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Most integrodifference models of biological invasions are based on the nonoverlapping-generations approxi-
mation. However, the effect of multiple reproduction events (overlapping generations) on the front speed can
be very important (especially for species with a long life spam). Only in one-dimensional space has this
approximation been relaxed previously, although almost all biological invasions take place in two dimensions.
Here we present a model that takes into account the overlapping generations effect (or, more generally, the
stage structure of the population), and we analyze the main differences with the corresponding nonoverlapping-

generations results.
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I. INTRODUCTION

Reaction-diffusion and reaction-dispersal fronts have
many applications in physical, biological, and cross-
disciplinary systems [1-3], e.g., virus infection fronts [4,5],
combustion fronts [6,7], human population fronts [8,9], etc.
Motivated by Reid’s paradox of rapid tree range expansions,
recently we have proposed a framework which is useful in
two-dimensional (2D) space under the assumption of non-
overlapping generations [10]. Modeling forest postglacial re-
colonization fronts by using single-kernel reaction-dispersal
assumptions results in the underestimates of the observed
speeds (this disagreement is known as Reid’s paradox). In
order to better predict such speeds, our recent work intro-
duced several-component kernels (with characteristic dis-
tances differing several orders of magnitude) [10]. In this
way, long-distance dispersal (even if occurring infrequently)
makes it possible to predict speeds of the right order of mag-
nitude, as observed from postglacial tree recolonization
fronts.

However, previous work in two dimensions did not take
the age structure of tree populations into account. Indeed,
trees reproduce every year and not only once in their life-
time, so generations clearly overlap. Therefore, here we will
extend the 2D model [10] to overlapping generations. We
shall show that the corrections (relative to the nonoverlap-
ping approximation) are relevant, which justifies the impor-
tance of our model. Previously, overlapping-generation mod-
els have been only developed in one dimension [11-18]. Our
model is relevant not only to tree species, but can be applied
to compute front speeds also in other biophysical and physi-
cal systems in which the reproductive (or reactive) process
happens more than once for each individual (or particle).

II. EVOLUTION EQUATION

A. Nonstructured populations in two dimensions
(continuous space random walk)

Integrodifference equations have been widely used to
model biophysical and cross-disciplinary reaction-dispersion
phenomena. For example, for the case of trees population
dispersion (seed dispersal) takes place just after reproduction
(seed production). Thus the evolution of a nonstructured
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population in a 2D space is driven by the well-known inte-
grodifference equation [19]

400 [0
plx,y,t+ T):ROJ f plx+ALy+A,1)

X (A, A)dAdA,, (1)

where p(x,y,t+T) is the population density at the location
(x,y) and time 7+T. Recently we have argued that this evo-
lution equation is also relevant to other biological species
besides trees, e.g., humans [20]. However, for the sake of
definiteness and clarity, in this paper we will consider trees
in our explanations. The time interval 7 is that between two
subsequent dispersal events or “jumps” (in the nonstructured
model, 7 is one generation, i.e., the mean age of trees when
they begin to produce seeds). R, is the net reproductive rate
(number of seeds per parent tree and year which survive into
an adult tree). Equation (1) is the nonoverlapping-
generations model. It is worth to stress that in this model, the
net reproductive rate per year is always used for Ry [19]. The
dispersal kernel ¢(A,,A,) is the probability per unit area that
a particle that a seed falling from a parent tree located at
(x+A,,y+A,,1) reaches the ground at (x,y,t+T). Strictly,
Eq. (1) is valid only at sufficiently low values of the popu-
lation density p, because there is a maximum saturation den-
sity above which net reproduction vanishes (see Eq. (9) in
Ref. [20]); however, this point does not affect the computa-
tion of front speeds because, as we shall see below, such
computations can be performed at low values of p.

Equation (1) is a continuous space random-walk (CSRW)
equation in two dimensions. It is just an integration over all
possible jumps, which takes into account the probability of
each possible jump [dispersal kernel ¢(A,,A))] as well as
the productivity of new individuals (net reproduction rate
RO).

