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The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of
protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins
during their expression and purification. While much literature exists describing models for linear protein
aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous
aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more
widely applicable to other situations where a similar process occurs, such as in the formation of colloids and
nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of
three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and
a-lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of

accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants,

can also be extracted.
DOI: 10.1103/PhysRevE.80.051907
I. INTRODUCTION

Amorphous or disordered aggregation is a process that
occurs often in nature. For example, it is associated with
several age-related diseases such as cataract [1] and can re-
sult in the formation of protein haze in white wines [2]. It is
also the bane of protein expression and purification for many
biochemists, leading to protein precipitation and subsequent
loss of protein, data, and time. Despite amorphous protein
aggregation being such a significant problem, it has received
little research attention and is often overshadowed by studies
of protein aggregation leading to highly structured linear
amyloid fibrils associated with neurodegenerative disorders,
such as Alzheimer’s and Parkinson’s diseases [3].

Crystallin proteins in the eye lens are thought to be desta-
bilized due to a lifetime of oxidative and radiative stress and
unfold into aggregation-prone species that are precursors to
cataract formation [4]. Cataract affects many aged people
and is a particular problem in developing countries where, as
a result, an estimated 24 million people are blind [5]. Cur-
rently, the principal treatments for cataract are removal of the
opacified lens and replacement with an artificial lens [6].

Protein wine haze presents a significant problem to the
wine industry. Currently, bentonite clay is used to adsorb the
troublesome proteins from white wine which is then filtered
back off the clay [2]. While this is effective in removing the
proteins, it adversely affects the quality and quantity of the
treated wine and also presents waste disposal issues [7]. It is
estimated that the cost of bentonite fining to the wine indus-
try worldwide is in the order of $300-500 million per annum
[7]. Studies that describe the mechanism of protein wine

*Present address: School of Biological Sciences, University of
Wollongong, Wollongong, NSW 2522, Australia.
"Corresponding author; lorenz.smekal @physik.tu-darmstadt.de

1539-3755/2009/80(5)/051907(13)

051907-1

PACS number(s): 87.15.km, 87.10.Ed, 87.15.nr

haze formation are highly desirable as they will lead to im-
proved technologies, maintaining wine quality and decreas-
ing the costs of production [2].

In order to find solutions to these problems, there is a
need to understand and model the processes and kinetics of
the amorphous aggregation phenomena. There are many
mathematical models in the literature for linear aggregation
mechanisms, as reviewed by Morris et al. [8]. A unique ap-
proach was undertaken by Flyvbjerg et al. [9,10], who stud-
ied the self-assembly of microtubules, a linear aggregation
mechanism, and derived a mathematical model to describe
the phenomenon. However, there are few, if any, mathemati-
cal models of amorphous aggregation. In this paper, we pro-
pose a model for amorphous aggregation processes and de-
mand that certain constraints, which are found by performing
a data analysis similar to that by Flyvbjerg er al. [9], are
imposed. The data shown here are turbidity measurements
for the aggregation of heat-stressed thaumatin, a protein
structurally very similar to thaumatinlike (TL) proteins,
which play a major role in protein wine haze formation [11].
We fit these data using our amorphous aggregation model.
The analysis is also performed on a-lactalbumin (a-LA), a
well-characterized protein that amorphously aggregates upon
reduction of its disulfide bonds [12], and is often used as a
test protein to monitor the activity of molecular chaperone
proteins [12,13]. In addition, we monitor the aggregation of,
and apply our model to, a Vitis vinifera TL grape protein.
These three diverse proteins give very similar results, indi-
cating the broad application of the model and its applicability
to other systems which behave in a similar manner, such as
the formation of colloids and nanoclusters [14,15] and vapor
condensation [16].

II. EMPIRICAL DATA ANALYSIS

Figure 1(a) shows a set of experimental turbidity (A) data
for a range of initial concentrations of thaumatin (between

©2009 The American Physical Society
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FIG. 1. (a) Typical experimental data for thaumatin at various initial concentrations, incubated at 60 °C in a model wine solution (see
Appendix A for details). The dashed line overlaid shows the fits to the data by the model derived in this paper with a spherical exponent,
y=2/3=0.67. (b) The experimental data from (a), with the time and turbidity axes scaled by the half time, 7, and asymptotic turbidity, A,
respectively, for each series. The data sets “collapse” to a single curve, thus obeying a scaling law. The dashed curve represents the same
unique fit by the model to this scaled data (with y=0.67) as the family of curves in (a).

2.0 and 4.0 mg/ml) upon heating at 60 °C. Overlaid are fits
by the model to the experimental data. Data and fits for the
TL protein and a-LA are shown in Figs. 7 and 8 of Appendix
A, respectively.

