable dynamics is also of theoretical
interest since it is an idealized situation on which one can
build when studying more complicated cases. Entirely reli-
able dynamics can be implemented by enforcing that con-
secutive states of the attractor trajectory differ only in the
value of one node. In other words, the Hamming distance
between successor states is always 1. It is obvious that this is
the only possible type of trajectory that can be entirely inde-
pendent of the update schedule. If two subsequent states dif-
fered by the state of two or more nodes, then it would be
possible to devise an update sequence, which would update
one node but not the other, in contradiction to our assump-
tion.

Entirely reliable attractors are represented in state space
as simple loops. We denote the number of different states on
the attractor by L=�ili, where li is the number of times node
i changed its state during a full period �since the trajectory is
periodic, li must be equal to 0 or a multiple of 2�. Further-
more, if the states of the system were represented by the
corners of a N-dimensional Hamming hypercube, the trajec-
tory should follow its edges �see Fig. 2�. The shortest pos-
sible trajectory length, considering that no node remains at a
constant value, is L=2N, with li=2 for all nodes. The longest
possible trajectory length is L=2N, where all states of the
system are visited, and the trajectory corresponds to a Hamil-
tonian walk on the N-dimensional Hamming hypercube �18�.

III. MINIMAL RELIABLE NETWORKS

A. Construction rule

The goal of this section is to construct BNs that have a
given entirely reliable trajectory and to investigate their
properties. A fully reliable trajectory has the property that the
sequence of states is independent of the updating scheme,
which means that under parallel update, only one node at a
time changes its state. How networks that go through a given
sequence of states can be constructed was demonstrated by
Lau et al. �11�, who investigated all possible networks,
which exhibit the main trajectory of the yeast cell-cycle
regulatory network. Thus, we first define the dynamics, from

(a) Stochastic dynamics (b) “Checkpoint” states

(c) Entirely reliable trajectory

FIG. 1. �Color online� Illustration of levels of dynamical reli-
ability. Each node on the graphs above is a state of the system, and
the edges represent possible transitions between them.
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FIG. 2. Example of reliable trajectory of length 6 on a system of
size N=3.
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which we obtain the topology and functions, opposite to
what is usually done in the literature on Boolean networks.

In fact, there exist many networks that display a given
trajectory. Even when the full state space structure is speci-
fied, which defines the successor state of each of its 2N pos-
sible states, it is possible to construct a network that has this
state space structure. This can be done by constructing a
fully connected graph with k=N and by assigning to each
node the function that has the required output for each of the
2N input states. In the end, inputs that never affect the output
can be removed. If there are different sets of inputs that can
be simultaneously removed, different networks are obtained.

When not the entire state space structure but only one
reliable trajectory is specified, there exist consequently many
networks with different topology and functions, which have
this trajectory and may differ in the rest of their state space.
We will restrict ourselves to minimal networks, i.e., networks
with the smallest possible number of inputs for each node
and the simplest possible functions, which have the maxi-
mum possible number of identical entries in the truth table.
This minimality condition is motivated by the putative cost
associated with more connections or more complicated func-
tions, which would decrease the fitness of an organism. This
is in contrast to what was done in �11�, where all possible
networks were considered, which is only feasible on very
small systems.

Such minimal networks can be constructed by a straight-
forward algorithm because the inputs and the function re-
quired for each node can be determined independently from
those of all the other nodes. The inputs for a given node must
include all predecessor nodes, which change their state 1
time step before the given node changes its state. Additional
inputs are required if the given node assumes, during the
course of the trajectory, different binary states for the same
configuration of the predecessor nodes. The choice of these
“excess” inputs is usually not unique and may include self-
inputs. We perform this choice at random but only from the
possibilities which minimize the number of inputs to each
node. If not all possible configurations of the states of the
input nodes occur during the course of the trajectory, the
update function of the given node is not unique. We first
assign those truth table entries of the update function that are
specified by the trajectory. Then, we assign to all remaining
entries the same output value, and we choose the majority of
output values assigned so far. �If there is no majority, we
choose either value with probability 1/2.�

The algorithm used for choosing the minimal set of inputs
proceeds as follows. To each node, we first assign all prede-
cessor nodes as inputs. Then, if needed, we choose excess
inputs. We first set the number of excess inputs to k�=1, and
we test in a random order the � N

k�
� possible node combina-

tions until we find a node set which, together with the pre-
decessors, is a valid input set. If no valid combination is
found, we increase k� by 1 and repeat the search. Once a
valid combination is found, the corresponding truth table is
completed by applying the minimality condition to its un-
specified entries. The run time of this algorithm increases as
O�lNmax�max�k��,1��, where l is the average number of flips per
node, and max�k�� is the maximum value of k� for all nodes.