Let us first summarize some previous results, and we will
then extend them to more general situations. The speed of
fronts evolving according to Eq. (1) can be obtained under
some general assumptions, as follows [10,21]. We assume
that Ry>1, that the initial population density has bounded
support [i.e., that p(x,y,?) vanishes outside a finite region],
and that for t— oo the front becomes approximately planar at
scales much larger than that of individual dispersal events.
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Then we can choose the x axis parallel to the local velocity
of the front (i.e., c=|c,| and ¢,=0). Finally, we look for
constant-shape solutions with the form p=p,exp[-\
(x—ct)] at x—ct— o (leading edge of the invasion front).
Requiring that A >0 yields the asymptotic (1— o) front
speed for 2D nonstructured populations [10,21],

_ i MR0E0)] o
A>0 AT
where
e(\) = f dAp(A)I;(\A), (3)
0
and
1 21
IH(\A) = —f d 6 exp[\A cos 0] (4)
2m7),

is the modified Bessel function of the first kind and order
zero. The dispersal probability per unit area ¢(A) is related
to that per unit length ¢(A) (i.e., into a 2D ring of area
27A dA) according to [10]

@(A) =2mAH(A). (5)

We have also assumed an isotropic dispersion kernel (i.e.,
that ¢ depends only on distance A= \r’A§+A§), and applied
the normalization of probability, i.e.,

f ’ dAp(A) =1. (6)

0

B. Structured populations in two dimensions

In the previous section we have summarized the nonstruc-
tured (or nonoverlapping) model in two dimensions [10,21].
It is widely used because of its mathematical simplicity (let
us mention that it has been often formulated in one dimen-
sion [19,21], because then it becomes even simpler). But
obviously, assuming that individuals reproduce only once in
their lifetime is not a good approximation in general. Indeed,
trees produce new seeds during many years. Thus we should
expect intuitively that multiple reproduction events will lead
to faster values of the front speed (and, in some cases, even
prevent the extinction of the population). For these reasons,
we have built a model that makes it possible to predict front
speeds for structured populations spreading across 2D space.

1. Introductory example

Let us use a simple example to introduce the main as-
sumptions and equations of our 2D overlapping model. Con-
sider a species with a life span of three years. If one-year-old
individuals cannot produce seeds, in the nonstructured model
T=2 yr. Thus, the limitation of the nonstructured model (1)
is that it does not take into account the reproduction of three-
year-old individuals in this simple example.

Let us assume that reproduction events take place only
once per year (this is valid for most tree species, as seed
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production happens only during some period in fall). In order
to compute the production of new individuals, we have to
take into account the contribution of both the two-year-old
and the three-year-old subpopulations. Therefore,

pix,y,t+1)= RO2J' D (AL AP (x+ ALy + Ay, 1)dA dA,

+ R03f ¢3(Ax’Ay)p3(x + Ax?y + Ayat)dAdiya

)

where p,(x,y,t+1) is the population density of one-year-old
individuals at location (x,y) and time 7+ 1 (time is measured
in years). The right-hand-side of Eq. (7) contains two terms.
The first one is the contribution of two-year-old individuals.
One can easily observe that this term is analogous to Eq. (1):
Ry, is the net reproductive rate of two-year-old individuals,
?(A,,A)) is the dispersal kernel, and p,(x+A,,y+A,,1) is
the two-year-old population density at location (x+A,,y
+A,) and time ¢. Similarly, the last term describes the repro-
duction and dispersal of seeds produced by three-year-old
individuals. In order to predict the invasion speed, we need
to know the population densities of adult individuals in fu-
ture times. These population densities are governed by the
following equations:

pa(x,y,t+1) =pi(x,y,1), (8)

p3(xy.t+1) =pyx,y,1), 9

because in this model, for simplicity, we neglect the effect of
deaths in subpopulations 1 and 2 (i.e., all one-year-old indi-
viduals will be two years old after one year has elapsed, etc.).
Finally we have the following set of equations that describes
our structured population:

pix,y,t+1)= J Rop(ALA)pr(x+ Ay + A 1)dAdA,

+ f Rodp(ALA)ps(x+ A,y + A, 1)dAdA,,

pz(x’y’t+ 1) =[71(X,y’t),

P36y, 04+ 1) = py(x,v,1). (10)

For simplicity, here we have assumed that the net repro-
ductive rate and the dispersal kernel of two- and three-year-
old individuals are the same. Similarly to the nonstructured
model, we look for constant-shape solutions, but now for
each subpopulation, i.e., p;(x,y,n)=w; exp[-Nx—cr)],
palx,y.)=wyexp[-N(x—cf)],  and  ps(x,y,0)=w; exp
[-A(x—ct)]. Then we can rewrite Eq. (10) as

