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The spatial distribution of most species in nature is nonuniform. We have shown recently [B. Houchmandza-
deh, Phys. Rev. Lett. 101, 078103 (2008)] on an experimental ecological community of amoeba that the most
basic facts of life—birth and death—are enough to cause considerable aggregation which cannot be smooth-
ened by random movements of the organisms. This clustering, termed neutral and always present, is indepen-
dent of external causes and social interaction. We develop here the theoretical groundwork of this phenomenon
by explicitly computing the pair-correlation function and the variance to mean ratio of the above neutral model

and its comparison to numerical simulations.
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I. INTRODUCTION

A major issue of population dynamics is to determine the
causes governing the spatial distribution of organisms in na-
ture. It has been known for a long time that individuals of a
given species are not randomly distributed, but form patches
and aggregates (Fig. 1). Taylor er al. [1], for example, in
their comprehensive investigations, surveyed 4000 samples
from 100 species across different kingdoms and concluded
that nearly all the species under review had nonuniform dis-
tribution. Since then patchy spatial distribution have been
reported in an extremely wide range of biological communi-
ties, from terrestrial or marine microbes [2,3] to trees in
tropical forests [4] and even to biological systems which
were not thought before as ecological communities such as
biofilms [5] and cancerous cells [6].

Nonuniform distributions seems surprising because ran-
dom movements will eventually give rise to a uniform one
[7]. Therefore, when nonuniform distributions are observed,
we look for causes capable of countering the homogenizing
tendency of diffusion (migration). There are two obvious
causes for spatial aggregation of species in nature. The first
cause is the environment heterogeneity: the patchiness of
species distribution can be a read out of the environment’s
“hostility map” toward the given species. This line of reason-
ing has seen a great development during the last 20 years.
Such models first formulated by Levins [8] and now gener-
ally termed metapopulation ecology [9], consider the envi-
ronment as formed of multiple “niches,” with organisms ca-
pable of migrating between them and repopulating niches
which have gone extinct. Population density will therefore be
a complicated interplay between the niches topology, migra-
tion rates between them and the capability of each niche to
sustain its population. The second cause of nonuniform dis-
tribution for some species can be social interactions such as
search for mate or increase in food retrieval or security;
herds, swarming, fruiting body formation in Dictyostelia or
myxobacteria, etc. are provoked by social interactions. In
dealing with these causes, the most common models use par-
tial differential equations modeling: populations are charac-
terized by their density c¢(x), favorable niches by some local
potential V(x), which is coupled to birth/death rates, social
interactions by two-particle interactions V(x,x’), random
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motion and migrations by a diffusion term V?c; differential
equations are then used to link these quantities [10].

The patchy distribution of species however is so ubiqui-
tous that one can wonder if there aren’t more fundamental
processes at work. The last decade has seen the rise of
alternative/complementary theories, generally termed neutral
[11], seeking the cause of patchiness in the very nature of
life: birth and death phenomena. Living species have two
very unique properties: the number of individuals can change
only in integer units, and the apparition of a new individual
(birth) always occurs close to a parent. These two simple
facts can dramatically alter what we expect from continuous
models and our intuition of migration and diffusive
processes.

Consider for example the case of Brownian bugs with
birth and death rates @ and w and mobility (migration rate)
D. The naive differential equation governing their concentra-
tion c(x) reads as

dc =DV + (a— u)c, (1)

