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An in silico tool that can be utilized in the clinic to predict neoplastic progression and propose individualized
treatment strategies is the holy grail of computational tumor modeling. Building such a tool requires the
development and successful integration of a number of biophysical and mathematical models. In this paper, we
work toward this long-term goal by formulating a cellular automaton model of tumor growth that accounts for
several different inter-tumor processes and host-tumor interactions. In particular, the algorithm couples the
remodeling of the microvasculature with the evolution of the tumor mass and considers the impact that
organ-imposed physical confinement and environmental heterogeneity have on tumor size and shape. Further-
more, the algorithm is able to account for cell-level heterogeneity, allowing us to explore the likelihood that
different advantageous and deleterious mutations survive in the tumor cell population. This computational tool
we have built has a number of applications in its current form in both predicting tumor growth and predicting
response to treatment. Moreover, the latent power of our algorithm is that it also suggests other tumor-related
processes that need to be accounted for and calls for the conduction of new experiments to validate the model’s

predictions.
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I. INTRODUCTION

Cancer is a highly complex and heterogeneous set of dis-
eases. Dynamic changes in the genome, epigenome, tran-
scriptome, and proteome that result in the gain of function of
oncoproteins or the loss of function of tumor suppressor pro-
teins underlie the development of all cancers. While the prin-
ciples that govern the transformation of normal cells into
malignant ones are rather well understood [ 1], having knowl-
edge of these changes has not yet proven sufficient to deduce
clinical outcome.

The difficulty in predicting clinical outcome arises be-
cause many factors other than the mutations responsible for
oncogenesis determine tumor growth dynamics. It has been
observed that many complex interactions occur between tu-
mor cells and between a cancer and the host environment.
Multidirectional feedback loops occur between tumor cells
and the stroma, immune cells, extracellular matrix, and vas-
culature [2,3]. Given the number and nature of these interac-
tions, it becomes increasingly difficult to reason through the
feedback loops and correctly predict tumor behavior.

For these reasons, a better understanding of tumor growth
dynamics can be expected from a computational model. The
holy grail of computational tumor modeling is to develop a
simulation tool that can be utilized in the clinic to predict
neoplastic progression and response to treatment. Not only
must such a model incorporate the many feedback loops in-
volved in neoplastic progression, the model must also ac-
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count for the fact that cancer progression involves events
occurring over a range of spatial and temporal scales [4]. A
successful model would enable one to broaden the conclu-
sions drawn from existing medical data, suggest new experi-
ments, test hypotheses, predict behavior in experimentally
unobservable situations, and be employed for early detection.

Over the past several decades, an incredibly large body of
research has been developed in the field of biophysical can-
cer modeling. While an extensive overview of the field is
beyond the scope of the text, it is useful to briefly explore
both the biological processes that have been incorporated
and the computational techniques used to analyze a range of
tumor growth models. From a biological perspective, a num-
ber of intertumor processes and host-tumor interactions have
been studied via modeling. These include, but are not limited
to, the impact of different sequences of genetic mutations on
tumor emergence and survival [5,6], the competition for
spaces and resources between cells (both normal and malig-
nant) [4,7], the interactions between the tumor and the host
immune system [8,9], and the remodeling of the host blood
supply or extracellular matrix by a growing tumor [10-15].

A range of theoretical techniques have been brought to
bear on these biological problems. Macroscopic phenomena
(such as the evolution of tumor cell concentration and nutri-
ent concentration) are typically modeled using coupled par-
tial differential equations that are either diffusion based or
developed in the realm of continuum and fluid mechanics
[15-19]. Mesoscopic phenomena, including but not limited
to cell-level dynamics (growth and invasion) and angiogen-
esis, draw on both deterministic [9,20] and stochastic mod-
eling approaches [6,14,21,22]. At the microscopic scale
much emphasis has been placed on quantitatively studying
the interactions between molecular species within subcellular
compartments. Both deterministic approaches (typically
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based on mass-action kinetic principles [15,23-25]) and sto-
chastic approaches [26] have been utilized to model micro-
scopic contributions to tumor growth.

In the current paper, we seek to build upon the set of
biophysical tools available to predict tumor growth in hetero-
geneous and vascular environments. This algorithm merges,
adapts, and improves upon the following models of tumor
growth that were previously developed by our group: (1)
original cellular automaton (CA) model of three-dimensional
(3D) tumor growth [21]; (2) vasculature evolution model that
explores the feedback between a growing neoplasm and the
host blood vessel network [14]; (3) environmentally con-
strained growth algorithm that considers the impact that
organ-imposed physical confinement and environmental het-
erogeneity have on tumor growth [27]; (4) heterogeneous
cell population model in which genetic mutations can alter a
tumor cell’s phenotype [28,29].

The result of merging and expanding upon these models is
a versatile, more comprehensive cancer simulation tool with
potential clinical applications. For example, as we will ex-
plore in Sec. V, the model can be used to determine some
necessary features to include in a clinically relevant cancer
simulation tool and it can be used to test the effect that dif-
ferent treatment strategies have on tumor progression. Fur-
thermore, since the tumor-host interactions considered in the
model occur at different length scales (at the cellular level
for the mutations and vasculature and at the tissue level for
confinement effects), this more comprehensive model also
tackles the problem of how to integrate these changes into a
single tumor growth algorithm.

In Sec. II, we briefly review the relevant previous tumor
models. In Sec. III, we describe how we merge, adapt, and
expand these models to obtain a more comprehensive model
of tumor growth. In Sec. IV, we apply the algorithm to study
various scenarios for tumor growth and present results. Sec-
tion V discusses ramifications of the model and conclusions
are given in Sec. VL.

II. MODEL BACKGROUND

The algorithm we present here merges and modifies pre-
viously developed models of tumor growth that stem from a
CA model developed by Kansal er al. [21]. In the original
CA algorithm, it was shown that three-dimensional tumor
growth and composition can be realistically predicted by a
simple set of automaton rules and a set of four microscopic
parameters that account for the nutritional needs of the tu-
mor, cell-doubling time, and an imposed spherical symmetry
term [21]. The success of this model is in part related to its
simplicity, and one of the simplifying assumptions is that the
vasculature is implicitly present and evolves as the tumor
grows. In order to incorporate more biological detail into the
model, the algorithm has previously been modified to study
the feedback that occurs between the growing tumor and the
evolving host blood supply [14]. While this modification to
the algorithm allows new growth scenarios to be tested and
new therapies to be explored, both the modified and original
versions of the model limit the effects of mechanical con-
finement to one parameter that imposes a maximum radius
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on a spherically symmetric tumor. Since tumors can grow in
organs of any shape with nonhomogeneous tissue structure,
we have also previously generalized the original algorithm to
allow growth in any confining heterogeneous environment
[27]. However, until now, the vascular-growth and environ-
mentally constrained scenarios were treated separately. In or-
der to maximize the utility of these models, here we discuss
how improved versions of these algorithms can be merged
into one simulation tool that can be used to explore more
scenarios than any of the previous models in isolation.