[

Wi eXp()\C) = ROWZJ (P(A)Io()\A)AdA
0

+ ROW3f (P(A)Io()\A)AdA,
0
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w exp(he) = wy,

ws exp(hc) = wy, (11)

where I,(AA) and ¢(A) are defined by Egs. (4) and (5). If
wi, w,, and wy are thought of as the entries of a array

0
1 0
0 1

Tu

\)=

It is well known that the front speed ¢ for systems with
the form (12) can be obtained from [11]

- In[p; (V)]
=min—

, (14)
A>0

where p,; is the largest of the eigenvalues of A (N).

Equation (14) is the result for the front speed of structured
populations in two dimensions. Some results exist in one
dimension [11], but in that case the Bessel function I;(AA)
does not appear at all and the solutions are rather different.
Indeed, in order to compare the one- and two-dimensional
models, below we present the main one-dimensional (1D)
equations and we assign some hypothetical values to the
parameters.

In one dimension, clearly the kernel per unit area
#(A,,A,) has no physical meaning. The 1D evolution equa-
tion [equivalent to Eq. (1)] is obviously

+00
plx,t+T)= Rof plx+A.0E(A)dA,, (15)

where we have not used the notation ¢(A) for the kernel in
order to avoid confusion with the 2D model. Let us assume a
very simple dispersal kernel so that seeds can be only dis-
persed at a specific distance A, (with probability %(1 -De)
along each direction of propagation) or not dispersed at all
(with probability p,, which is called the persistence),

F(A) =P A + 31~ p) oA, - A

+30=p)A,+ A, (16)

where &(A,) is the 1D Dirac delta. It is easy to extend Egs.
(15) and (16) to the overlapping case by performing the same
steps as in the 2D example above (i.e., assuming a three-
stage population, looking for constant-shape solutions
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wi
w=|[w, [,
w3

then the system (11) can be rewritten as
exp(Ne) = HOW, (12)

where H(\) is the matrix

o0

0 Ry f ’ o(A)I(NA)AdA R, J o(A)[y(NA)AdA

0

(13)
0
0
I
pi(x,y,0)=w,; exp[-N(x—ct)], etc.). This yields
( 1
Pe+t 5(1 = Pexp(=AA)
R Cifi=1, j=2.3
1
th _ < + 5(1 _pe)exp()\AO)
ij
1, if i=2, j=1
1 if i=3, j=2
kO’ elsewhere,
(17)

where h}jD are the elements of the matrix I?I;D()\). Such a
matrix is the analog to Eq. (13), but now describing one-
dimensional spread [12-18]. Instead of the 2D Eq. (14), we
obtain for the speed of the front in one dimension

1 A
¢1p = min n[p;p( )], (18)
A>0 N

where p,p is the largest of the eigenvalues of H,p(\).

In order to compare to this 1D invasion speed, in two
dimensions we also consider a kernel corresponding to iso-
tropic jumps at a single distance A=A,

@A) =p,8(A) + (1 -p,) (A - Ap), (19)

and the dispersal kernel (19) must be introduced in H(\) [see
Eq. (13)] in order to solve the 2D invasion speed.

In order to present some estimates of the 1D and 2D
speeds, let us assign some reasonable numerical values to the
parameters [ 10]. We assume that the typical jump distance of
our hypothetical species is Ay=100 m. We take the value of
0.98 for the probability p, (i.e., the probability that a seed is
dispersed 100 m away from its parent tree is 2%). Then,
Table 1 shows 1D and 2D front speeds [obtained by solving
Eq. (18) and (14), respectively] for several values of R,,.
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TABLE I. Front speeds in one and two dimensions (in m/yr) and
the error of the 1D speed (relative to the 2D speed ¢) for an example
with n=3 stages and several values of the net fecundity R, [mea-
sured in seeds/(tree*yr)].

Error

Ro ip c (%)
4 30.8 24.4 20.7

10 39.6 32.5 17.9
40 48.4 40.7 159

It is seen from Table I that the 1D model leads to an
overestimation of the 2D speeds, and the overestimation is
more important for low values of R,. This justifies the need
to tackle the 2D case for nonoverlapping generations, as first
done in the present paper. Still, Eq. (14) holds only for popu-
lations with a life span of 3 years. Below we tackle the
general case of an arbitrary number of years n, and apply it
to an example.