which is reduced to a simple diffusion equation d,c=DV?c if
the birth and death rates are equal; in this critical case, what
we expect is the homogenization of the spatial distribution of
the bugs. If instead of the differential equation, the popula-
tion dynamics is computed by numerically simulating the
bugs individually, then the exact contrary is observed: the
distribution becomes extremely patchy as time flows [12].
The error in using continuous equations such as Eq. (1)
comes from neglecting fluctuations. A concentration c(x) is
the number of organisms contained in a small area dx around
the position x, normalized by the size of the area. Birth and
death events however are stochastic processes and c(x) is
indeed a random variable. The quantity ¢ referred to in Eq.
(1) is in fact an ensemble average. Its use is only meaningful
if the fluctuation Ac of the random variable is small com-
pared to the average c¢. In many physical systems, fluctua-
tions are indeed small and partial differential equations are
used with success. In living species however, fluctuations
can be much wider and put in doubt the legality of using
differential equations. We have shown by direct probabilistic
modelization that for the above example of critical Brownian
bugs or other similar living systems, the fluctuations become
arbitrarily large compared to averages, giving rise to ex-
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FIG. 1. Examples of (a) random uniform distribution; (b) patchy
nonuniform distribution. A robust quantifier for patchiness is com-
puted by dividing the space into contiguous squares (quadrats) of
size L, counting the number N; of particles in each quadrat and
forming the ratio of the variance to the mean (V,,) of these numbers.
If the V,,~ 1 the distribution is uniform or (Poisson) random (a). If
V,,>1, the distribution is nonuniform or clustered [(b), V,, =6
computed over the squares shown in panel (a)]. V,,<1 denotes an
ordered distribution and is seldom encountered in natural
environments.

tremely aggregated distributions [13,14]. We term this phe-
nomena neutral clustering.

Clustered distribution in living organisms should there-
fore be in part caused by neutral phenomena. Consider for
example the experimental model system of Fig. 2 when a
small number of D. Discoidum amoebae are spread uni-
formly in a petri dish and allowed to grow and move ran-
domly on the petri surface [15]. Figure 2 shows the spatial
distribution of the microorganisms after about eight genera-
tions. These amoebae are kept in a perfectly homogeneous
environment; moreover, known chemical communications in
these particular strains have been deactivated by mutations
[16]. We can suspect that the extremely clustered distribution
observed there is a neutral one, but this suspicion has to be
confirmed by rigorous criteria as we cannot rule out a priori
other unknown interactions. More generally, we need a math-
ematical tool to compare an observed spatial distribution to
the expectation of a purely neutral one and deduce the im-
portance of neutral causes. This is similar in principle to
determining the bias of a coin by tossing it many times and
comparing the number of heads and tails to the theoretical
prediction of an unbiased one.

The object of the present article is to develop such a neu-
tral framework for growing and randomly moving organ-
isms, to which observations such as displayed in Fig. 2 can
be compared. The most precise tool for such comparison is
the pair-correlation function, i.e., the histogram of distances
between all individuals. Another indicator of patchiness, the
Variance to mean ratio (V,,) (see Fig. 1) can then be deduced
from this function. If the pair-correlation function of the spa-
tial distribution of observed species is equal to the one pre-
dicted by the neutral framework, we could then assert its
neutrality ; this is indeed how we have demonstrated that the
aggregation displayed in Fig. 2 is a neutral one [15]. If the
pair-correlation function is markedly different from the neu-
tral one, we can attribute the difference to other causes such
as social interactions and/or environment. Moreover, the dif-
ference function is a readout of the interactions and can be
used as a theoretical tool to investigate the nature of interac-
tions or external causes.
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FIG. 2. Example of spatial distribution in an experimental com-
munity [15]: map of =55 000 pdsA-D. Discoidum mutant after 72 h
(7.5 generations) of growth in a petri dish. The map is obtained by
scanning the bottom of the petri dish by an automated 10X objec-
tive and taking contiguous photograph; the rectangle denotes the
relative size of one photograph. The position of each amoeba in
each photograph is detected by an image analysis program. The
result is assembled into the above map, where each dot represents
one amoebae (see the Appendix). V,,=35 for quadrats the size of
the black rectangle. Identical results are obtained by using WT D.
Discoidum.