A. Vascular network evolution

In order to incorporate a higher level of biological realism
into the original CA algorithm, a two-dimensional (2D) hy-
brid cellular automaton model was developed to explore the
feedback that occurs between a growing tumor and the
evolving host blood supply [14]. The computational algo-
rithm is based on the co-option-regression-growth experi-
mental model of tumor vasculature evolution [30]. In this
model, as a malignant mass grows, the tumor cells co-opt the
mature vessels of the surrounding tissue that express con-
stant levels of bound angiopoietin-1 (Ang-1). Vessel co-
option leads to the upregulation of the antagonist of Ang-1,
angiopoietin-2 (Ang-2). In the absence of the anti-apoptotic
signal triggered by vascular endothelial growth factor
(VEGF), this shift destabilizes the co-opted vessels within
the tumor center and marks them for regression [30]. Vessel
regression in the absence of vessel growth leads to the for-
mation of hypoxic regions in the tumor mass. Hypoxia in-
duces the expression of VEGF, which in turn stimulates the
growth of new blood vessels.

A system of reaction-diffusion equations was developed
to track the spatial and temporal evolution of the aforemen-
tioned key factors involved in blood vessel growth and re-
gression. Based on a set of algorithmic rules, the concentra-
tion of each protein and bound receptor at a blood vessel
determines if a vessel will divide, regress, or remain stag-
nant. The structure of the blood vessel network, in turn, is
used to estimate the oxygen concentration at each cell site.
Oxygen levels determine the proliferative capacity of each
automaton cell. The reader is referred to Ref. [14] for the full
details of this algorithm. The model proved to quantitatively
agree with experimental observations on the growth of tu-
mors when angiogenesis is successfully initiated and when
angiogenesis is inhibited. Further, due to the biological de-
tails incorporated into the model, the algorithm was used to
explore tumor response to a variety of single and multimodal
treatment strategies [14].

B. Environmentally constrained growth

An assumption made in both the original CA algorithm
and the vascular algorithm is that the tumor is growing in a
spherically symmetric fashion. In a study performed by
Helmlinger et al. [31], it was eloquently demonstrated that
neoplastic growth is spherically symmetric only when the
environment in which the tumor is developing imposes no
physical boundaries on growth. In particular, it was shown
that human adenocarcinoma cells grown in a 0.7% gel that is
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placed in a cylindrical glass tube develop to take on an el-
lipsoidal shape, driven by the geometry of the capillary tube.
However, when the same cells are grown in the same gel
outside the capillary tube, a spherical mass develops [31].
This experiment clearly highlights that the assumption of
radially symmetric growth is only valid when a tumor grows
in an unconfined or spherically symmetric environment.

Since many organs, including the brain and spinal cord,
impose nonradially symmetric physical confinement on tu-
mor growth, we modified the original CA algorithm to incor-
porate boundary and heterogeneity effects on neoplastic pro-
gression [27]. The first modification that has to be made to
the original algorithm is simply to define the boundary that is
confining tumor growth. More importantly, several modifica-
tions have to be made to the original automaton rules to
account for the impact of this boundary on neoplastic pro-
gression. The original CA algorithm imposed radial symme-
try in order to determine whether a cancer cell is prolifera-
tive, hypoxic, or necrotic. The assumption of radially
symmetric growth was also utilized in determining the prob-
ability a proliferative cell divides. In order to permit tumor
growth in any confining environment, the algorithm was
modified to remove all assumptions of radial symmetry from
the automaton evolution rules. In doing this, we showed that
models that do not account for the geometry of the confining
boundary and the heterogeneity in tissue structure lead to
inaccurate predictions on tumor size, shape, and spread (the
distribution of cells throughout the growth-permitting re-
gion) [27].

C. Genetic mutations

While there are many benefits to merging the previously
described algorithms, one feature that the merged model (as
described thus far) does not address is that each patient’s
tumor has its own genetic profile and that this profile is im-
portant in determining growth dynamics and response to
treatment. This is a well-established biological fact that we
have previously treated theoretically. In particular, in Ref.
[28] it was shown that mutant populations which confer no
growth rate advantage can emerge in the tumor mass and that
the emergence of any mutant strain can drastically alter tu-
mor growth dynamics. The influence that just one mutant
strain can have on prognosis was shown to be significant
suggesting that our merged algorithm can benefit greatly by
accounting for tumor cell heterogeneity.

III. METHODS

Each of the previously discussed algorithms were de-
signed to answer a particular set of questions and success-
fully served their purpose. It is therefore very useful to
merge each algorithm into a single cancer simulation tool
that cannot only accomplish what each individual algorithm
accomplishes, but can also be expected to have emergent
properties not identifiable prior to model integration.

A. Vascular network evolution in confined environments

In this section, we will outline the merged cancer simula-
tion tool. For more details on implementing the vascular evo-
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lution aspects of the model, the reader is referred to Ref.
[14]. For more details on implementing tumor growth in con-
fined regions, the reader is referred to Ref. [27]. In develop-
ing the merged algorithm, some modifications were made to
the automaton rules to more realistically mimic tumor pro-
gression. The modifications incorporated in the simulation
tool will also be highlighted here.

(1) Automaton cell generation: a Voronoi tessellation of
random points generated using the nonequilibrium procedure
of random sequential addition of hard disks determines the
underlying lattice for our algorithm [21,32]. Each automaton
cell created via this procedure represents a cluster of biologi-
cal cells.

(2) Define confining boundary: each automaton cell is di-
vided into one of two regimes—nonmalignant cells within
the confining boundary and nonmalignant cells outside of the
boundary.

(3) Healthy microvascular network: the blood vessel net-
work which supplies the cells in the tissue region of interest
with oxygen and nutrients is generated using the random
analog of the Krogh cylinder model detailed in Ref. [14].
One aspect of the merger involved limiting blood vessel de-
velopment to the subset of space in which tumor growth
occurs.

(4) Initialize tumor: designate a chosen nonmalignant cell
inside the growth-permitting environment as a proliferative
cancer cell.