We have observed that the run times are feasible for net-
works of size up to N=400 and l=12 �19�.

An example for a reliable trajectory and two possible net-
works with their functions obtained with the above algorithm
is given in Fig. 3.

We choose the reliable trajectory at random, without tak-
ing into consideration possible particular features of biologi-
cal networks, such as different temporal activation patterns
of the different nodes, which reflect the function that the
network must fulfill. Instead, we will consider a null model,
where the values of the nodes change randomly. The only
restriction, which is imposed, is that the trajectory is reliable.
The only two parameters of this trajectory are the number of
nodes N and the average number of flips per node l. We
generate a random ensemble of reliable trajectories in the
following way. First, we determine how often each node
shall be flipped. To this purpose, for each node i a random
number �i is chosen from a Poisson distribution with mean
�l−2� /2, implying that node i shall be flipped li�2�i+2
times. The average number of flips of each node is thus
identical to l, and each node is flipped at least twice. The
length of the trajectory is then L=2N+2�i�i=�ili. Then, we
arrange these flips in a randomly chosen order. If the result-
ing trajectory contains the same network state twice, it is
discarded, and a new sequence of flips is chosen.

B. Topological characteristics

We first present results for the topological characteristics
of the obtained networks. We evaluate the degree distribution
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FIG. 3. �Color online� Example of a random reliable trajectory
for N=10 and l=4, and two possible minimal networks. The edges
with dashed �red� lines represent the inputs that are different be-
tween the two networks. Below each network are the outputs of the
truth table of each node ordered from top to bottom and left to right,
according to their input combination indices. Outputs marked in
gray �cyan� correspond to input combinations present in the given
trajectory.
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and the local correlations. The degree distribution is of
course strongly dependent on l. Local correlations can arise
when two nodes that are influenced by the same nodes are
more likely to influence each other.

Unless stated otherwise, we averaged the results from
several independent realizations of the minimal trajectories
and minimal networks, for different N and l. The number of
realizations for small N, up to 20, were at least 2000. For
intermediary values of N, up to 100, it varied from 50 to 300,
depending on l. For the larger networks N�100, it ranged
from 200 to 6 networks for l�12, and one realization for
N=400 and l=12.

1. Degree distribution

The number of inputs of a node is at least as large as the
number of its predecessors. Whenever the state of the node
cannot be written as a function of the predecessors alone,
excess inputs must be chosen, as already mentioned before.
The number of different predecessors np per node ap-
proaches, for large N, on average l, since it becomes unlikely
for large N that the same node is chosen twice as predeces-
sor. The typical truth table size grows therefore with l as 2l.
Since the number of different predecessor states grows only
quadratically as npl	 l2, one can expect the number of ex-
cess inputs to be small, and the number of inputs per node
should be


k� � l , �2�

for sufficiently large N. This is confirmed by our numerical
investigations, as is shown in Fig. 4.

The degree distribution mirrors the distribution of the
number of predecessors. Since all nodes flip on average the
same number of times, the distribution is expected to follow
a Poisson distribution for large enough l. This is indeed the
case, as Fig. 5 shows. For small l, however, the distributions
are more narrow because we imposed the condition that each
node flips at least twice, leaving little freedom for additional
predecessors when l is close to 2.

2. Local correlations

We obtained information about the local topology of the
minimal networks by evaluating the probability that the
neighbors of a given node are connected to each other. This
probability is the so-called clustering coefficient 
c� �12�.
Random uncorrelated networks show the absence of cluster-
ing only in the limit N→�. Thus, for finite N, it is necessary
to compare the obtained value with a random network of
equal size and with equal degree distribution. In order to do
this, we calculated the clustering coefficient 
cs� on shuffled
networks, where the links were rewired randomly, preserving
the in and out degree of each node. We then calculated the
ratio 
c� / 
cs�, for networks of different size and average flip
number l. If the ratio approaches 1, the network does not
exhibit any special clustering. The results for several values
of N and l are shown in Fig. 6.