This paper is organized as follows. Section II develops the
neutral framework at zero dimension, when no spatial dis-
persal can take place. This section stresses the importance of
fluctuations due to birth and death phenomena. Spatial dis-
persal is introduced in Sec. III and the autocorrelation func-
tion is derived. We show there that the smoothening by ran-
dom motion cannot overcome the creation of heterogeneity
due to birth and death. Section IV is devoted to the deriva-
tion of the V,,, which is a more useful tool for experimental
comparison. Concluding remarks are included in Sec. V.

II. PROBABILISTIC FORMULATION AT ZERO
DIMENSION

Before introducing the cumbersome spatial Focker-Planck
equation, it can be insightful to consider a zero dimensional
model where the origin of fluctuations can be simply pointed
out. Consider the following thought experiment: a collection
of microwells filled with nutrients; in each of the wells we
deposit a precise number 7n, of microorganisms at time =0
and then allow them randomly to duplicate with rate « and
die with rate u. We suppose that all the microorganisms are
similar. Let us call n,(¢) the number of organisms in well i at
time f. Birth and death events are stochastic phenomena,
therefore we cannot predict or compute n,(f) but only statis-
tical properties like the average (n(r)) or the variance V(z)
over all wells. Denote P(n;,t) the probability of observing n;
individuals at time 7 in well i. The probability for a commu-
nity of size n to witness one birth (or death) and increase (or
decrease) its number by one individual during a short time dr
is W¥(n)dt=andt [or W™ (n)dt=undt]. The master equation
for the probability P(n,f), counting per unit of time the num-
ber of ways the community can arrive at size n or leave it is:

dP(n,t)

b [WH(n = 1)P(n—1,1) = WH(n)P(n,1)]

+[W(n+1)P(n+1,0)—=W (n)P(n,1)]. (2)

Various moments (n*) can be extracted directly from the
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FIG. 3. (Color online) (a) A stochastic numerical simulation of
the number of individuals n,(¢) as of function of generation time
(ar) for 1000 wells. Each curves represents the population in one
well. To generate the paths, at each time step, the number of birth
and death are generated by a Poisson process. a=1. ©=0.9. [(a),
inset] evolution of the average (n(¢)) (black circles) and \V(z) (red
squares) and their comparison to theoretical expressions (3) and (4).
(b) A visual map of the population number in each well after 60
generations. Wells are arranged into a 25X 40 array, each dot rep-
resents 50 individuals.

master equation (see the Appendix). The most useful ones
are the average number of individuals (n(z)) and the vari-
ance, i.e., the centered second moment V(r)={(n?(¢))—{n(1))?,

dn) _
= (a= ),

v =2(a— u)V+ (a+ u)n).

dt

Note that in this community model, equations governing
changes in moments of order k over time involve only mo-
ments of order =k and no moment closure approximation is
needed. For the initial condition of precisely n, individuals
per well P(n,1=0)=4,,, the solution reads as

(n(0) = no expl(a—p)1), 3)
V() = — 205 () = o). @)
I’l() a— M

In the following, we will consider only growing populations
a—u=0. In this case, the variance to mean ratio V,, grows
exponentially « exp((a—u)t) and becomes arbitrarily large
for long time. In the critical case of equality between birth
and death rates, the average remains constant but the vari-
ance grows linearly: V(r)=(a+ u)ngt. Note that the variance
to mean ratio does not depend on n, but the coefficient of
variation does: VV/{n)o 1/ v‘nro.

Figure 3(a) shows a numerical simulation of the number
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of individuals n,(¢) as a function of time in 1000 wells, where
it is obvious that fluctuations dominate the behavior of the
system and the number of individuals in the wells after some
60 generations can vary over 4 orders of magnitude. Figure
3(b) is a visual representation of the situation after 60 gen-
erations. We observe here on a simple example, that repre-
senting the population dynamics of a growing population by
the average (n(r)) can be misleading.