(5) Tumor growth algorithm: time is then discretized into
units that represent one real day. At each time step:

(a) Solve partial differential equations: a previously devel-
oped system of partial differential equations [14] is numeri-
cally solved one day forward in time. The quantities that
govern vasculature evolution, and hence are included in the
equations, are concentrations of VEGF (v), unoccupied
VEGFR-2 receptors (r,), the VEGFR-2 receptor occupied
with VEGF (r,), Ang-1 (a;), Ang-2 (a,), the unoccupied
angiopoietin receptor Tie-2 (r,q), the Tie-2 receptor occupied
with Ang-1 (r,;), and the Tie-2 receptor occupied with Ang-2
(r,2). The parameters in these equations include diffusion

coefficients of protein x (D,), production rates b, and b,,
carrying capacities K,, association and dissociation rates
ligand-receptor complex y (k, and k_,), and decay rates u,.
Any term with a subscript i denotes an indicator function; for
example, p; is a proliferative cell indicator function. It equals
1 if a proliferative cell is present in a particular region of
space, and it equals O otherwise. Likewise, /; is the hypoxic
cell indicator function, n; is the necrotic cell indicator func-
tion, and e; is the endothelial cell indicator function. The
equations solved at each step of the algorithm are the follow-
ing:

Jv

P D,Av + b,hi(h —v*/K,) — kgvr,o+ k_or, — v, (1)
da
&_tl =b,ep;+h;+n;)(ey— a%/Ka)

—kiairgo+korg — paar, (2)
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% =D pAay +bye(p;+hi+n;)(eo— a%/Ka)
+ boohi(h = a3/K,) = kaor o + k oty = pranas, (3)
(7;’1;0 =—kouryo + k_ory, (4)
(9;‘;0 =—kya 140+ k_17a1 — koot o+ k o g, (5)
% =kgvr,o—k_or,, (6)
(9;‘;1 =kya ry—k_ 174, (7)
% = katasr 0 — ka2 (8)

In these equations, h(x,y,t) represents the concentration of
hypoxic cells and e, represents the endothelial cell concen-
tration per blood vessel. The system of differential equations
contains 21 parameters, 13 of which were taken from experi-
mental data. Parameters we were unable to find in the litera-
ture have been estimated. For more details on the parameter
values, as well as information on the initial and boundary
conditions and the numerical solver, the reader is referred to
Ref. [14].

(b) Vessel evolution: check whether each vessel meets the
requirements for regression or growth. Vessels with a con-
centration of bound Ang-2 six times greater than that of
bound Ang-1 regress [33], provided that the concentration of
bound VEGF is below its critical value. Vessel tips with a
sufficient amount of bound VEGF sprout along the VEGF
gradient.

(c) Nonmalignant cells: healthy cells undergo apoptosis if
vessel regression causes its oxygen concentration to drop be-
low a critical threshold (more particularly, if the distance of a
healthy cell from a blood vessel exceeds the assumed diffu-
sion length of oxygen, 250 um [34]). Further, nonmalignant
cells do not divide in the model. While nonmalignant cell
division occurs in some organs, a hallmark of neoplastic
growth is that tumor cells replicate significantly faster than
the corresponding normal cells. Hence, we work under the
simplifying assumption that nonmalignant division rates are
so small compared to neoplastic division rates that they be-
come relatively unimportant in the time scales we are con-
sidering. In the cases where this assumption does not hold,
nonmalignant cellular division would have to be incorpo-
rated into the model.

(d) Inert cells: tumorous necrotic cells are inert. This as-
sumption is certainly valid for the tumor type that motivated
this modeling work, glioblastoma multiforme. In the case of
glioblastoma, the presence of necrosis is an important diag-
nostic feature and, in fact, negatively correlates with patient
prognosis [35].
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(e) Hypoxic cells: a hypoxic cell turns proliferative if its
oxygen level exceeds a specified threshold [14] and turns
necrotic if the cell has survived under sustained hypoxia for
a specified number of days. In the original algorithms, the
transition from hypoxia to necrosis was based on an oxygen
concentration threshold. However, given that cells (both tu-
morous and nonmalignant alike) have been shown to have a
limited life span under sustained hypoxic conditions (without
the oxygen concentration dropping below some critical
threshold) [36], a temporal switch more accurately describes
the hypoxic to necrotic transition. Thus, a novel aspect of the
merged algorithm is a temporal hypoxic to necrotic transi-
tion. It has been measured that human tumor cells remain
viable in hypoxic regions of a variety of xenografts for 4—10
days [36]. In our simulations, we will use the upper end of
this measurement and assume that tumor cells can survive
under sustained hypoxia for 10 days.

(f) Proliferative cells: a proliferative cell turns hypoxic if
its oxygen level drops below a specified threshold. However,
if the oxygen level is sufficiently high, the cell attempts to
divide into the space of a viable nonmalignant cell in the
growth-permitting region. The probability of division p;, is
given by

Pdiv :p()(l - r/Lmax)’ (9)

where p, is the base probability of division, r is the distance
of the dividing cell from the geometric center of the tumor,
and L,,,, is the distance between the closest boundary cell in
the direction of tumor growth and the tumor’s center. In the
original implementations of the algorithm, p, was fixed to be
0.192, giving a cell-doubling time of In(2)/In(1+pg)
~4 days. In the merged algorithm proposed here, we
wanted to account for fact that tumor cells with a higher
oxygen concentration likely have a larger probability of di-
viding than those with a lower oxygen concentration. For
this reason, we have modified the algorithm so that p, de-
pends on the distance to the closest blood vessel d,,s.;
(which is proportional to the oxygen concentration at a given
cell site). The average value of p, was fixed to be 0.192, and
we have specified that p,, takes on a minimum value p,,;,, of
0.1 and a maximum value p,,,, of 0.284. This means that a
proliferative cell in the model can have a cell doubling time
anywhere in the range of 3-7 days. The formula used to
determine py is

_ Pmin — Pmax

d + , 10
DO vessel T Pmax ( )

Po
2

where Do, is the diffusion length of oxygen taken to be
250 wm [14]. Both p,,;, and p,,.. depend on the average
probability of division. If this average probability changes,
so does p,,i, and .-

(g) Tumor center and area: after each cell has evolved,
recalculate the geometric center and area of the tumor.

From a strictly algorithmic perspective, some aspects of
developing the merged model were fairly straightforward, for
example, replacing one equation or algorithmic condition
with another. Other aspects of developing the merged algo-
rithm were more subtle. For example, developing a complete

051910-4



GROWING HETEROGENEOUS TUMORS IN SILICO

vascular network using the random analog of the Krogh cyl-
inder model and determining the combined vessel-boundary
effect on cellular evolution involved more precisely defining
the relationship between these interrelated tumor compo-
nents as detailed above.

The merged algorithm demands a fairly large amount of
computational resources. The storage of the Voronoi cell
data, nearest-neighbor information, as well as vascular struc-
ture data requires a significant amount of memory. Solving
the partial differential equations required to evolve the vas-
culature and determining the distance of a cell from the pa-
rametrized boundary require significant computational time.
For these reasons, the merged algorithm has been developed
in C++ and written in parallel using MPI. Using four nodes
of Princeton’s MaComp cluster (with 2 GB of memory and
2.2 GHz operating frequency) simulations over 5-6 months
of simulated time take approximately 30 min.

