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Reconnecting flux-rope dynamo
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We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes
advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux
ropes. This model can be viewed as an implementation of the asymptotic limit R,—c° for a continuous
magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We
investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by
solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude
more efficient at converting mechanical energy into heat. The probability density of the magnetic energy
release in reconnections has a power-law form with the slope —3, consistent with the solar corona heating by

nanoflares.
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The dynamo action, i.e., the amplification of magnetic
field by the motion of an electrically conducting fluid
(plasma), is the most likely explanation for astrophysical
magnetic fields. Evolution of magnetic field B embedded in a
flow at a velocity u is governed by

JB A
a—f:VX(uXB)+£B, (1)

where £ is an operator describing magnetic dissipation. In
rarefied plasmas, such as the solar corona, hot gas in spiral
and elliptical galaxies, galactic and accretion disk halos, and
laboratory plasmas, an important (if not dominant) mecha-
nism for the dissipation of magnetic field is the reconnection
of magnetic lines rather than magnetic diffusion [1], the lat-

ter modeled with £=7V? (if =const). Discussions of dyna-
mos often refer to magnetic reconnection but attempts to
include any features specific of magnetic reconnection to dy-
namo models are very rare [2]. On the other hand, theories of
magnetic reconnection rarely, if ever, refer to the dynamo
action as a mechanism maintaining magnetic fields. This
Rapid Communication attempts to bridge the gap between
the two major areas of magnetohydrodynamics by develop-
ing a dynamo model explicitly incorporating magnetic recon-
nections.

The nature of the dissipation mechanism is important for
the dynamo action. For example, dynamo action with hyper-

diffusion, £=-7,V* (and with a helical u) has larger growth
rate and stronger steady-state magnetic fields than a similar
dynamo based on normal diffusion [3]. This is not surprising
as the hyperdiffusion operator, having the Fourier depen-
dence of k* rather than k% of the normal diffusion, has weaker
magnetic dissipation at larger scales. The release of magnetic
energy in smaller regions (and larger current densities) in
hyperdiffusive dynamos may also lead to a higher rate of
conversion of kinetic energy to heat via magnetic energy.
Magnetic hyperdiffusion also appears in the context of con-
tinuous models of self-organized criticality in application to
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the heating of the solar corona [4]. The aim of such models is
to reproduce the observed frequency distribution of various
flare energy diagnostics.

Magnetic reconnections may have an even more extreme
form of the dissipation operator than the hyperdiffusion: here
magnetic fields dissipate only when in close contact with

each other so that the Fourier transform of £ can be expected
to be negligible at all scales exceeding a certain reconnection
length d,. It is then natural to expect that dynamos based on
reconnections (as opposed to those involving magnetic dif-
fusion) will exhibit faster growth of magnetic field, more
intermittent spatial distribution, and stronger plasma heating.
In this Rapid Communication we consider dynamo action
based on direct modeling of magnetic reconnection. For this
purpose, we follow the evolution of individual closed mag-
netic loops in a model of turbulent flow (known to be a
dynamo) and reconnect them directly whenever their seg-
ments come into sufficiently close contact, with appropriate
magnetic field directions. As we show here, our model ex-
hibits a power-law probability distribution of the magnetic
energy release similar to that observed in the solar corona.
Magnetic reconnection is usually modeled with the induc-

tion equation, L= nV? (perhaps including the Hall current),
and magnetic dissipation is enhanced due to the development
of small-scale motions and magnetic fields. This approach
may or may not apply to magnetic fields concentrated into
flux ropes, where magnetic energy losses are strongly re-
duced at large scales and, hence, more energy can be depos-
ited at the smaller scale of order the tube radius, where re-
connections occur. Our model explores this possibility.
Furthermore, our model can be viewed as a numerical imple-
mentation of the limit R, —o for a continuous magnetic
field, where magnetic dissipation is confined to strongly lo-
calized regions with exceptionally high magnetic field gradi-
ents.