The most evident feature of Fig. 6 is that clustering is
stronger for smaller l, i.e., for sparse networks. For larger l
�and hence larger 
k��, the average distance between nodes
decreases, and the shuffled and original networks have a
similar degree of clustering. This difference between net-
works with smaller and larger average degree becomes more
pronounced when the size of the networks N is increased.
From the data in Fig. 6, it appears that the ratio 
c� / 
cs�
increases slowly with N. We will argue in the following that
this ratio will reach a finite asymptotic value in the limit N
→�.

The finding that the clustering coefficients are larger than
for random networks can be explained by considering the
above-mentioned excess inputs that are required when the
function assigned to a node cannot be based on its predeces-
sor nodes alone. Let us consider two consecutive flips of a
node j on a given trajectory. These flips are preceded by flips
of the predecessor nodes, which we call v and w. The aver-
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FIG. 4. �Color online� Average degree 
k� as a function of l for
networks of different size N. The straight line is the function 
k�
= l.
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age time between the two considered flips of node j is
	L / l=N, implying that there is a considerable probability
that node v flips again before the second flip of node j,
giving the sequence

vj ¯ v ¯ wj .

The update function assigned to node j needs an excess input
if neither node w nor any other predecessor of node j �which
can exist only for l�2� flips between the first flip of j and
the second flip of v. The simplest choice of this excess input
is the node j itself. Indeed, self-inputs occur more often than
in the shuffled networks, as is shown in Fig. 7. Since the
number of different possible excess inputs is proportional to
N, we expect that the fraction nl of nodes with self-inputs
decreases as nl	1 /N for large N but remains larger than that
of shuffled networks by a constant multiplicative factor.

The excess input cannot be a self-input if node w flips
also in the same interval, giving the sequence

vj ¯ v ¯ w ¯ wj .

In this case, an excess input u must be chosen among those
nodes that flip between the two consecutive flips of node w,

if none of the other predecessors of j flips in this interval,
giving the sequence

vj ¯ v ¯ w ¯ u ¯ wj .

Now, the average distance between the flips of node w and
node u is smaller than that between two randomly chosen
nodes since w is required to flip in the indicated interval.
Therefore, the probability that w is an input to u or vice versa
is larger than random, and it scales as 1 /N in the limit N
→�. Since w and u are inputs to j, it follows that the clus-
tering coefficient is larger than the random value 
cs�.

From this consideration, it follows that the ratio 
c� / 
cs�
approaches a constant value in the limit N→�. Furthermore,
it follows that this ratio is larger for smaller l since it is less
likely that there exist additional inputs to j that flip in the
required interval and make excess inputs unnecessary. The
slight increase seen in Fig. 6 can probably be attributed to a
finite-size effect.

In order to determine which three-node subgraphs con-
tribute to the increased clustering, we evaluated their z score,
which indicates to what extent the frequency of each sub-
graph is different compared to the random case. The z score
is defined as