2. Spread of structured populations in two dimensions

In this section we generalize the introductory example
(presented above) to deal with a population structured into n
subpopulations. Although we apply the method to tree spe-
cies, our model can be extended to other invasive species
(like animals). Then one should take into account some spe-
cific features (e.g., the fact that for trees dispersal is simul-
taneous with reproduction) and make new assumptions (e.g.,
for birds dispersal is more frequent in young individuals),
but we plan to tackle such cases in future work. The main
point here is to note that building the reaction-dispersal ma-

trix H(\) is an important step in order to solve the front
speed problem. In the following lines we explain how to

obtain the matrix Ij (\) by using two simpler matrices. At the
end of the section we will use the reaction-dispersal matrix
to find a new general equation for the invasion speed of
structured populations in two dimensions.

In order to introduce the notation, let us first return to our
simple example (three-stage system). If dispersal were not
present, obviously

p1(x.y,t+1) = Ropy(x,y,1) + Rop3(x,y.1),
pz(X,y,t+ 1) =P1(x,y’f),

pa(xy.t+1) =py(x,y,1), (20)
and Eq. (20) would provide the population dynamics of the

three stages, governed only by reproduction. Using a simpler
notation,

Pyt + 1) =Ap(x,y.1), (21)

Where
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pl(x’yvt)
ﬁ(‘X:’y’t): p2(x’y9t)
P3(x’y’f)
From Eq. (20),
0 R, R,
A=|1 0 0 (22)
01 0

A can be called the demographic matrix. Element a;; of this
matrix represents the rate at which an individual in state j
gives rise to individuals in state i per unit time (in this case
one year). For example, element a;,=R, is the productivity
of new (one-year old) individuals from a two-year old indi-
vidual. a3,=1 means that all two-year-old individuals will be
three years old a year later (and similarly for a,;=1). The
zeros of the matrix represent the transitions that are forbid-
den under our assumptions. For example, a,3=0 because a
three-year old individual will never become neither produce
a two-year-old individual a year later.

Let us now add stage-specific dispersal into this descrip-
tion. Similarly to 1D studies [11,23], we introduce
¢i;(A,,A,) as the probability that an individual making the
transition from stage i to stage j moves from location
(x+A,,y+A,) to location (x,y). If there is no dispersal dur-
ing a given transition, the associated kernel is the 2D Dirac
delta function.

Instead of Eq. (20), taking into account dispersal events
we obtain the set

40 3

pilx,yt+1)= E ¢ij(Ax7Ay)aijpj

- j=1

X(x+A,y+A,1NdAdA,,  (23)

with i=1,2,3. Again, the notation can be simplified by cre-

ating a dispersal matrix ®. In our example,

- 52D(A) ¢(Ax’ Ay) ¢(Ax’ Av)
O =|op(A)  5p(A) op(a) . (24)
op(A)  &p(A)  H&p(A)

We can now rewrite Eq. (23) in vector form,

+00
plx,y,t+1)= f @ OAzﬁ(x +A,y+A,1dAdA,,
(25)

where the symbol ° stands for the Hadamard product [22],

ie., (<f>°A3,-F ¢;a;;. It is very important to note that Eq. (25)
remains valid if we extend our study to a population with a
larger number of stages (say, n stages). In this case, the ma-

trices ® and A are both square matrices of order n. This is
the general case we will now deal with.
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For each subpopulation, we look for constant-shape solu-
tions (e.g., pi(x,y,r)=w; exp[-N(x—cr)], as in the example
above). Whereas in the three-stage population (considered
above) using this into Eq. (25) leads to Eq. (11), in the gen-
eral case of n stages we obtain

+0 N N
exp(\e)w = (f doA exp[— NA cos 6]dAd0>vT/.

(26)

Assuming an isotropic dispersal kernel, Eq. (26) can be
written as

exp()\c)vﬁ=<27'r J qﬁoXIO()\A)dA)w, (27)
0

where I)(AA) stands for the modified Bessel function of the
first kind and order zero [Eq. (4)].