We model the evolution of thin flux tubes, frozen into a
flow, each with constant magnetic flux ¢. In this Rapid Com-
munication, we focus on the kinematic behavior, where the
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FIG. 1. (Color online) The algorithm for inserting new trace
particles in a stretched magnetic flux tube. If the distance between
any two particles (shown with open circles) exceeds a length scale
d, a new one is inserted between them, shown with a filled circle.
Labels represent magnetic field strength.

velocity field is independent of magnetic field. To ensure that
V-B=0, we require that our tubes always take the form of
closed loops. Numerically, we discretize the loops into fluid
particles and track their position and relative order (i.e., mag-
netic field direction) by introducing a flag denoted P, with P
increasing along a given magnetic flux tube. Initially the par-
ticles are set a small distance apart, 0.75d, where d is an
arbitrary (small) constant length scale. If, during the evolu-
tion of the loops, the distance between neighboring fluid par-
ticles on a loop becomes larger than d, we introduce a new
particle between them, as illustrated in Fig. 1. We use linear
interpolation to place the new particle halfway between the
old ones. The new separation between the particles is thus
greater than 0.5d; this will be important when we consider
removing particles. Thus, the spatial resolution of our model
isd.

Each particle is also assigned a flag B (Fig. 1) for the
strength of magnetic field at that point on the loop. Assuming
magnetic flux conservation and incompressability, magnetic
field strength in the flux tube is proportional to its length.
Magnetic field is initially constant at all particles, B=1.
When a new particle is introduced, magnetic field is doubled,
as shown in Fig. 1, at two out of three particles involved: this
prescription emerged from our experimentation with various
schemes and allows us to reproduce the evolution of mag-
netic field strength in a shear flow. Conversely, when the
flow reduces the separation of particles to less than 0.5d, we
remove a particle. The value of the magnetic field strength
flag is also halved on the remaining particles in a manner
consistent with the above algorithm. We have verified that
this prescription reproduces accurately an exact solution of
the induction equation for a simple shear flow.

If the separation between two particles, which are not
neighbors, becomes less than a certain scale d,,, we reconnect
their flux tubes by reassigning the flags P (Fig. 2) which
identify the particles ahead and those behind of those in-
volved in the reconnection. (To obtain meaningful numerical
results, d, has to be comparable to d, e.g., dy=1.5d.) Two
particles are removed from the system after each reconnec-
tion event (and their magnetic energy is lost, presumably to
heat). We also monitor the cross product of magnetic fields
close to the reconnection point. By ensuring that its magni-
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FIG. 2. (Color online) Reconnection occurs when the distance
between two trace particles reduces to d, (left); the connection of
the particles on a magnetic flux tube changes after the reconnection,
and the two closest particles are removed (right).

tude is smaller than some tolerance e~1072 and that the
magnetic fields in the reconnecting loops are (almost) oppo-
sitely directed, we prevent parallel flux tubes with the same
field direction from reconnecting. We monitor the amount of
magnetic energy released in each reconnection event. To
place the reconnection-based dynamo into a proper perspec-
tive, we compare it with a dynamo obtained for the same
velocity field but by solving the induction equation, i.e., Eq.

(1) with L= nV2. In particular, we compare the rates of mag-
netic energy dissipation, which can be identified with the
plasma heating rate. We assume that the part of the magnetic
energy which drives plasma motion at a reconnection site
(such as jets) is eventually dissipated into heat as well so that
we consider that the whole magnetic energy released is con-
verted into heat. For the induction equation, the relevant
quantity is

-1
vi=dln M/dt= f nB-VZBdV{ f Bzdv} ., (2
\4

\%

where M is the total magnetic energy. A similar quantity can
be obtained for the reconnection-based dynamo by adding
the contributions of all reconnection events to the magnetic
energy release:

N.

= B2S,L;, 3
dt SWMTE e ®)

din M 1
Y= =

where 7 is a time interval during which N_ reconnections
occur (we take 7 to be equal to ten time steps; individual
reconnection events occur in a single time step), and B, S;,
and L; are the magnetic field strength, the cross-sectional
area and length of the reconnected (and thus removed) flux
tube segment associated with a particle number i. From our
assumption of frozen flux, B;S;==const, the total magnetic
energy M is

Neot p2 " Niot
M= 2 gsil‘i= 52 BiL;, (4)
i=1 i=1
where N, is the total number of particles and
N, Nt -1
Y%= _121 BiL,; 2] BiL;| . (5)
i= i=
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RECONNECTING FLUX-ROPE DYNAMO