B. Genetic mutations

In order to explain how we incorporated tumor cell het-
erogeneity into the merged algorithm, it is useful to state the
assumptions under which we are working. We begin with the
well-accepted supposition that tumors are monoclonal in ori-
gin; that is, a tumor mass arises from a single cell that accu-
mulates genetic and epigenetic alterations over time [37].
Next, we suppose that as each tumor cell progresses through
the cell cycle, there is a small probability that an error occurs
in DNA replication. If the dividing cell is able to complete
mitosis despite this error, the resulting mutation will be
passed on to the cell’s progeny. The mutation rate in nonma-
lignant human cells is very low and has been estimated to be
between 1077 and 10~ mutations per gene per cell division
[38]. Oftentimes, a phenotype found in cancer cells is the
loss of DNA repair signaling. When this occurs, the mutation
rate can be increased by a factor of 10'—10* [39]. In our
model, we assume an average mutation rate of 107° in non-
malignant cells and that this rate is increased by a factor of
10* in cancerous cells giving a mutation rate of 0.01 muta-
tions per cell division. The upper bounds were intentionally
chosen to define the mutation rate, as the larger the mutation
rate, the more opportunity we will have to study the emer-
gence of mutant phenotypes in our model.

We are thus working under the assumption that there is a
1% chance a dividing cell will undergo a mutation in its
genome. Provided that a mutation has occurred, we must
define the potential phenotypes of mutant tumor cells. Given
the tumor cell properties considered in the model, we will
allow malignant cells to acquire altered phenotypes related to
cell proliferation rates (the parameter p,, defined previously)
and the length of time a cell can survive under hypoxic con-
ditions. While we do not need to explicitly consider the ge-
netic mutations that can lead to these phenotypic changes, it
is worth noting that each of the mutations considered in our
automaton model can result from actual genetic alterations.

For example, the base proliferation rate of a cancer cell is
related to its dependence on growth signals and antigrowth
signals [1]. Tumor cells may increase their growth rate if
they acquire the ability to secrete growth factors that mimic
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extracellular growth signals. Examples of this include tumor
cells acquiring the ability to produce platelet-derived growth
factor and tumor growth factor « [1]. Tumor cells can also
increase their growth rate if they develop an insensitivity to
antigrowth signals that typically cause the cell to arrest at the
G1 or G2 phase of the cell cycle. A homozygous deletion in
the RB gene that codes for pRb allows a cell to progress
through the G1 phase of the cell cycle independent of DNA
damage [1]. Similarly, a homozygous deletion in the TP53
tumor suppressor gene that codes for p53 allows damaged
cells to progress through the G2 phase of the cell cycle in-
dependent of cell arrest signals [40]. Although we generally
think of mutations benefiting a cancer cell (e.g., by increas-
ing the base proliferation rate), it is also plausible that del-
eterious mutations can occur within a tumor cell. This is why
we consider both kinds of mutations in our model.

A cell’s ability to survive under sustained hypoxia also
has a genetic component. The X-box binding protein 1
(XBP1) is known to undergo robust changes in gene expres-
sion during hypoxia [41]. Loss of XBPI has been shown to
increase the sensitivity of tumor cells to killing by hypoxia,
and some tumor types overexpress XBP1 [41]. In our model,
cells can acquire the ability to survive a longer-than-normal
time period under hypoxia (corresponding to an overexpres-
sion of XBP1) and can acquire a deleterious mutation which
decreases their life span under sustained hypoxia (corre-
sponding to the underexpression of XBP1I).

Given this background, we then “wire” each automaton
cell in the algorithm with its own genome that encodes for
the average base probability of division, p,, and the lifetime
of the cell under sustained hypoxia. In the current implemen-
tation of our model, a tumor cell expresses one of nine dif-
ferent phenotypes (eight being mutant phenotypes), all of
which are defined in Fig. 1. The first generation of mutants
(nodes following the first branch) corresponds to either an
increase or decrease in the average base probability of divi-
sion or in the amount of time a tumor cell can survive under
sustained hypoxia. The second generation of mutants (the
end nodes) corresponds to cells with mutations in both the
average base probability of division and the amount of time
a cell can survive under hypoxia. Each cell in the model
divides with an error rate of 0.01 mutations per cell division.
If a cell does mutate, it randomly chooses a phenotype in one
of the nodes in the next level of the tree. In the absence of a
mutation, daughter cells inherit the genome of the mother
cell.

IV. RESULTS

The 2D cancer simulation tool presented herein has been
used to study tumor growth in two confined environments: a
2D representation of the cranium and an irregularly shaped
region. In the visualizations of the tumor which follow, we
use the following convention: nonmalignant cells in the
growth-permitting environment are white, the growth-
prohibiting region is the white speckled region, nonmalig-
nant cells that undergo apoptosis due to substandard oxygen
levels in healthy tissue are green (intermediate gray shade if
viewing in black and white), necrotic tumor cells are black,
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Normal cancer cell:
po = 0.192
hypoxia = 10 days

Mutant 1: Mutant 2: Mutant 3: Mutant 4:
po = 0.240 po = 0.144 po = 0.192 0192
hypoxia = 10 hypoxia = 10 hypoxia = 12 hypoma =
Mutant 5: Mutant 6: Mutant 7: Mutant 8: Mutant 5: Mutant 7: Mutant 6: Mutant 8:
po = 0.240 po = 0.240 po = 0.144 po = 0.144 po = 0.240 po = 0.144 po = 0.240 po = 0.144
hypoxia = 12 hypoxia = 8 hypoxia = 12 hypoxia = 8 hypoxia = 12 hypoxia = 12 hypoxia = 8 hypoxia = 8

FIG. 1. (Color online) Tree illustrating potential mutant types that can derive from a specified parent cell. Root node contains the original
tumor cell type, the nodes following the first branch contain all first-generation mutations, and the end nodes contain all second-generation
mutations. Each type has a unique average base probability of division p, [which impacts both p,,;, and p,,., as specified in Eq. (10) and the
text that follows the equation] and a unique hypoxic life span (specified by the hypoxia parameter within each node of the tree).

hypoxic tumor cells are yellow (lightest gray shade if view-
ing in black and white), and proliferative tumor cells are a
deep blue (darkest gray shade if viewing in black and white).
Further, the lines running through the tumor and healthy tis-
sue are blood vessels. If viewing in color, one can distinguish
between those blood vessels that were originally part of the
healthy capillary network (labeled red) as compared to those
vessels that grew via angiogenesis (labeled purple).