III. SPATIAL NEUTRAL CLUSTERING WITH
MIGRATIONS

Figure 3(b) displays the extreme variability from well to
well of a growing population. What would happen if there
were no separation between wells and microorganisms were
allowed to freely disperse? We know that dispersal will act
as a smoothening force and the individuals will flow from
high-concentration regions to low-concentration ones. How-
ever, we will show below by computing exactly the pair-
correlation function, that this smoothening cannot overcome
the patchiness induced by birth and death phenomena.

The pair-correlation function, i.e., the probability of find-
ing an organism at a distance r of another one or the normal-
ized histogram of all the distances between pairs in the eco-
system, is the main mathematical tool to investigate spatial
clustering [17]. A closely related quantity used in ecological
literature is the B-diversity [18], the rate at which similarities
between quadrats decreases as a function of distance (see the
Appendix). A uniform random (Poissonian) spatial distribu-
tion will have a flat pair-correlation function ; clustered dis-
tribution on the other hand are enriched by short pair dis-
tances and their pair-correlation function will show a peak at
small scales.

For the sake of simplicity, we will derive the statistical
properties of the growing population first in one dimension,
the generalization to higher dimensions will be straightfor-
ward. Consider a collection of Brownian individuals moving
randomly with diffusion coefficient (migration rate) D/2, du-
plicating with rate « and dying with rate u. By randomly
moving Brownian individuals we mean that if the relative
position x() of any particular individual were followed dur-
ing time, then (x(r))=0 and (x*(¢))=Dt. Let us divide the
space into cells of size € and call n;(r) the number of indi-
viduals in cell i at time . We will consider in this article
infinitely wide space, neglecting finite-size corrections ; this
approximation is valid when the physical size of the system
is large compared to the migration length (see below). The
probability for the change in the number of individuals in
cell i will be given as before by the birth and deaths which
occur in this cells and the additional effect of migrations and
exchange between neighboring cells.

To reduce the cumbersome notations, we will use the vec-
tor n=(...,n;,...) to represent the state of the whole system;
the vector an=(...,n;—1,...) to represent the same state as n
except that one individual has been subtracted from cell i;
ajn:(...,ni+l,...) to represent the addition of one indi-
vidual to cell i; the number of organisms n; in cell i will be
noted 7n. One birth in cell i will transform n into a;}'n with
the probability W*(n,i)dr=anndt; one migration from cell
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i—1 to cell i transforms n into state aja,-_ln with the prob-
ability W™(n,i—1,i)dt=B7,_;n where B=D/(2¢?).

Summing up all the contributions, we can now write the
master equation for the probability P(n,z) of observing the
system in state n at time ¢,

dP(n,t)

=2 Wiam,Plan,n - W, P,

+ W (ajn,i)P(ain,t) = W(n,i)P(n,1)
+ W’”(a;r_lain,i - l,i)P(alT_la,»n,t)

- W"(n,i,i + 1)P(n,t) + W"’(alrlain,i +1,1)

X P(aj,,am,1) — W"(n,i,i — 1)P(n,7). (5)
Averages (n;) and correlations {(nny,,,) can be extracted di-
rectly from the above equation as before (see the Appendix).
We will assume uniform initial condition of exactly v, par-
ticles on all site at time r=0 (P(n,O)zHicS,,l_,,,o); the system is
therefore symmetric upon translation and mirror reflection.
The averages which do not depend on the position of the site
(ny)=(n) read as

d{n)ldt = (o= p)(n). (6)

Correlations are only functions of the distance between sites
(nngsmy=f(Im|). The equations governing the evolution of
Uy =gy —(1)>=(n) 6, (the centered correlations with-
out self contribution) read as (Appendix)

d
ﬂ = 2(“ - M)um + 2:8(_ 2“m + 2] + um+1) + 2a<n>5m,0'

dt
(7)