It is easy to see that the matrix inside the brackets in the
right-hand side of Eq. (26) becomes, for n=3, the matrix

1-31()\) given by Eq. (13). We define generally 1-31()\) as

3 +oe 3 3
H(\) =2 f o AL (NA)dA. (28)

0

Then we can rewrite Eq. (26) as

exp(\e)w = HO\)», (29)

and, as mentioned above, the solution for the front speed c is

[11]

¢ = min 2 M1 (30)
>0 A

where p, is the largest real of the eigenvalues of H(\), which
is now given by Eq. (28). This new result is the 2D equiva-
lent to previous results in one dimension [11] for an arbitrary
number of stages n. However, we stress that 1D results can
be applied only in very special systems (e.g., a population
spreading along a coast or a river), but most population in-
vasions on the Earth take place in two dimensions. There-
fore, in most cases 1D results cannot be applied. Indeed, the
Bessel function 7;,(AA) appears in Eq. (28), whereas it does
not appear at all for populations spreading in one dimension
[11]. In Sec. III B we present some numerical 1D and 2D
overlapping results for a population with a large number of
stages.

III. APPLICATION

In previous sections we have developed a model to calcu-
late front speed for a general case of structured populations
in two dimensions. As an example, in this section we will use
the matrices in Eq. (25) and parameter values appropriate to
study a specific tree species, namely, the yellow poplar (Li-
riodendron tulipifera). This species was already considered
in Ref. [10], but only by means of a nonoverlapping genera-
tion model. Below we apply our overlapping-generations
model, and compare to simulations of structured populations.
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Furthermore, at the end of this paper we will tackle the
question of how important the effect of overlapping genera-
tions is, by comparing our results with those of the
nonoverlapping-generations model [10].

A. Molecular dynamics simulations

We are not dealing with a differential but with an inte-
grodifference set of equations in two dimensions [Eq. (25)].
Therefore, numerical simulations in this paper will not be
based on finite-step approximations to partial derivatives but
on molecular dynamics. We have performed simulations on a
2D grid, with nearest neighbors separated by a distance A .
Initially p(x,y,0)=1 at (x,y)=(0,0) and p(x,y,0)=0 else-
where. At each time step, we compute the new number den-
sity of trees p(x,y,t+1) at all nodes of the grid as follows.

First of all, because of the structure of the population, not
all of the individuals can produce seeds. We need to distin-
guish the adult population (i.e., individuals that take a role in
a reproduction event) from juvenile individuals (i.e., those
that cannot yet produce seeds). In order to do so, we intro-
duce a second field j(x,y,r) that accounts for the juvenile
individuals. While the first field accounts for the total popu-
lation density [i.e., p(x,y,?) includes juveniles and adults],
the second one contains only the juvenile population density
J(x,y,1). The number of individuals being available to repro-
duce [namely a(x,y,?)] is simply the difference between
p(x,y,1) and j(x,y,7). In each time step (or iteration), our
computer program calculates the seed production Ry a(x,y,?)
at every node and then redistributes this value among all grid
nodes by using the dispersal kernel. Moreover, we also take
into account when an individual is too old to be fertile (i.e.,
when it reaches the typical life span [ of the species consid-
ered). This is done by removing such individuals from the
calculations after each time step (i.e., after each year).

We will focus our attention on the effects of the popula-
tion structure (in order to solve the front speed problem),
instead of studying complicated dispersal kernels. Therefore,
our simulations apply a simple kernel such that, when a seed
is produced, it either remains at the same node where it was
generated (with a probability p,) or it is dispersed to one of
the four nearest-neighbor nodes located at distance A, [with
probability (1-p,)/4].

We have performed our 2D simulations by using the typi-
cal values measured for the yellow poplar, namely, life span
[=130 yr., age at first reproduction 7=20 yr., persistence
p.=0.997 98 and characteristic dispersal distance A,
=6000 m [24]. The results for the front speed are shown in
Fig. 1, both along the horizontal and along the diagonal di-
rection of the 2D grid (upper and lower triangles in Fig. 1).
We also include the average speeds between both directions
(circles in Fig. 1).