Any comparison of the solutions of the induction equation
with those from the reconnection model is not straightfor-
ward because of the difference in the control parameters of
the two models: the magnetic Reynolds number R,,=uyly/ 7
and the reconnection length d,,, respectively. A proxy for the
magnetic Reynolds number can be constructed from d,, as

Ry, =uoly/ (u,dy), where u, is the characteristic reconnection
speed. The reconnection-based dynamo is significantly more
efficient than the hydromagnetic dynamo, in the sense that
the growth rate of magnetic field in the former is signifi-

cantly larger when R, =~ R,,. Therefore, in order to achieve
conservative conclusions, we compare dynamos with similar

growth rates of magnetic field. Thus, Rm>1't7m in the models
compared. Magnetic field growth in a dynamo is obtained
from the difference between the magnetic stretching and dis-
sipation rates. In the reconnection-based dynamo, both are
larger than those in a similar diffusion-based dynamo, but
their difference is kept the same in the models which we
compare below.

We consider dynamos driven by two types of flow. First,
this is the kinematic simulation (KS) model of a turbulent
flow [5], known to be a dynamo [6]. Here velocity at a po-
sition x and time ¢ is

N
u(x,’) = >, (A, Xk, cos ¢, +B, Xk, sin ¢,), (6)

n=1

where ¢,=K,-X+w,t, N is the number of modes, k, and
w,=k,u, are their wave vectors and frequencies, respec-
tively. An advantage of using this flow is that the energy
spectrum, E(k,) is controllable via appropriate choice of A,
and B,,. We also note that V-u=0. We adopt an energy spec-
trum which reduces to E(k) k™ for 1 <k<<ky, with k=1 at
the integral scale; p=5/3 produces the Kolmogorov spec-
trum, and ky is the cut-off scale. We have adapted Eq. (6) to
periodic boundary conditions.
We also used the ABC flow of the form [7]

u = (cos y + sin z,sin x + cos z,cos x + sin y), (7)

also known to support dynamo action, to demonstrate that
our results are not sensitive to the form of the flow.

The initial condition is a random ensemble of closed mag-
netic loops, and both the induction equation and the flux-
rope model are evolved with the same velocity field (apart
from the overall normalization to provide comparable growth
rates of magnetic field). The initial condition for the induc-
tion equation is obtained by Gaussian smoothing of the mag-
netic field in the ropes (this procedure preserves V-B=0). To
evolve the induction equation, we use the PENCIL code [8] on
a 256 mesh with 1000<R,, <1500 in a periodic box. The
test particles in the flux ropes are evolved using a fourth-
order Runge—Kutta scheme, with a time step of Iy/(20uy).
The algorithm for inserting and removing points is applied
every time step and the reconnection algorithm for every ten
time steps. We choose d to be 1/4 of the smallest length scale
in the flow and set dy/d=1.5.

Figure 3 shows the energy release rates in simulations
where the growth rate of the magnetic field is 0=0.16 in
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FIG. 3. Magnetic energy release rates from the induction equa-
tion (dashed) and the flux-rope model (solid). The former has a
mean value of 2.4 (here R,,=1200) once the eigensolution has de-

veloped. The latter (with IEmz 174) has a mean value of 23 (thick
horizontal line).

both simulations (with the unit time /y/u,). The dashed line
shows the energy release rate from a simulation of induction
equation with R;;=1200, which has the mean energy release
rate y;~2.4. The solid line shows the corresponding results
from the flux-rope dynamo, with the mean value plotted as a
dashed horizontal line. The mean value of the energy release
rate from the reconnecting flux-rope dynamo is y,~23, an
order of magnitude larger. Also note strong fluctuations in
the energy release rate from the reconnection model, which
are absent in the solutions of the induction equation.

Dynamos with the ABC flow behave similarly. With
R,,=55, the induction equation gives an energy release rate
of about y;,=0.6. The corresponding flux-rope dynamo with
the same growth rate (0.02) has the energy release rate of
¥;=~6.7, again ten times larger.