In order to extract actual tumor length scales from the
simulation units, one needs to consider both the size of the
cells in an organ and the resolution of the algorithm (how
many biological cells are represented by one automaton cell).
For example, if we want to consider glioma growth in the
brain, the average glial cell has a diameter of 40 wm [42]. If
we assume that there is a one-to-one correspondence be-
tween a glial cell and an automaton cell (which is approxi-
mately 0.002 57 units in length our 2D simulations), then the
entire region of space represented in the simulations would
be 15.5X 15.5 mm?. The size of the region being considered
is directly proportional to cell size. So, if we were to con-
sider cells of a smaller size, or if we considered the fact that
the effective shape of glial cells may be smaller than 40 um
due to their packing in the brain, the fixed grid considered
here would correspond to a smaller region of tissue. Fortu-
nately, this can be easily compensated for by increasing the
number of cells in the underlying lattice. Another way to
increase the size of the region considered is to incorporate
more than one biological cell inside an automaton cell.

A. Simulating tumor growth

We begin by considering tumor growth in a 2D represen-
tation of the cranium. We treat the cranium as an elliptical
growth-permitting environment with two growth-prohibiting
circular obstacles representing the ventricular cavities. Tu-
mor growth is initiated in between a ventricular cavity and

the cranium wall. In this setting, we find that the early-time
characteristics of the tumor and the vasculature are not sig-
nificantly different than those observed when radial symme-
try is imposed on tumor growth [14]. In particular, after 45
days of growth [Fig. 2(a)], vessels associated with the radi-
ally symmetric tumor begin to regress and hypoxia results in
the tumor center. 20 days later [Fig. 2(b)], a strong disor-
dered angiogenic response has occurred in the still radially
symmetric tumor. Over the next 50 days of growth [Figs.
2(c) and 2(d)], the disorganized angiogenic blood vessel net-
work continues to vascularize the growing tumor, but the
tumor’s shape begins to deviate from that of a circle due to
the presence of the confining boundary. The patterns of vas-
cularization observed are consistent with the patterns ob-
served in the original vascular model [14] suggesting that the
merged algorithm maintains the functionality of the original
vascular algorithm.

However, if we compare the results of this simulation
with those of the environmentally constrained algorithm
without the explicit incorporation of the vasculature [27] we
find that the merged model seems to respond to the environ-
mental constraints in a way that is more physically intuitive.
In the original environmentally constrained algorithm [27],
the tumor responds quickly and drastically to the confining
boundary and ventricular cavities. This occurs because the
original evolution rules not only determine the probability of
division based on the distance to the boundary, but also de-
termine the state of a cell based on a measure of its distance
to the boundary. In the merged model which explicitly incor-
porates the vasculature, the state of each cell depends on the
blood vessel network, and only the probability of division
directly depends on the boundary. For this reason, the
merged algorithm exhibits an emergent property in that it
grows tumors that respond more gradually and naturally to
environmental constraints than does the algorithm without
the vasculature.
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FIG. 2. (Color online) The temporal development of a tumor
growing in a 2D representation of the cranium. (a) After 40 days,
the dimensionless area is 0.0049 units?, with 30% of the cells being
proliferative, 66.4% being hypoxic, and 3.6% being necrotic. (b)
After 65 days, the dimensionless area is 0.0195 units?, with 51.2%
of the cells being proliferative, 33.0% being hypoxic, and 15.8%
being necrotic. (c) After 85 days, the dimensionless area is
0.0362 units?, with 48.2% of the cells being proliferative, 16.8%
being hypoxic, and 35.0% being necrotic. (d) After 115 days, the
dimensionless area is 0.0716 units?, with 45.1% of the cells being
proliferative, 18.6% being hypoxic, and 36.3% being necrotic. The
deep blue outer region (darkest of the grays in black and white) is
comprised of proliferative cells, the yellow region (lightest of the
grays in black and white) consists of hypoxic cells, and the black
center contains necrotic cells. Green cells (intermediate gray shade
in black and white) are apoptotic. The white speckled region of
space represents locations in which the tumor cannot grow. The
lines represent blood vessels. If viewing the image in color, red
vessels were part of the original tissue vasculature and the purple
vessels grew via angiogenesis.

The simulation of tumor growth in the 2D representation
of the cranium does not quite capture that the merged algo-
rithm truly allows the neoplasm to adapt its shape as it grows
in a complex environment. This effect is not fully captured
because the shape of the confining environment is rather
simple in our representation of the cranium. There are certain
regions in which tumors can grow that are structurally more
complex and dynamic than what we have represented in Fig.
2. For instance, spinal cord tumors not only grow in a highly
confined and irregularly shaped environment but are also
subject to arbitrary if not continuous torsional movements of
the neck and spine that further influence the shape of a de-
veloping neoplasm. Another example of a dynamic complex
environment for tumor growth is the lungs. In this case, neo-
plasms can grow near the individual moving ribs of the chest
and the periodic pressure imposed by the ribs can impact the
shape and spread of a developing tumor [27].

FIG. 3. (Color online) The temporal development of a tumor
growing in an irregular asymmetric environment. (a) After 45 days,
the dimensionless area is 0.0096 units®, with 47.3% of the cells
being proliferative, 8.9% being hypoxic, and 43.8% being necrotic.
(b) After 100 days, the dimensionless area is 0.0644 units?, with
30.9% of the cells being proliferative, 29.9% being hypoxic, and
39.2% being necrotic. (c) After 120 days, the dimensionless area is
0.1026 units?, with 35.8% of the cells being proliferative, 23.7%
being hypoxic, and 40.5% being necrotic. (d) After 165 days, the
dimensionless area is 0.1694 units2, with 25.3% of the cells being
proliferative, 11.5% being hypoxic, and 63.2% being necrotic. The
deep blue outer region (darkest of the grays in black and white) is
comprised of proliferative cells, the yellow region (lightest of the
grays in black and white) consists of hypoxic cells, and the black
center contains necrotic cells. Green cells (intermediate gray shade
in black and white) are apoptotic. The white speckled region of
space represents locations in which the tumor cannot grow. The
lines represent blood vessels. If viewing the image in color, red
vessels were part of the original tissue vasculature and the purple
vessels grew via angiogenesis.