B. CSRW

In order to study an overlapping-generations front using a
2D CSRYV, first we need to determine the order of the ma-
trices in Eq. (25). Recall that in our structured-population
model, every year of an individual’s life is thought of as a
different stage. From the life span of the yellow poplar [24],
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FIG. 1. Front speed in two dimensions versus net reproductive
rate. There are relevant differences between the CSRW and the
simulations (above 5%). Because of this, we have also developed a
DSRW model that agrees correctly with simulations (differences are
always under 3%).

namely, 130 years, it follows that Eq. (25) shall be a system
of order 130 [25]. Yellow poplar trees begin to produce seeds
when they are 20 years old. Therefore, the demographic ma-

trix A will be

Ry, if i=1 and j =20
if i=j+1 (31)
0, otherwise.

a;=11,

Note that the structure of this matrix is the same as that of
Eq. (22), with the difference that the matrix (31) is of order

130. In order to obtain the dispersal kernel matrix <13, we
recall that, as explained above, the dispersal kernel per unit
length reads

(1 —pe), if A=A0
@(A) =1 Pes if A=0 (32)
0, otherwise,

where A, and p, take the typical values of long-distance
dispersal and persistence for the yellow poplar, namely, p,
=0.997 98 and A;=6000 m [24]. On the other hand,

A
PA) e o1 and j>20
27A (33)

5P(A) otherwise,

d, =

)

where 6*P(A) is the Dirac delta function in two dimensions,
namely [see Eq. (5)]

5]D(A)
52D A =—" 34
(A) A (34)
and its normalization condition reads
0 21
f f SP(A)AdAdO=1. (35)
0 Jo
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TABLE II. Front speeds in one and two dimensions (in m/yr)
and the error of the 1D speed (relative to the 2D speed ¢) for n
=130 stages (yellow poplar) and several values of the net fecundity
R, [measured in seeds/(tree*yr)].

Error

Rg Cip c (%)
4 164.1 139.8 14.8
10 193.7 165.8 144
40 236.8 204.5 13.6

We have used these equations into Egs. (28)—(30) to com-
pute invasion speeds for different values of the net reproduc-
tive rate R(. The results are shown in Fig. 1. Both the simu-
lations and the CSRW predictions are seen to increase with
increasing values of R, as it was to be expected intuitively.
However, there are some differences (larger than 5%) be-
tween the CSRW and the average simulations. This effect is
due to the fact that, while the CSRW describes jumps into a
ring of radius A, the numerical simulations describe jumps
to four discrete points (i.e., the four nearest neighbors of the
grid). The consistency between the analytic and numeric re-
sults can be improved by using a discrete-space random-
walk model (DSRW). In such an analytical model, seeds and
trees can only lie on discrete points of the space (similarly to
what happens in the numerical simulations). Recently, a
DSRW model for nonstructured (i.e., nonoverlapping) popu-
lations of persistence p, has been proposed [20]. In the next
section we will extend that nonoverlapping DSRW model to
our structured populations, and we will apply it to the yellow
poplar.

Before closing this section, a numerical comparison to the
1D overlapping model can be useful. Whereas Sec II B 1 and
Table I include such a comparison for three-stage popula-
tions, here we present it for a yellow poplar population (be-
cause it has a large number of stages). Similarly to Eq. (17),

—
elements hl-ljD of the corresponding yellow poplar H,(\) ma-
trix take the form

p
Pet %(1 = Pe)exp(=NAy)
Ry { , ifi=1, j=T
P =9 +5(1=po)exp(MA,)
1, ifi=j+1
L 0, elsewhere,

and the front speed is given by Eq. (18). Using the values of
the persistence and jump distance above (i.e., p,=0.997 98
and Ay=6000 m) we have calculated the front speed for
several values of R,. The results are shown in Table II. It

051918-6



FRONTS FROM TWO-DIMENSIONAL DISPERSAL ...

follows that for a yellow poplar population, the overestima-
tion of the 1D model is still important, but a bit lower than in
the three-stage example (Table I). In all cases, the overesti-
mation is always higher than 10% (and it increases for de-
creasing values of the net reproductive rate). Thus we remark
the convenience of using a 2D model, also in the case of
populations with large number of stages.