The term 2a{n)d,, is the correlation creation due to births
reflecting the fact that new organisms appear close to their
parents. These equations can be directly solved in terms of
combination of Bessel 7,,(r) and exponentials. It is however
more fruitful to take the continuum limit of cell size € —0
and use n;=~€c(x), where the cells are now enumerated with
the continuum index x=~k, and c(x,?) is the concentration at
position x and time ¢. Denoting c(f)={c(x,1)), Eq. (6) trans-
forms into

deldt=(a— u)c

and therefore ¢(r)=c, exp[(a— w)t]. Using the centered, nor-
malized pair-correlation function

g.t) = ((c(y)ely +x)) - ¢* = c8x))/c?, )

where 8(x) is the Dirac distribution, Eq. (7) transforms into
ag Pg 2a

—=D—5 +—8x). 9

ot x> ¢ x) ©

There is no complication in generalizing this derivation to
higher dimensions: the scalar position x and the operator
&/ dx* have to be replaced by the vectorial position r and the
Laplacian A. It will be more fruitful to formulate the above
equation in the natural scales of the problem: the generation
time o' and the migration length A=\2D/a, i.e., the aver-
age distance one organism travel during one generation (or
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the mean-square distance of seed dispersion for plants com-
munities). These units allow one to compare easily different
experiments. Measured in these units, Eq. (9) reduces to the
dimensionless equation

dg 1 2
—==Ag+—4(r). 1
PR g+c5(r) (10)

The solution of Eq. (10), with the initial condition g(r,07)
=0 (homogeneous initial distribution) reads as

S| P\ 2
g(r,t):fO —(ZW,S)d/ZeXp(_ 2_s)c(t—s)ds (11)

1 (" 2 2
:C_Ofo (Zws)d/zeXp<_ 2—>exp((1 —pla)(s—1))ds.

(12)

For the critical case a=u, the above expression has an
exact expression,

g(r,0) = (1/co)m > (= 1 + d/2,r121)

(where T is the incomplete gamma function) and displays
logarithmic divergence at d=2 for large times [13].

For growing population (a> u), Fig. 4 displays a spatial
density map of the individual-based numerical simulation of
a population and its pair-correlation function (see the Appen-
dix) compared to the theoretical predictions ; it can be ob-
served that they perfectly agree.

The above computation allows one to assess the impor-
tance of neutral clustering in natural or experimental ecosys-
tems. Every population will display a certain degree of ag-
gregation due to neutral phenomena and the observation of
clustered population per se should not be surprising. It is
only by comparison to neutral clustering than the importance
of other phenomena (environment, social or interspecies in-
teraction, etc.) can be measured. This is how we have been
able to demonstrate that the clustering observed in an experi-
mental ecosystem of Dictyostelia [ 15] was purely neutral and
not due to such phenomena as chemical communications
between microorganisms.

IV. VARIANCE TO MEAN RATIO

The pair-correlation function can be accurately measured
only when the data originate from numerical simulations or
carefully designed experiments. In general, it is impossible
on the field to record the position of each individuals. The
general approach is to divide the space into squares (quad-
rats) of size L and measure the number N; of individuals in
each quadrat i. This measurement is done by various meth-
ods such as direct counting or optical methods (spectrometry
methods, fluorescence, flow citometry on samples, etc.).
Various statistics can then be performed to quantify the dis-
tribution heterogeneity [19]. The most robust measurement is
the variance to mean ratio (V,,): A random (Poissonian) dis-
tribution of organism will have V,,=1; a significant deviation
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FIG. 4. (Color online) Numerical simulation of a growing popu-
lation and its pair-correlation function. Data for numerical simula-
tions are similar to the experimental ecosystems of [15]: a=1, u
=0, D=1/2, and ¢(;=9.6 X 1072; time scales are in generation units,
spatial scales in migration length units. (a) Spatial map of the or-
ganism at t=6; each dot represent one organism. (b)—(e) pair-
correlation functions for four times: (b) r=0.2; (¢) t=1; (d) t=3; and
(e) r=6. Circles and shaded area: average and = one standard de-
viation computed on 25 numerical simulations; (red online) solid
lines: theoretical predictions. The small difference at short distances
for large times (e) is due to the finite size of the ecosystem.

beyond this value signify clustering and the dependence of
V.. upon time and scale will inform us on the processes gov-
erning the ecosystem [20,21]. The V,, of the spatial distribu-
tion of a growing population such as described above reaches
extremely high values. For example, for the population dis-
played in Fig. 4(a), The V,, computed over a quadrat L=1 (in
migration length unit) is =30.