While we currently do not consider such dynamic envi-
ronments, we desire to present a study in which the growth-
permitting region has a more irregular boundary than that of
our 2D representation of the cranium. For this reason, we
have designed an artificial growth environment with a highly
irregular boundary (Fig. 3), and we have studied how and to
what extent the shape of the tumor is altered by this environ-
ment. We find that for the first month and a half, the tumor
grows in a radially symmetric fashion [Fig. 3(a)], as the con-
fining boundary is not exerting any significant pressure on
the tumor. This is consistent with the merged model retaining
the functionality of the original confined growth algorithm.
After three months of growth, the tumor slowly begins to
adapt its shape in response to the mechanical confinement
imposed by the region boundary [Figs. 3(b)-3(d)]. Just as
with the 2D representation of the cranium, we notice an
emergent property of the merged algorithm in that we find
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FIG. 4. (Color online) Snapshot of a simulated tumor taken out
of its environment after approximately 4 months of growth. The
tumors seen correspond to three different environments. (a) In the
unbounded and homogeneous region, the tumor has a dimensionless
area of 0.077 units> with 22.6% of the cells being proliferative,
26.4% being hypoxic, and 51.0% being necrotic. (b) In the 2D
representation of the cranium, the tumor has a dimensionless area of
0.0716 units®> with 45.1% of the cells being proliferative, 18.6%
being hypoxic, and 36.3% being necrotic. (c) In the irregular region
defined in Fig. 3, the tumor has a dimensionless area of
0.0812 units? with 45.9% of the cells being proliferative, 7.8% be-
ing hypoxic, and 46.3% being necrotic. The deep blue outer region
(darkest of the grays in black and white) is comprised of prolifera-
tive cells, the yellow region (lightest of the grays in black and
white) consists of hypoxic cells, and the black center contains ne-
crotic cells. Green cells (intermediate gray shade in black and
white) are apoptotic. The lines represent blood vessels. If viewing
the image in color, red vessels were part of the original tissue vas-
culature and the purple vessels grew via angiogenesis.

that a more subtle and natural response to the effects of
physical confinement occurs.

In order to pinpoint the effects that the aforementioned
regions have on tumor growth, we will compare the shape
and spread of a simulated tumor in these environments after
approximately 4 months of growth to a tumor growing in an
unbounded homogeneous region. In the unconfined region,
the tumor is more or less circular after 4 months of growth
[Fig. 4(a)]. The deviation from the circularity observed is
actually a welcome result, as it is unexpected that a tumor
would grow as a close-to-perfect circle in vivo, even in a
symmetric environment. Both the structure of the vasculature
and the stochasticity of the algorithm are responsible for
these deviations from circularity. For both confined environ-
ments, the tumor remains more or less circular after 2
months of growth. [This data set is not shown, but in Figs.
2(a) and 3(a) the tumors can be seen after about a month and
a half of growth.] Yet, in our 2D representation of the cra-
nium, only 2 months after the tumor appears circular (after 4
months of growth), the neoplasms’s shape has been signifi-
cantly modified in response to the constraints imposed by the
environment [Fig. 4(b)]. The indentation in the bottom left-
hand corner of the tumor results from one of the ventricular
cavities in the region, and the decrease in the tumor’s curva-
ture at its top end is due to the tumor’s proximity relative to
the confining cranium. Importantly, we note that it is possible
for tumors to deform cavities. Since our algorithm does not
account for this reciprocal deformation, it is plausible that
the cavity’s impact on the tumor shape is somewhat overes-
timated. Similarly, if we consider the tumor after 4 months of
growth in the irregular region defined in Fig. 3, we observe
that a bulbous structure has formed [Fig. 4(c)]. The narrow-
ing of the tumor in its upper left-hand corner is a result of the
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tumor growing through a tightly confined region of space.
By taking each tumor out of the context of its environment
and comparing it to a tumor which grew in an unbounded
homogeneous region, we can pinpoint the changes induced
in the tumor by each growth-permitting environment. An im-
portant conclusion drawn from the proposed simulation tool
is that having an image of a tumor after some period of time
is an insufficient amount of information if one seeks to prop-
erly deduce final tumor shape and size. At minimum, vascu-
lar structure and environmental boundaries must also be
taken into account to accurately predict tumor growth dy-
namics.

A final note should be made about the images in the simu-
lation. We have shown the tumor as a function of simulation
time. Once a tumor has initiated aggressive growth, simula-
tion time and actual time are a measure of the same quantity.
However, the start of the simulation is not the same thing as
the theoretical start of tumor growth. It often takes years for
normal cells to undergo the phenotypic changes required to
initiate aggressive tumor growth. Thus, while we have
deadly tumor growth occurring on a 1 yr time scale in our
simulations, this is actually 1 yr from the onset of aggressive
growth, not 1 yr from the first mutations that eventually
gives rise to the neoplastic cell population.

The results presented in this section need to be validated
experimentally. While the individual pieces of this model
have been validated, and while the model retains each tool’s
functionality, there are emergent properties and hence quan-
titative differences in the predictions being made by the
merged algorithm. One way to validate the model would be
to compare its predictions on the spatial composition of hy-
poxia to actual tumors. An array of techniques exist to mea-
sure hypoxic composition (see Ref. [43] for a critical review
of such techniques), some of which can give spatial informa-
tion on the presence of hypoxia within a tumor. Data such as
this would go a long way to validate and/or suggest modifi-
cations that should be made to the present algorithm.

B. Emergence of genetic mutations

The proposed cancer simulation tool also allows one to
account for the phenotypic heterogeneity found within a tu-
mor mass. A large number of mutant phenotypes have been
observed in cancer cells, and in this subsection we will focus
on a simplified version of the problem in which cancer cells
can acquire beneficial or deleterious mutations in one of two
phenotypes. Besides being able to look at the growth dynam-
ics of an individual tumor with a known genetic profile, the
algorithm can also be used to predict the likelihood that dif-
ferent beneficial or deleterious mutations emerge at some
point in the life of the tumor. We say that a subpopulation has
emerged if at some point in the life of the tumor, the popu-
lation comprises 10% or more of the proliferative and hy-
poxic cell population. The algorithm is run 100 times for 300
simulated days in order to examine the emergence of the
mutant phenotypes defined previously. Table I gives the
probability of emergence P of each individual phenotype,
along with the confidence interval, which is given by
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TABLE 1. For each mutant phenotype, we present the probabil-
ity of emergence (along with the confidence interval) and how
likely it is for that mutation to occur relative to the likelihood that a
neutral mutation occurs. Note that when we present the results for
increased p, for example, we are looking at how many times this
mutation occurred in isolation or with another mutation.

Probability Odds of emergence
Mutation description of emergence (mutation:neutral)
Increased p 0.78 £0.041 2.108:1
Decreased p, 0.07x0.026 1:5.286
Longer hypoxic life span 0.28 £0.045 1:1.321
Shorter hypoxic life span 0.28 =0.045 1:1.321

/ P(1-P
number of trials

Table I also shows the odds that each beneficial or deleteri-
ous mutation emerges relative to a neutral mutation. A neu-
tral mutation is a mutation that occurs in the genome but has
no phenotypic effect at the cellular level; therefore, it can be
thought of as the control variable in the simulations. It tells
you the likelihood that a mutation with no effect emerges in
the population. It is most useful to see how often a mutation
emerges relative to this control case.