C. DSRW
1. Horizontal direction (0°)

Assuming nonoverlapping generations, the DSRW model
corresponds to the following evolution equation [20]

(1 _pe)
P(X,y,t"' T) :Ro{pep(-x’y’t) + T

X[p(x * AO’y’t)
+plx,y = Ao,t)]}. (36)

In contrast, the dynamics of a population with overlap-
ping generations will be driven by the set

n

(1
Pl(x’y,t"' 1) =R02 {Pepi()ﬁy,f) +
i=T

_pe)
4

X[pi(-x * AO’yJ)

+Pi(x,y * AO’t)] >

p2(-x7y7t+ 1) =P1(x’y,t)’

p3(xy.t+ 1) = pyx,y,1),

pn(x’y’t"' l)zpn—l(x’y’t)’ (37)

where, as in the previous sections, for simplicity we have
assumed that all stages have the same reproductive and dis-
persive behavior, that individuals in stage i will be in stage
i+1 a year later, which trees cannot reproduce before the
so-called generation time 7, etc.

As usual, we look for constant-shape solutions with the
form p,(x,y,t)=w; exp[-A(x—ct)]. We remark that looking
for such solutions implies that we will evaluate the speed of
the front along the horizontal direction (i.e., the 0° direction
relative to the x axis). In this way, we obtain the following
equations:

! +1 1-p,
w, exp(Ac) =Ry, w; PeT + Tpcosh()\Ao) ,
i=T

wy exp(Ne) =wy,

w3 exp(hc) = wy,
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w, exp(Ac) =w,_;. (38)

Finally, we use matrix notation to rewrite the system in more
compact form,

exp(Ne) = HOWw, (39)

where it is easy to see that the reaction-dispersal matrix of
population takes the form

+1 1-
R ’”T+T”€cosh(m0) Cifi=1, j=T
hij= . . .
' L, if i=j+1
0, elsewhere,

(40)
and the front speed will be found by means of Eq. (30).
2. Diagonal direction (45°)

We now introduce new coordinate axes (x’,y’) on the
diagonal direction, i.e., X’ and Y’ axes rotated 45° with re-
spect to the X and Y axes. Then, for nonoverlapping genera-
tions the population density evolves according to [20]

o ror (1 _P)
px’,y' t+ 1)=R0{pep(x VL0 + Te
A
X {p(x' + ’—ro,y' + ,——O,t>
v V2
A

However, for overlapping generations we have instead

! ! : 1 ! (1 _pe)
pl(x Y ’t+1)=ROE {pepi(x Y ’t)+ 4
i=T

X p»(x’+ﬂy’+ﬂt)
i \’59 — E’

A A
+pl-(x’ - ,—_O,y’ * T—O,t> ,
V2 V2

p2(x,ay,’t+ 1) =p1(x,’y,’t)’

p3(x"y"t+ 1) =py(x'.y".0),

pa(x'y 1+ 1) =p,_(x",y".1). (42)

Next, we look for constant-shape solutions, now with the
form p,(x",y’,1)=w; exp[-\(x' —ct)]. We obtain from the set
(42),

! A
wy exp(hc) = E w,-Ro[pe +(1 —pe)cosh<)\,—50>} ,
V

=T
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FIG. 2. Front speed in two dimensions versus net reproductive
rate. Both nonoverlapping (squares) and overlapping (circles)
DSRW results correspond to the average between the horizontal and
diagonal spread directions (Sec. III C). Each model agrees perfectly
with its corresponding simulations (continuous and dashed lines).
The effect of considering overlapping generations becomes more
important as lower values of R, are considered.

w, exp(Ne) =wy,

ws exp(hc) = wy,

w, exp(\c) =w,_,, (43)

the corresponding reaction-dispersal matrix takes the form

S AN L
ERO pe+(1=pJcosh| \= | |, if i=1, j=T
) i=T V2
Tl ifi=j+1
0, elsewhere,

(44)

and the front speed shall be obtained with the usual proce-
dure [Eq. (30)].

In Fig. 1, the DSRW calculations have been performed for
both the horizontal and the diagonal direction (dashed and
dotted curves, respectively). We can see an almost perfect
agreement between DSRW and simulations (differences are
always under 2% after averaging results along both direc-
tions). Thus the DSRW is the model that agrees closer to the
simulations, even when overlapping generations are consid-
ered. This shows the validity of the simulation results in Fig.
1, as well as the origin of the discrepancies between the
CSRW and the simulations in Fig. 1.