In the case studied here, as we know the expected pair-
correlation function, we can derive exactly the V,, of the
growing community. Consider in d dimension the number of
individual N contained in a (d-dimensional) quadrat A of
size L. This random variable reads as

N:f c(r,t)dr
A

and its variance to mean ratio V,,(L,?) is

PHYSICAL REVIEW E 80, 051920 (2009)

2y _ 2
. ><N><N> - Ldi(t) AXA [Ke(r,n)e(r’,0) = (1)’ ]drdr’
:1+i? g(r—r',f)drdr’
L AXA

Y
Ld AXA 0(27Ts)d/2

"2
- t
u]&dsdrdr,
2s

Xexp{— c(t—s)

Note that the factor ¢(z)/c(t—s)=exp[(1—u/a)s] removes
any dependency on the initial concentration c(. By first com-
puting the integral over spatial variables and denoting /(u)
the function (see the Appendix)

1
h(u) =f (1 — x)exp(— x*/2u)dx (13)
0

the V,, reads as

V(L) =1+ (L) f Zexpll = pals], g )4

0 (2 77_S)d/z

For the critical case a=u, V,,(L,1) diverges at d =2 for large
times 1> L2, even though the average concentration c(f)=c
remains constant; the divergence is logarithmic at d=2.

For a growing population a>pu the V,(L,f) grows as
L1 -/ o) 'exp[ (1 -/ a)t]/t?? for large times t>L? (see
the Appendix and Fig. 6 inset). On the other hand, for large
scale L>\'t, the V,,(L,t) saturates at

1+2(1 = wla) (e =Hor—1). (14)

Figure 5 displays the behavior of the V,, both as a func-
tion of time and scale, and its comparison to individual-
based numerical simulation of the population. As it can be
seen, the V,, reaches very high values for a growing popula-
tion, much beyond the Poissonian distribution of V,,=1, in-
dicating the clustered nature of population distribution.

The study of the dependence of the V,, as a function of
scale is similar in principle to some ecological measurements
such as fractal index computation [22] or the presence-
absence map [23]. It has however a more intuitive interpre-
tation [24].

V. CONCLUDING REMARKS

In the present work, we have shown how the very forces
behind life, birth and death phenomena, give rise to organ-
isms aggregation and strongly clustered spatial distributions
(V,,>1). Birth creates correlations at short distances and
death removes correlations at all distances: organisms are
born close to a parent and die everywhere. This clustering
cannot be overcome and smoothened by random motions of
the organisms and migrations, specially in dimensions one
(communities along a shore line, a river bed, etc.) and two
(the major forms of life, where the horizontal extension of
the community is much larger than its vertical one). The
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FIG. 5. (Color online) The theoretical V,, (solid curves) and its
comparison to the function computed on individual-based numeri-
cal simulations (symbols). Data represent averages over 25 simu-
lated populations with the same parameters as in Fig. 4, and error
bars are * one standard deviation over the same samples. (a) V,, as
a function of time ¢ for three different values of L:L=0.4 (circles);
L=1 (diamonds); and L=2.5 (squares). (b) V,, as a function of scale
L for three different values of time #:r=0.2 (circles); t=1 (dia-
monds); and t=6 (squares). Thick solid bars on the left side repre-
sent saturation values given by expression (14).