Our approach is deliberately oversimplified with respect
to the (incompletely understood) physics of magnetic recon-
nection. Nevertheless, we can argue that our model is con-
servative with respect to the reconnection efficiency. The re-
connecting segments of magnetic lines in our model
approach each other at a speed u,=~u,Re™"* for the
Kolmogorov spectrum, equal to velocity at the small scale
dy<<ly with [, the energy-range scale of the flow and d,
assumed to be close to the turbulent cut-off scale. If mag-
netic field is strong enough, the Alfvén speed V,, which
controls magnetic reconnection in more realistic models, is
of order u(ly). Then u, <V, and our model is likely to un-
derestimate the efficiency of reconnections. The Sweet-
Parker reconnection proceeds at a speed of order VAR;” 2,
whereas the Petschek reconnection speed is comparable to
Va/ln R, [1]. For ug=V, and R,,=Re> 1, the reconnection
rate in our model is larger than the former but much smaller
than the latter.

A remarkable feature of the energy release in the rope
dynamo is that its probability distribution has a power law as
shown in Fig. 4, f(x)=x~, where x=AM/B2__ is the mag-
netic energy released in a reconnection event normalized to
the mean magnetic energy, with the slope s=3.3. Impor-
tantly, the same scaling, s=3.0, emerges when we use the
ABC flow instead of KS. A similar exponent arises in a re-
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FIG. 4. Probability density for the normalized magnetic energy
release in individual reconnection events, AM/B2_, from the time
series of Fig. 3, for the flux-rope dynamo (circles) and the diffusive
dynamo with the same magnetic field growth rate and velocity field
form (squares). A power-law fit to the former and a Gaussian fit to

the latter are shown solid and dashed, respectively.

connection model for the corona [9] where, however, dy-
namo action is not included. Thus, weak “flares” dominate
the energy release in our reconnection-based system as in the
nanoflare model of coronal heating [10]. Interestingly more
recent results with a nonlinear adaptation of the model [11]
retains this feature with s=-3.1 for the KS flow in the sta-
tistically steady state. We stress that the power-law behavior
is not related to the self-similar nature of the velocity field:
solution of the induction equation with the same velocity
field, also shown in Fig. 4, has an approximately Gaussian
probability distribution. It is not as yet clear if the flux-rope
dynamo represents a physical example of self-organized
criticality, but the system does possess some of the required
properties. In particular, our reconnection model has a natu-
ral threshold in terms of the current density J>B,;,/d,,
where B;,=1 is the minimum magnetic field, and as we
argue above, our model can be viewed as an extreme case of
magnetic hyperdiffusivity. Furthermore, our simulations are
kinematic (so, magnetic energy density is assumed to be
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small), whereas the solar corona is magnetically dominated.
The importance of this distinction needs to be carefully in-
vestigated.

To summarize, we have confirmed that the dynamo action
is sensitive to the nature of magnetic dissipation and demon-
strated that magnetic reconnections (as opposed to magnetic
diffusion) can significantly enhance the dynamo action. We
have explored the kinematic stage of the fluctuation dynamo
in a chaotic flow that models hydrodynamic turbulence and
in the ABC flow, with the only magnetic dissipation mecha-
nism being the reconnection of magnetic lines implemented
in a direct manner. In our model, where magnetic dissipation
is suppressed at all scales exceeding a certain scale d, the
growth rate of magnetic field exceeds that of the fluctuation
dynamo, based on magnetic diffusion, with the same velocity
field. Even when the velocity field of the reconnection-based
dynamo is reduced in magnitude as to achieve similar growth
rates of magnetic energy density, the rate of conversion of
magnetic energy into heat in the reconnection dynamo is a
order of magnitude larger than in the corresponding
diffusion-based dynamo. Thus, reconnections more effi-
ciently convert the kinetic energy of the plasma flow into
heat, in our case with the mediation of the dynamo action.
This result, here obtained for a kinematic dynamo, can have
serious implications for the heating of rarefied, hot plasmas
where magnetic reconnections dominate over magnetic dif-
fusion (such as the corona of the sun and star, galaxies and
accretion disks). In contrast to the fluctuation dynamo based
on magnetic diffusion, the probability distribution function
of the energy released in the flux-rope dynamo has a power-
law form not dissimilar to that observed for the solar flares.
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