The data points follow similar sigmoidal curves, with ini-
tial lag times, followed by a steep rise and subsequent pla-
teau. The curves differ only by the magnitude of the increase
in turbidity due to different initial protein concentrations; the
lag times are very similar. Therefore, the issue of whether
they differ only through the overall time and turbidity axes is
addressed following the reasoning of Flyvbjerg et al. [9]. If
that is the case, then the curves are said to “scale” over one
another, following a scaling law.

We do this by finding the asymptotic turbidity, A.,, and the
time taken to reach half this value, the half time, t,, for each
data set. Upon scaling the turbidity and time axes with their
respective characteristic parameters, the data collapse to a
single curve [Fig. 1(b) and Figs. 7 and 8 in Appendix A]. The
interpretation of this is that, independent of the initial mono-
mer concentration, a single mechanism of protein aggrega-
tion is present over the concentration range considered. This
allows use of a single curve for the modeling which may be
unscaled to reproduce the original data.

Furthermore, we seek to obtain a relationship between the
characteristic parameters A, and #,. Following the analysis in
Ref. [9], a double-logarithmic plot of 7, versus A.. yields a
straight line (Fig. 2 and Figs. 9 and 10 in Appendix B),
which indicates a power law relationship of the form

(1)

where (—m) is the slope of the double-logarithmic plot and 7
is some constant of proportionality.

For thaumatin, the mean result of the three replicates is
m=0.077+0.002, where the quoted error is the SE of the
mean. For the grape TL protein and a-LA, we obtain m
=0.039+0.011 and 2.04 = 0.39, respectively (see Figs. 9 and
10 in Appendix B).

to=T1A.",

Consequently, without the use of any theory, we have em-
pirically obtained two independent constraints on our model
from the experimental observations—the scaling and power
laws.

III. MODEL
A. Linear versus amorphous aggregation

In simplistic terms, the aggregation of monomeric entities
(e.g., proteins) to form linear chains such as amyloid fibrils
and the self-assembly of microtubules, as modeled by [9],
are linear mechanisms; the aggregating “monomers” can
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FIG. 2. Double logarithmic plots of #, against A.. for thaumatin,

showing all three replicates. The linear fits of log;y(zo/ 7) versus

log;o(A.) for replicates A-C give slopes (—m) of —0.074, —0.080,

and —0.075, R? values of 0.98, 0.99, and 0.82, and 7 values of

13.65, 12.90, and 13.87 min, respectively, corresponding on these

plots to the #, values with A,=1.0. This gives mean values of m

=0.077%£0.002 and 7=13.48*=0.29 min, where errors are quoted
as standard errors (SEs) of the mean.
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FIG. 3. Left: linear aggregation mechanisms are ordered one-
dimensional processes and monomers can only add onto the ends of
the aggregate chain. Right: amorphous aggregation is a disordered
three-dimensional process, where monomers can add on to aggre-
gates from any direction.

only add on to either end of the aggregate in a one-
dimensional ordered manner. As the aggregate increases in
length, the rate of aggregation should therefore not increase
because there is no greater surface area available to the
monomers.

Conversely, amorphous aggregation can be thought of as a
disordered three-dimensional process, where monomers can
add from any direction. Consequently, we must account for
the fact that as the aggregates increase in size, the surface
area available to the monomers increases and hence there
should be a corresponding increase in the rate of aggrega-
tion. This will be the third constraint on the model, in addi-
tion to the scaling and power laws. Figure 3 compares the
linear and amorphous aggregation mechanisms schemati-
cally.

B. General framework

A similar formalism to that introduced in Refs. [9,10] is
followed here. We let M(t) denote the total mass of mono-
mers contained in the aggregates and c(f) be the monomer
concentration (both in units of arbitrary concentration, such
as mass density). Clearly, conservation of mass gives us the
relation [9,10]

M(2) + (1) = c(0), (2)

where ¢(0) =, is the initial protein monomer concentration
(at time #=0). In addition, we see from Eq. (2) that M., the
asymptotic mass as time approaches infinity, is equal to the
initial monomer concentration, ¢, because c¢(r) goes to zero
[9,10]. Furthermore, it is assumed that turbidity, A(r), is pro-
portional to the aggregate volume and hence mass in aggre-
gates, M(1)."! Thus, we see that A, %M. =c,.

Note that the asymptotic turbidities, A.,, thus scale lin-
early with the initial monomer concentration, c¢,. Inspection
of Fig. 1 indicates that experimentally, the linear correlation
between A., and ¢, is only approximate and we attribute this
primarily to experimental errors in preparing the monomer

"This relationship holds when treating the turbidity measurements
as being due to Rayleigh scattering, where the size of the aggregates
is much less than the wavelength used to analyze them [17]. Trans-
mission electron microscope images (not shown) verified this,
where only the largest protein aggregates just exceed the wave-
length of the turbidity measurements, 340 nm. Nevertheless, the
approximation is valid for the majority of the aggregation time se-
ries and is therefore assumed to hold for the entire process.