zi =

Ni� − 
Ni

s�


�Ni

s�2� − 
Ni
s�2

, �3�

where Ni is the number of occurrences of subgraph i, and Ni
s

is the number of occurrences of the same subgraph on a
shuffled network with the same degree sequence. Figure 8
shows the different possible subgraphs and their z score.
Subgraphs with more links have a higher z score and are
therefore network motifs. Sparser subgraphs, where there is
no link between two of the nodes, are rarer than at random,
as predicted by the clustering coefficient. The abundance of
denser motifs increases with l, as the network itself becomes
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more dense, but the overall trend of the z score is the same.
One peculiar feature is the absence of simple loops �sub-
graph 6�, also known as feedback loops �13�. As was de-
scribed above, the clustering is mostly due to the correlations
between the inputs of a given node or a reciprocal correlation
between a node and one of its inputs. A simple loop is not
caused by this type of correlation. Furthermore, it was shown
by Klemm et al. �14� in a study of the reliability of small
Boolean networks that feedback loops are harmful to reliable
dynamics. These authors obtained a z-score profile very simi-
lar to Fig. 8 �see Fig. 4 of �14��. They also showed that this
profile is qualitatively similar to real biological networks
studied in �15�. A direct comparison is shown in Fig. 8, with
the motif profile of the signal-transduction interaction net-
work in mammalian cells �15�. We note that while mere
simple loops are suppressed, they occur as a subgraph of the
subgraphs 9, 11, and 12, which have a higher z score. But the
higher z score of these subgraphs is due to the larger number
of total or reciprocal links caused by the above-mentioned
correlations. For a given number of total and reciprocal links,
subgraphs with a feedback loop have a lower z score than
subgraphs without a feedback loop.

In Fig. 8, we did not keep track of the self-inputs, for
simplicity. When self-loops are included in the subgraphs,
their number increases from 13 to 86, which makes the
analysis and presentation more elaborate. We performed this
analysis and found that a subgraph with a specific number of
self-loops has a larger z score than its counterpart with less
or no self-loops. The z-score pattern of Fig. 8, on the other
hand, is repeated for subgraphs which share the same number
of self-loops, which shows that motif occurrence and self-
regulation are largely independent.

C. Properties of update functions

We evaluated the frequency of the different types of up-
date functions in minimal networks, for different values of l
�see Fig. 9�. Unless otherwise stated, the results were ob-
tained from 104 independent realizations of networks with
N=20. We compared the results with those obtained for
larger values of N, with no discernible difference other than
the reduced statistical quality. Functions with different num-
bers of inputs were evaluated separately.

The functions seem to be distributed according to differ-
ent classes, where functions of the same type occur with the
same probability, while some do not occur at all. In order to
understand this distribution, it is necessary to describe in
detail what conditions need to be met by the functions, ac-
cording to the imposed dynamics and construction rules.

The subsystem composed only of the inputs of a given
node follows a certain “local trajectory” �i.e., sequence of
states�, which determines, together the minimality condition
described in Sec. III, the update function of the considered
node. The probabilities of the different possible trajectories
depend on the way the global trajectory is specified and on
the rules for choosing excess inputs. The restrictions im-
posed on the local trajectories of the inputs are as follows:

�1� The local trajectory of the inputs must correspond to a
periodic walk on the k-dimensional hypercube representing

their states since the Hamming distance at each step must be
1. We note that in this subsystem, the same input state is
allowed to repeat within a period �only the global state can-
not�. The vertices of the hypercube can be annotated with the
output value of the function at the corresponding input state
�see Fig. 10, for examples�.

�2� For large N, the trajectories of any two different nodes
will be approximately random and uncorrelated. The only
restriction is that every face of the hypercube will be visited
exactly lv times, where v is the index of the input node that
has a fixed state on this face. On average, we have 
lv�= l.

�3� The output values of the function can be distributed on
the vertices of the hypercube that are visited during the walk
in any possible way, with the restriction that the output value
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must change lj times along the walk, where j is the index of
the considered node. An exception are functions with self-
inputs: the vertices on the hypercube face corresponding to
the self-input must all have the same output value.

�4� The output values at the vertices of the hypercube,
which are not visited by the walk, must be equal to the ma-
jority of the output values on the walk �this is the minimality
condition defined in Sec. III�.

�5� Functions that can be reduced to a function with
smaller k cannot occur due to the minimality condition, and
the corresponding trajectory can be confined to a hypercube
of smaller dimension.

Figure 10 shows examples of trajectories that are allowed
or not allowed for the case k=3.

The listed restrictions result in the observed distribution
of update functions. We will describe in detail all the possi-
bilities for k=2 and discuss in a more general and approxi-
mate manner the functions with k�2.