The first notable trend in Table I is that the malignant cells
with an increased rate of proliferation tend to emerge in the
tumor cell population, as would be expected. Although a
mutant must occupy a rather large percent of the tumor popu-
lation (10% or more) for us to consider that it has “emerged”
in the model, we still find that the increased rate of prolif-
eration mutation emerges in 78% of the simulations, which is
more than twice as often as a neutral mutation. Although it is
expected that beneficial mutations emerge in the tumor, it is
certainly not intuitive that deleterious mutations will emerge
in the population. Surprisingly, we found that the mutation
which decreases the rate of proliferation emerges in 7% of
the simulations. While this percent is not huge, the mutation
is only approximately a 5:1 underdog as compared to a neu-
tral mutation. This result suggests that deleterious mutations
can emerge despite the fact that they confer no growth ad-
vantage to the tumor mass. A similar result has previously
been found in Ref. [28].

Even more surprising results are found if we study the
probability of emergence of malignant cells with an in-
creased or decreased ability to survive under hypoxic condi-
tions. From the perspective of the tumor mass, it is most
beneficial for the tumor cells to survive as long as possible
under hypoxic conditions. This way, if the angiogenic vascu-
lature lags behind the growth of the tumor, a larger number
of cells can persist in a hypoxic state until the vasculature
“catches up” to the tumor size. However, we found that mu-
tations which lengthen or shorten a cell’s hypoxic life span
by 20% are equally likely to emerge.

It seemed surprising that increasing survival under hy-
poxia was not selected for over a neutral mutation. It was
also surprising that there was no difference in emergence
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when increasing or decreasing the survival time under hy-
poxia. For these reasons, we decided to test how larger varia-
tions in the hypoxic life span impact the emergence of the
mutation. We found that the mutation which decreases the
hypoxic life span to 4 days emerges in 21% (1:1.762) of the
tumors, whereas the mutation that increases the hypoxic life
span to 16 days emerges in 57% (1.54:1) of the tumors.
Thus, a more significant decrease in the hypoxic life span
emerges less frequently than a neutral mutation, although
this phenotype emerges in a significant percent of the tumors.
Further, a large increase in the hypoxic life span is selected
for in the tumor population, as it emerges more frequently
than a neutral mutation.

The results concerning mutation emergence are in need of
experimental validation. For example, focusing our attention
on hypoxic life span, is having a hypoxic life span slightly
above or below the average equally represented in the tumor
population, as our simulations predict? Are more significant
increases in the hypoxic life span found more commonly
than more significant decreases? Also, are there different
temporal patterns of mutation emergence in real tumors? Al-
though we did not explore this fully in our model, the model
can also track the likelihood of a tumor expressing different
mutations in a temporal manner. With experimental data on
the prevalence and importance of this sort of mutation, the
model can be utilized to better understand the effects this
mutation has on tumor growth and response to treatment.

V. DISCUSSION

The cancer simulation tool that is presented in this paper
is able to account for the heterogeneous nature of a tumor
and its environment, and how interactions between these en-
vironments impact neoplastic progression. To demonstrate
the utility of the class of models we have developed, we
describe what we have learned about some necessary, al-
though not sufficient, features that must be included in any
clinically relevant in silico model of tumor growth. In par-
ticular:

(1) Without incorporating environmental confinement ef-
fects, tumor size, shape, and spread cannot be properly pre-
dicted even if we are given an image of the tumor at a fixed
point in time. This was illustrated in Fig. 4, where all masses
started as circular tumors, but the future shape of the masses
diverged as time progressed.

(2) Only by including the vasculature with physical con-
finement effects can more subtle changes in tumor shape be
captured, as was discussed in Sec. IV. The vasculature, how-
ever, need not be present for accurately capturing approxi-
mate growth dynamics, provided the tumor is known to be in
the “macroscopic growth regime” (that is, the tumor has the
ability to initiate angiogenesis) [14].

(3) The vasculature does need to be incorporated, how-
ever, if we want to consider the initial growth conditions
required for a tumor to grow to a clinically relevant size, and
if we want to test treatment strategies that target tumor-
associated blood vessels. This was demonstrated in signifi-
cant detail in Ref. [14].

(4) Failure to account for a tumor’s genetic (really, phe-
notypic) profile can lead to markedly inaccurate predictions
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on tumor shape and size. This was demonstrated in more
detail in Ref. [28].

In this paper, we have demonstrated the ability of the
merged algorithm to predict tumor size, shape, and spread as
a function of time along with its ability to qualitatively track
the evolution of the vasculature and to incorporate genetic
mutations. As a next step, we hope to calibrate the model
with patient-specific data, with the long-term goal of using
the model in clinical applications.

There is work that can be done to improve upon the
merged model of tumor growth presented here. First and
foremost, we would like to develop a more realistic repre-
sentation of the capillary network. While visually our model
of the vasculature may contradict some expectations, it is
important to recognize that we are not trying to model a
vascular tree that branches from the arteries to the arterioles
into the capillaries, and from the capillaries to the venules
and veins. Instead, we are only considering the level of the
vascular tree at which oxygen and nutrient exchange occurs,
i.e., the capillary level. Thus, while at first glance our vascu-
lar model does not look ideal, and while there is room for
improvement, it is important to remember that we are only
concerning ourselves with the capillary network, which does
not exhibit the same branching structure as is seen in higher-
order vessels. There is one other issue that arises as a result
of our representation of the capillary network. The individual
line segments that are laid down in the model to represent the
capillaries are rather long. As a result, when a blood vessel
regresses, this regression can affect cells that are signifi-
cantly far from the tumor (see Figs. 2 and 3). This extratu-
moral apoptosis, especially at far distances from the tumor, is
an artifact of an inaccurate representation of the capillary
network and is not something we hypothesize would be
found in real tissues. This is not to say that there may not be
apoptosis in areas that immediately surround the tumor, but
one would not expect apoptosis significantly far from the
tumor.

For these reasons, in future work, we do intend on im-
proving upon the capillary network utilized in our model.
However, instead of developing a new model at the 2D level,
it is essential that we develop a 3D model of the capillary
network in order to simulate volumetric tumor growth. Thus,
improvements upon the current model pivot upon developing
a new 3D model of the capillary network and generalizing
the automaton rules to work in 3D space. It is interesting to
note, however, that recent work has shown that if the same
growth mechanisms are applied in 2D and 3D, 2D results can
be mapped onto 3D results [22]. This may allow us to avoid
the computational difficulties of generalizing the algorithm
to 3D.