neutral clustering of organisms was shown to be a relevant
factor for ecological communities in a carefully designed ex-
periment where all the parameters could be precisely mea-
sured [15] and the present work develops the theoretical
ground of the neutral clustering phenomena by computing
exactly the pair-correlation function and the variance to
mean ratio. The observation of the widespread spatially ag-
gregated distribution of organisms in ecological communities
therefore should not be a surprise by itself. In observing the
aggregation of organisms, one should first assess the amount
of aggregation expected from neutral causes; when the ag-
gregation deviates significantly from neutral ones one should
invoke external causes such as environment heterogeneity. It
would be an extremely naive view to claim that aggregation
in ecological communities are mainly due to neutral causes;
the aim of the present work is only to bring to the forefront
neutral causes as one among the many factors relevant for
the spatial distribution of species, a fact which is mostly
ignored in the ecological literature.

The aggregation we have described here belongs to the
class of multiplicative noise induced phenomena [25]; our
work applies to growing populations such as plankton
blooms, populations extending their geographical range due
to environmental change [26] or more generally when there
are successive or seasonal events of extinctions a recoloni-
zation. A natural extension of the present work would be to
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predator-prey communities where large stochastic fluctua-
tions can lead to extinction and where the spatial extension is
believed to play an important role in stabilizing the commu-
nity [27,28].

APPENDIX: MATHEMATICAL AND EXPERIMENTAL
DETAILS

1. Extracting moments from the master equation

Consider the master Eq. (2). Let us multiply both sides of
the equation by f(n) and sum over all n. The left-hand side
will give us d(f(n))/dt. On the right-hand side, we will
have terms such as ZX,f(n)W*(n—1)P(n—1,r) which,
upon a change of index n—n+1 transforms into
2, f(n+1)W*(n)P(n,t). Grouping all terms after such trans-
formations, we get

Afn) _ (fln+1) = f(n) W(n))

dt
—{(f(n) = fln =))W (n)). (A1)

Note that for f(n)=n*, f(n)—f(n—1) is a polynomial of order
k—1; the jump rates are linear in n, therefore both sides of
Eq. (A1) are polynomials of the same degree.

The spatial case seems more complicated because the
master Eq. (5) involves a summation over all sites. The no-
tations introduced in Sec. III however allow us to manipulate
it by basically the same technique. These notations are a
simpler version of those used in quantum field theory [29]
because the creation aj and annihilation operators a; as de-
fined here commute: a,a n=ajan. If we are interested in the
average of f(#n), i.e., a function of n; where k is a given
site, we multiply both sides of master Eq. (5) by f(#mn) and
sum over all n. The left-hand side will give, as before,
d(f(n;))/dt. For the right-hand side, consider for example the
first part of the first line

2 2 flgm)WH(an,i)Plan,1)

which upon changing n—>a:fn and grouping with the second

part of the first line (its conjugate expression), transforms
into

2 2 (flmain) = f(pm) W n,)Pnr).  (A2)

Because nkajnznkn+ 6> there is only one nonvanishing
term in summation (A2) over all sites which then reads as

> (g +1) = f(70)) W*(n,k) P(n, 1)

=((f(mn+1) - f(mn)) W*(n,k)).

This process has to be applied to all lines of master Eq. (5).
Averages are computed by using the function f(7,n)=7n;
correlations are slightly more cumbersome; they are com-
puted by using the function f(7mnzyn)=mnyn where the
cases k=I, |k—I|=1, and |k—{|>1 have to be treated sepa-
rately.
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FIG. 6. (Color online) The function A(u) (solid curve) and
h(u)/Nmu/2 (dotted curve). Inset: comparison of the function
V,.(1,1) (circles) to its long-time approximation exp(r)/mt (solid
curve); d=2 and u=0.