1. Functions with k=2

Figure 9 shows that only eight of the 16 possible func-
tions occur, and all of them with equal probability. They are
all canalyzing functions, with three entries 1 �or 0� in the
truth table and one entry 0 �or 1�. The hypercube represen-
tation of all functions is shown in Fig. 11. The functions that
are not possible are obviously the constant functions �first
row of Fig. 11, from left to right� and the functions which are
insensitive to one of their inputs, due to restriction 4 �second
and third rows�. The other functions, which do not occur, are
the reversible functions, which change the output at every
change in an input �fourth row�. Those functions, however,

are not entirely impossible. It is possible to construct a tra-
jectory that meets all the listed requirements, with the speci-
fication that the output flips as often as all inputs together
�restrictions 2 and 3�. Such trajectories follow the pattern:

vj ¯ wj ¯ vj ¯ wj ,

where v and w are the inputs of j. This pattern is impossible
for l=2 but can occur for larger l, albeit with a small prob-
ability, since k=2 functions are less likely for larger l; fur-
thermore, the probability that a node has two predecessors,
which occur twice, decreases with N as 	1 /N2.

2. Functions with k�2

Functions with k�2 seem to fall into different classes,
which occur with different probabilities. This can be seen by
plotting the distribution of the probabilities pf of the different
functions, as shown in Fig. 12�a� for k=5. The different
classes seem to correspond to different function homogeneity
values defined as the number of minority output values in the
truth table d. This can be verified by selecting only those
functions with a given value of d and plotting their distribu-
tion of probabilities, as shown in Figs. 12�c�–12�f�. The most
frequent class comprises the functions with only one entry in
the truth table deviating from the others �f =2i and f =2k−2i�,
with d=1 �see Fig. 12�c��. Those are canalyzing functions,
where all inputs are canalyzing inputs. Functions with the
same homogeneity fall into subclasses, which have different
probabilities. Those functions are often negated functions
�f�=2k− f� of one another, and this is due to the existence of

(a) Valid trajectory (b) Invalid
(restriction 2)

(c) Invalid
(restriction 4)

(d) Invalid
(restriction 5)

FIG. 10. Example of input and output trajectories on the k hy-
percube representing the states of the inputs, for functions with k
=3. Allowed transitions are represented by arrows. The color on
each vertex represents the output value. �a� represents one type of
valid trajectory. �b�–�d� represent invalid trajectories, according to
the indicated restriction: �b� not all sides of the cube are visited; �c�
the function is not minimal; and �d� the function can be reduced to
k=2, since flipping the third input �i.e., going to the rear face and
back� does not change the state of the node.

FIG. 11. Representation of all 16 functions with k=2 on the
2–hypercube. On the left are the functions, which do not �or rarely�
occur in the minimal networks, and on the right are the canalyzing
functions, which occur with equal probability.
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FIG. 12. �Color online� Distribution of function weights pf sub-
divided according to the value of the truth table homogeneity d, for
different values of the average flip number l, for fixed values k=5,
and N=20.
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self-inputs. Self-regulated functions are not equivalent func-
tionally when they are negated �the input corresponding its
own output must be negated as well�, despite sharing the
same homogeneity. The 0↔1 symmetry, however, is always
preserved. When self-loops are ignored, the distribution be-
comes symmetric with respect to negation of the output �see
Fig. 9�c��, and the homogeneity classification becomes the
predominant criterion to distinguish between the classes
�compare Figs. 12�a� and 12�b��. But even in the absence of
self-loops, the probability classes are not uniquely defined by
the homogeneity, and there are overlaps between the differ-
ent classes, as Figs. 12�d�–12�f� show. Nevertheless, there is
a general tendency that functions with larger d are less likely.

Figure 13 shows the probability of finding a function with
a given value of d. Since the number of different functions in
a given class increases rapidly with d for small d, the maxi-
mum of this distribution is shifted to values of d larger than
1. If this distribution is corrected by the number Nd of dif-
ferent functions found with the same value of d, an overall
decreasing function of d is obtained, as shown in the graphs
in the left column of Fig. 13�.

The observed difference in probability due to different
homogeneity can be explained as follows. We consider a
node with k inputs. We denote by M =�imi� �l /2,L− l /2�
the total time during which the node is in the state that it
assumes less often. The sum is taken over all intervals during
which the node has this state.