Another improvement that can be made on the algorithm
concerns the current treatment of physical obstacles to tumor
growth as rigid boundaries. Medical imaging technologies,
including magnetic resonance imaging (MRI) and computed
tomography (CT) scans can readily provide information on
the presence of anatomical boundaries, although these im-
ages do not give information on the deformable nature of
these boundaries. This is the reason we chose to use rigid
boundaries in the model, although it is not necessarily the
case that all obstacles to tumor growth are rigid structures.
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The deformable nature of anatomical structures was ac-
counted for in work done by Sansone et al. [44]. In particu-
lar, the effects of pressure from anatomical constraints
against a growing tumor were accounted for by looking at
the hardness of different tissues [44]. While we looked at
boundary effects on mass growth, boundaries also have ef-
fects on other biophysical properties of cells including cell-
to-cell aggregation. Given that our tumor cells are discretely
represented on a fixed grid, we are unable to take such ef-
fects into account. However, it is important to note that the
effects of boundaries on cell-to-cell aggregation and cell sur-
vival probabilities have been studied by others [45,46]. Our
model could benefit from incorporating deformable bound-
aries and other biophysical effects of these boundaries in the
future.

There are certainly many other features of tumor growth,
including some forms of tumor-host interactions, that may be
necessary to include in a cancer simulation tool with clinical
applications. For example, a cancer can alter the surrounding
extracellular matrix and can modify the immune system as it
develops [2]. A number of models have accounted for these
other forms of tumor-host interactions [4,7-9,15]. It is wor-
thy of future investigation to determine how these other can-
cer models can be incorporated into our merged model. This
process can be as easy as putting two models on one com-
putational grid, or it can be much more complex and involve
significant theoretical changes to both models.

Finally, cancer cells can break off the main tumor mass
and invade healthy tissue. For certain tissue types, this pro-
cess can eventually result in metastases in other organs. A
cancer in which invasion, although not metastasis, must be
considered in an effort to understand tumor dynamics is glio-
blastoma multiforme. Glioblatoma is a cancer that arises
from the glial cells or their precursors in the central nervous
system [47]. Tumor-cell invasion is a hallmark of glioblasto-
mas, as individual tumor cells have been observed to spread
diffusely over long distances and can migrate into regions of
the brain essential for the survival of the patient [47]. While
MRI scans can recognize mass tumor lesions, these scans are
not sensitive enough to identify malignant cells that have
spread well beyond the tumor margin [48]. Thus, understand-
ing the distribution of these invasive cells in the brain is
essential for having a simulation tool for glioblastoma that is
useful in a clinical setting. Similarly, for other tumor types,
the metastatic process is essential in understanding tumor
recurrence, and hence patient prognosis. In future work, we
hope to extend the merged model to address the impacts that
the tumor microenvironment [49], tumor vasculature, cell-to-
cell adhesion, and long-range cell signaling [50] have on
single-cell invasion, metastasis, and response to treatment. In
particular, recent mathematical models [51,52] have demon-
strated that the invasive phenotype of tumor cells is favored
in the presence of a heterogeneous distribution of oxygen
and nutrients, while suppressed in the presence of a homo-
geneous oxygen distribution. Using information on cellular
phenotype, oxygen distribution, and environmental confine-
ment, we can modify our model to be able to track the inva-
sion of cells along the blood vessels and into the healthy
tissue. By incorporating invasion, other types of interactions
into our model, we can determine a larger list of necessary
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conditions to include in a clinically relevant cancer simula-
tion tool. A long-term goal is to develop a sufficient list of
such conditions; that is, a list of features that, if incorporated
into a simulation tool, would be sufficient to predict neoplas-
tic growth and response to treatment.

Just as would be required for a clinically relevant simula-
tion tool, the algorithm proposed here can probe the effects
that different therapeutic strategies have on tumor survival.
Since much of the biological detail in the model relates to the
vasculature, the model can be used to study the impact that
vascular-targeting therapies have on tumor growth. In the
future, we plan to explore tumor response to different
angiogenic-inhibitors and vascular-disrupting agents admin-
istered in isolation or in combination with a standard anti-
growth agent. We expect the model to make many predic-
tions that can be tested experimentally. For example, if we
identify a novel drug target or a combination of drugs, ex-
periments can be done to test the drugs effects in vivo. On
the other hand, if the model suggests a reason that a certain
therapeutic route is unsuccessful, targeted experiments can
be done to test the validity of such predictions. The results of
such experiments would then feed back into the model al-
lowing the model to grow in both scope and accuracy. In the
future, we aim to have a simulation tool that can be utilized
in the clinic to predict tumor growth and guide treatment
strategies.

VI. CONCLUSIONS

We have merged, adapted, and improved on individual
models of tumor growth [14,21,27,28], each of which were
successful at achieving their individual goals, into a more
comprehensive cancer simulation tool. The current CA
model accounts for angiogenesis, physical confinement and
environmental heterogeneity, and genetic mutations. We not
only presented the algorithmic development of the tool, but
we also utilized the tool to predict tumor progression in sev-
eral confined vascular environments. Furthermore, we dem-
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onstrated that the tool can be utilized to develop a list of
necessary features to incorporate in a cancer simulation tool
with clinical applications. Although there are many more
processes to be considered, the algorithm presented here rep-
resents the first time our tumor-modeling efforts have been
brought together into one algorithm with the potential to ad-
dress a variety of questions about neoplastic growth and sur-
vival. In the future, we anticipate this model be expanded
upon by both ourselves and others to incorporate a wider
range of processes that contribute to tumor development and
expansion. We also plan to further exploit the model by test-
ing new sets of questions including but not limited to how
the genetic profile of a tumor influences its response to a
combination of cytotoxic and vascular-targeting drugs and
how drug delivery to a tumor mass is influenced by a con-
fining environment. We expect our theoretical explorations to
lead to questions that can be tested experimentally. As a
long-term goal, we hope that this back-and-forth interaction
between biologists and theoreticians will eventually lead to
the development of a cancer simulation tool powerful
enough to be utilized in the clinic.

Ultimately, any comprehensive tumor model must be able
to account for tumor mechanisms across many length scales.
There are a variety of levels of complexity that can be further
added to the present model. For example, allowing for a
more microscopic description of tissue structure [49] and
physical properties is crucial. For this purpose, one can ex-
ploit advances in the theory of heterogeneous materials that
enable one to predict transport and mechanical properties
from the microstructure [32,53,54]. As an example, the
theory of random heterogeneous materials enables the char-
acterization of diffusion and flow through complex media
[32]. Therefore, questions related to the diffusion of a drug
through a tumor, the transport of oxygen and waste into and
out of the tumor, the flow of blood through the tumor vascu-
lature, or the invasion of cancer cells into healthy tissue
could benefit by applying techniques from the field of ran-
dom heterogeneous materials.
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