2. V,, computation

The function /(u) used in the V,, has an explicit form,
h(u) = (e = Du + mt/Zerf(l/\"%),

h(u) is a growing function of its argument which is ~\mu/2
for u<<1 and saturates at 1/2 for u=1 (Fig. 6). These ap-
proximations are used to obtain large scale and large time
limits of the V,,(L,?).

3. Individual-based numerical simulations and
correlation computation

Numerical simulation of discrete organisms present no
particular difficulties: (i) select a discretization time dr and
generate an array of n elements containing the position of
each organism, distributed homogeneously at =0 inside a
given area; (ii) At each time step, generate two Poisson ran-
dom numbers N, of parameter undt and N, of parameter
andt; eliminate N; elements from and add N, elements to the
array; each new element inherits its positions from a parent
chosen at random; (iii) for each element in the array,
generate two uniform random numbers d, and d,
e[—\3Ddt,\3Ddt] and increment its positions by these
numbers; and (iv) repeat these operations until a specified
amount of time has been spent.

4. Pair correlation and g diversity

The B-diversity measures the degree of similarity between
two plots in a multicomponent ecosystem and is defined as
[30]
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S
Fr)={ X ni'n? ),
i=1

where the average is taken over all plots A and B separated
by r, the sum is taken over all S species present in the eco-
system, n? (or B) is the number of individuals of species i in
plot A (or B). This is the probability that two individuals
chosen at random in two plots belong to the same species.
The pair-correlation function we use here [Eq. (7)] corre-
sponds to the case S=1. The function g(r,#) which is derived
[Eq. (8)] is proportional to the probability of finding one
individual at distance r of a given one.

5. Experimental details

The experimental work this paper refers to has been al-
ready published [15]. For consistency, We give here a brief
sketch of the measurements which leads to maps as dis-
played in Fig. 2. (a) Axenic Dictyostelia are spread and put
to growth in a 50 mm petri dish under controlled conditions.
At regular time intervals, the petri dish is scanned by a com-
puter controlled microscope objective and contiguous photo-
graphs (660X 832 wm) are taken. Paving the area of Fig. 2
requires 600 photographs. (b) A home made image analysis
program detects the position of each Dictyostelium in each
photograph. A global map such as Fig. 2 is reconstituted by
combining Dictyostelia positions from all photographs in a
sequence. By repeating the operation (4—12 h intervals, de-
pending on the growth rate), a spatiotemporal map is consti-
tuted. One experiment can require up to 10 000 photos. (¢)
To measure the Brownian diffusivity (migration rate), the
movements of Dictyostelia in a microscope frame are re-
corded and the cells trajectories are reconstituted. The mean-
square linear displacement function {x?) of all trajectories is
computed for various time intervals 7. The diffusion coeffi-
cient (migration rate) D is recovered from the linear regres-
sion (x*)=Dt. (d) The growth rate « is measured by reporting
the total number N of Dictyostelia in each map versus time:
N=N, exp(at).

Axenic (Ax2) Dictyostelia were a gift from Pr. Franz
Bruckert. pdsA mutants were obtained from the Dicty Stock
Center (Columbia University, R. Kessin and J. Franke). Dur-
ing their growth, they are maintained at 22°C and stable
humidity. The base liquid growth medium is HL5 (Division
time 7,=10 h); for 1 L, the medium contains: bacteriologi-
cal peptone (L35 Oxoid) 14.30 g; yeast extract (L21 Oxoid)
7.15 g; maltose 18 g; Na2HPO4 0.51 g; KH2PO4 0.48 g;
dihydrostreptomycin 0.25. HLS is an extremely rich medium
were Dictyostelia have high growth rates. In order to vary
the growth speed, the amino-acid source is limited either by
reducing peptone (X/5, medium A, T,=12.8 h) or totally
removed (medium C, 7,=23.1 h). It was found that aged
medium A is useful for very slow growth (medium D 7,
=28.9 h). All growth media are 0.2 wm filtered to simplify
image analysis. The medium is never limiting and the growth
remains exponential during the entire experiment.
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