If we denote the different possible �combined� states of
the input nodes by letters, we can represent the sequence of
states through which the considered node and its input states
go by the following picture:

m1

m2

m3
mi

AAFK

E
C

H
B

EJKD...
F

K
Q

J

I

the shaded areas correspond to the output value 1. A state of
the input nodes that appears inside the shaded �clear� area
must appear again inside the shaded �clear� area each time it
is repeated. If we consider only the above scenario and es-
sentially ignore that the trajectories must follow the edges of
a k hypercube, we can show that functions with smaller val-
ues of d should occur more often.

Our approximations rely on the fact that, for N→� and
l�1 �and hence L→��, the shaded areas will be more nu-
merous and will be further apart in time and less correlated.
In this limit, the input state number i occurs, say, ni times.
The probability that each of the input states occurs only in
one type of area is given approximately by

�
i
��M

L
�ni

+ �L − M

L
�ni� . �4�

The maximum of this function is attained at M = l /2 �or M
=L− l /2, which is excluded since we chose M such that it
counts the minority part�, which is the minimal possible
value. The value of d is bounded by M but can be smaller
since the same input state can repeat. We can in fact see that
the case, where the same state repeats at all M times, is more
probable, by considering all the possible permutations of the
state sequence, for a given value of d,

��
i	d
�M − �

j�i

nj

ni

����
i�d
�L − M − �

d�j�i

nj

ni

�� �5�

and observing that it has a maximum at d=1, since M 
L.
�This means that there are M shaded areas of size 1 each.� It
follows that with increasing l, the weight of update functions
with d=1 will become much larger than that of every other
update function, as is evident from Figs. 9 and 13. The domi-
nance of d=1 functions can already be seen for small values
of l, although it is less pronounced.

D. State space structure

Finally, we investigated the state space of the constructed
networks. We considered the system under a stochastic up-
date scheme since this scheme underlies the study presented
in this paper. In this case, we define an attractor as a recur-
rent set of states in the state space, with the property that
there are no transitions that escape this set �i.e., a strongly
connected component in the state space graph that has no
outgoing connections�. The number of states in this set is
called the size of the attractor.

We evaluated the probability that an attractor of a given
size occurs in a minimal network and its average basin size.
For small networks �up to N=12�, these results were ob-
tained by exact enumeration of the state space. For larger N,
the state space was sampled, taking care that the same attrac-
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FIG. 13. �Color online� Distribution of functions with different
values of the truth table homogeneity d, for different average flip
number l, and N=20.
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tor was not counted twice. This method, however, leads to a
bias since attractors with smaller basins are less likely to be
counted, and the extent of this bias depends on the size of the
network. Nevertheless, this bias is not relevant for our point
of interest, which is on the occurrence of various attractors,
but not on their precise statistics. Figure 14 shows that there
exist almost always fixed points and that there are often at-
tractors, which are much larger than the imposed reliable
trajectory �we considered attractors of up to na=105 states�.
Note that the probabilities in Fig. 14 do not sum to 1 but to
the average number of different attractor sizes occurring in a
network.

The basin of attraction was measured as the probability of
reaching an attractor, starting from a random configuration,
averaged over several networks. We note that similarly to the
situation above, the probabilities need not sum to 1. Figure
15 shows that the omnipresent fixed point has a large basin
of attraction. Larger attractors occur with smaller probabili-
ties. The weight of the fixed point compared to the weight of
the imposed reliable trajectory increases with increasing N.
This can be explained by the entries in the truth table, which
are not uniquely determined by the reliable trajectory: While
number of entries fixed throughout the trajectory grows lin-
early with l, the number of remaining entries �as well as their
contribution to the state space� grows exponentially. In this
increasingly large region of the state space, the functions
behave as constant functions.

Attractors, which are larger than the given trajectories are
due to a portion of network, begin frozen in the value they
have at the fixed point, while other nodes remain frustrated,
and their states change stochastically, visiting a larger por-
tion of the state space, without entering the fixed point or the
reliable trajectory.

For comparison, we briefly looked at the attractor sizes
obtained using a synchronous updating scheme. Not surpris-
ingly, the attractors become much shorter in this case, with
attractors larger than the given trajectory having only a small
probability �not shown�.