IV. NONOVERLAPPING VERSUS OVERLAPPING
GENERATIONS MODEL

The nonoverlapping approximation has an obvious advan-
tage, namely, that computation times are much shorter [26].
Figure 2 shows invasion speeds of yellow poplar fronts cal-
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culated with both the classical, nonoverlapping model and
our overlapping model (both in two dimensions). From Fig.
2 we see that the behavior of both nonoverlapping (squares)
and overlapping (circles) front speeds are similar. As it was
expected, the overlapping model yields faster invasion
speeds. Actually, both models tend to the same asymptotic
speed for very high values of the net reproductive rate (R,
—o0), This happens because in the limit Ry— o, the contri-
bution of the youngest individuals able to produce seeds on
the front clearly becomes much more important than that
from older trees, and that is precisely the main assumption of
the nonoverlapping approximation. In contrast, multiple re-
production events have a very important effect on the front
speed for lower, realistic values of the net reproductive rate
R,. Figure 2 shows substantial differences between the non-
overlapping and the overlapping case for 2 <<R,<<10, which
is within a realistic range for the yellow poplar [24]. The
speed predicted by the classical nonoverlapping model is less
than % of that predicted by our overlapping model.

From Fig. 2, it is also very interesting that the
overlapping-generations effect allows the survival and spread
of the population even for Ry<<1 (the precise threshold will
of course depend on the features of the species considered),
whereas the nonoverlapping model predicts extinction if R
<1 [21]. This effect also shows that the overlapping-
generations model can be very important to perform realistic
predictions on the fate of biological populations. It can also
be very useful in more detailed studies involving, e.g., non-
steady or random values of R, (simulating climate change,
drought, or epidemic episodes), different productivities R;
for each stage i, etc. In contrast, the nonoverlapping model is
not suitable to analyze such situations because it will break
down as soon as values Ry<<1 are considered.

Concerning Reid’s paradox of rapid tree migration, our
previous work suggests that it can be solved by taking into
account bimodal dispersal kernels (at least, as far as the order
of magnitude of the speed is concerned). The structure of the
population, introduced in this paper, makes the overlapping-
generations model more realistic. Therefore, we expect its
results to be closer to real measurements of, for example,
postglacial recolonization fronts (even though such direct
comparisons are not yet feasible for a variety of tree species,
because of the uncertainties in the measurements of survival
rates and dispersal kernels).

V. CONCLUSIONS

In this paper we have presented a model that considers the
effect of overlapping generations (or, more generally, the
stage-structure) of populations that spread on a two-
dimensional space. Describing such populations with a ma-
trix notation is useful, and notably simpler, in order to solve
the equations that drive the reaction-dispersal dynamics. Ac-
tually, in Secs. II B, III B, and III C, writing down the

reaction-dispersal matrix H is one of the main steps in the
resolution of the front speed problem. This reaction-dispersal
matrix contains all of the information concerning the popu-
lation (i.e., parameters such as the persistence, stage-to-stage
transitions, characteristic dispersal distance, etc.) necessary
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to apply Eq. (30) to a specific species and, thus, to obtain its
front speed. Generally, the construction of two simpler ma-
trices (namely the demographic matrix and the dispersal one)
is quite useful to create the reaction-dispersal matrix (as it is
done for the CSRW in Sec. III B). However, in some cases it

is easier to develop the H matrix directly from the descrip-
tion of the population. That is the case of the DSRW ex-
plained in Sec. III C.

Figure 1 shows remarkable differences between the
CSRW analytical results and the corresponding molecular-
dynamics simulations. The same problem was solved previ-
ously in the nonoverlapping case using the DSRW descrip-
tion [20]. Therefore, in Sec. Il C we have extended the
DSRW to the overlapping case, obtaining an almost perfect
agreement with the simulations (see Fig. 1).

We have compared the nonoverlapping and the overlap-
ping models (Fig. 2.) Overlapping-generations fronts are al-
ways faster than nonoverlapping ones (except in the limit
Ro— ). The overlapping-generations approximation can se-
riously underestimate the speed. Indeed, for realistic param-
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eter values, the speed predicted by the classical, nonoverlap-
ping model is less than % of that predicted by our
overlapping model. This shows the interest of the problem
solved in the present paper. It is also important that the
nonoverlapping-generations approximation can wrongly pre-
dict extinction for low values of the net reproductive rate R.
Our 2D overlapping-generations model can be easily ex-
tended to describe more complicated situations that cannot
the tackled within the nonoverlapping approximation (e.g., a
net reproductive rate R, that decreases with increasing age of
individuals), so future works could report a variety of new
applications of the results reported in the present paper.
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