IV. CONCLUSION

We have constructed minimal Boolean networks, which
follow a given reliable trajectory in state space. The trajec-
tories considered have the necessary feature that only one
node can change its value at any moment in time, which
guarantees that the sequence of states is independent of the
order in which nodes are updated. Otherwise, the nodes
change their states at randomly assigned times in the given
trajectory, thus, constituting a null model for reliable dynam-
ics. The minimality condition imposed on the networks was
that it contains the smallest possible set of inputs for each
node that allows for the given trajectory. Additionally, the
truth table entries that are not fixed by the trajectory were set
to the majority value imposed by the trajectory. We then
investigated the topology, the update functions, and the state
space of those networks.

The network structure, as manifest in the degree distribu-
tion, does not deviate significantly from a random topology.
However, the network exhibits larger clustering than a ran-
dom network and exhibits a characteristic motif profile,
which resembles both real networks of gene regulation and
the pattern of dynamically reliable motifs found in �14�. The
existence of clustering and motifs was explained by consid-
ering the excess inputs that are required to avoid contradic-
tions in the truth table and how they must be correlated
among each other.

The update functions of the nodes show a characteristic
distribution, where only a subset of the possible functions
occur, and these are divided into distinct classes, which occur
with different probabilities. The main factor discerning the
different classes is their homogeneity characterized by the
number of entries of the minority bit in the truth table. Func-
tions with homogeneity 1 occur with increased probability
and become dominant functions in the limit of large trajec-
tories l→�, for fixed k. Functions with more minority en-
tries occur with a smaller probability, and this probability
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FIG. 14. �Color online� Probability of attractor sizes na, for l
=2 and l=7. Attractors corresponding to the given trajectories are
plotted separately with symbols. For each value of N and l, 104

different networks were analyzed. In the case of attractor sampling,
100 different random initial conditions per network were used.
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decreases as the number of minority entries increase. We
presented an analytical justification for this finding, consid-
ering how the local trajectory of the input states of a given
function must behave, in the limit l�1.

Finally, we investigated the state space of the constructed
networks, considering the possible attractors it can have, in
addition to the given reliable trajectory. To this aim, we used
a stochastic update scheme. We observed that the dynamics
of the network almost always exhibits a fixed point and often
attractors which can be much larger than the given trajectory.
The basin size of the fixed point is very large and dominates
the basin size of the given trajectory in the limit of large
system size. This is a consequence of the minimality condi-
tion imposed on the network: the region of state space dic-
tated by the imposed trajectory increases only linearly with
system size, while the entire state space grows exponentially.
Outside the state space region fixed by the reliable trajectory,
the constructed functions behave as constant functions,
which drive the system nearer to the frozen phase.

In this work, we have used a null model for reliable tra-
jectories, where the nodes change their values at random
times. Real gene regulatory networks deviate significantly
from this since they must agree with the cell cycle or the
pathway taken during embryonic development. Certain pro-
teins need to be always present in the cell, while others are
produced only under specific conditions. The degree distri-
bution and the update functions must reflect this behavior.
However, some of the features found for the null model pre-
sented in this work should also be present in more realistic
systems. The existence of clustering and the motif profile
found, for instance, do not depend strongly on the specific
temporal patterns of the nodes but are imposed by the reli-

ability condition. Similarly, the dominance of strongly cana-
lyzing functions is a consequence of the reliability condition
and should be relatively robust to the introduction of tempo-
ral correlations. Nevertheless, biochemistry makes some
canalyzing functions more likely than others.

An important feature of biological networks that is not
reflected in the null model presented in this paper is the
robustness with respect to perturbations of a node. Such a
robustness can only be obtained when more than the mini-
mum possible number of inputs is assigned to a node. In-
deed, it has been shown in �16� that more redundancy allows
for more robustness. Similarly, requiring that the reliable tra-
jectory has the largest basin of attraction or that other attrac-
tors of the system are also reliable trajectories may increase
the number of links in the network.

Finally, the requirement that trajectories are fully reliable
is an idealization, which goes beyond what is necessary for
gene regulatory networks. Real networks have checkpoint
states, but between these states, the precise sequence of
events is not always important. On the other hand, full reli-
ability may be necessary for certain subsystems of the gene
network, where a strict sequence of local states is required.
The minimal reliable networks discussed in this paper should
be compared more realistically to such reliable modules.
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