PHYSICAL REVIEW E 80, 051907 (2009)

concentrations. In any case, the exact values for concentra-
tion are not important and are not required in the analysis at
any point. It is only necessary to obtain data sets for different
concentrations for a given protein.

The data shown are all relative to the asymptotic turbidity
at the reference concentration, c{)ef=4.0 mg/ml.

The scaling law observed earlier gives motivation to in-
troduce dimensionless “scaling variables.” Therefore, we de-
fine t', A’, M’, and ¢’ such that

where 1y=7A"=1(co/ )™ with ¢'=4.0 mg/ml and the
exponent m >0 is the parameter determined earlier for each
of the proteins. This accounts for the power law constraint of

Eq. (1).

C. Amorphous aggregation model

The mass in the aggregates, M(z), will increase with time
as monomers continue to add onto the cluster. The rate of
this increase will depend on the concentration, ¢, of available
monomers. One therefore expects that on one hand, this rate
will obey a power law of the form

am
— " 4
o =C 4)

for some as yet undetermined exponent, r=0. We keep this
power general, allowing it to deviate from the classical value
of 1 for simple first-order kinetics. First of all, our system is
heterogeneous—the “reacting” monomer entities need to first
be activated by being partially unfolded. The denaturation
process, e.g., achieved by heating, results in a statistical dis-
tribution of monomer states, some of which are completely
unfolded, others which remain in their native form, and
many others in between, i.e., which are partially unfolded.
Thus, only a certain proportion s is able to aggregate at any
given time. Moreover, in the presence of density dependent
mechanisms, such as collisions between monomers which
may lead to activation or refolding, it is to be expected that
this proportion also depends on their density, as modeled, for
example, by another power law, sxc?% leading to r=1+4.
Hence we allow for deviation from r=1 in Eq. (4).

On the other hand, we must also take into account the
requirement that the rate of aggregation increases as the ag-
gregates grow in size. Assuming for simplicity that their av-
erage size grows in proportion to some other power, 7y, of
their mass, M, we require a factor of the form

—— M7, &)

where the exponent y=0 is also a priori unknown. Combin-

ing Egs. (4) and (5), we obtain a rate equation of the form

e ©)
=M,

dt

where the constant f is to be determined experimentally.
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FIG. 4. Left column, A1-C1: thaumatin experimental data with the time and turbidity axes scaled with the half time, 7,, and asymptotic
turbidity, A.., respectively. The three figures represent three repetitions of the experiment (replicates A—C). The solid curves are the fits by
the model to the scaled data with vy, values and the dashed curves are fits by the isotropic (iso) model with y=0.67. Right column, A2-C2:
thaumatin experimental data from the left column unscaled to reproduce the original time series, overlaid with the fits by the model using 7y,

for each.

In order to account for the observed scaling, we first in-
troduce the dimensionless variables of Eq. (3). In terms of
these variables, Eq. (6) reads

!

dM
ngl o =C(r)+yf,C,VM,y. (7)

Herein, f'=(ciy)"f is a scaled dimensionless rate constant
to determine the overall rate of the process.

The observed scaling requires the rate equation in terms
of the scaling variables [Eq. (7)] to be independent of the
initial concentration, ¢, as in Refs. [9,10]. Therefore, an ad-
ditional constraint is r=m+ 1 — 7. With the power law in Eq.
(1) and scaling, the amorphous aggregation model then pre-
dicts an exponent in Eq. (4) different from r=1 whenever
m# .

Since Eq. (2) tells us that ¢’=1-M’, the final equation for
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the amorphous aggregation model, including an appropriate
initial condition, then reads

M U rm+1— ! ’
— = a=-m)"TMY, M'(0) =0. (8)
While the exponent m is obtained from the empirical data
analysis discussed above, the exponent 7, introduced in Eq.

(5), and the rate constant f” may be used to model different
systems.

D. General solution

To allow for a potential lag time before the onset of ag-
gregation, we introduce a characteristic parameter t,’ag asso-
ciated with the sigmoidal curves by replacing t’—>t’—t1'ag.
The general solution to Eq. (8) is then found, by integration,
to be implicitly given by the equation

. M’l_“/zFl(l -yl+m—-y2-yM')
. Fa=y e )

where ,F| is a hypergeometric function defined by the ex-
pansion

= () (b Z~
zFl(a,b;c;z)=2M—, (10)

k=0 (C)k k!
in which (a)kza(a+1)(a+2)...(a+k—1):%‘;—3‘2 are the

Pochhammer symbols and I is the gamma function [18]. For
z=M' in our case it is straightforward to verify that the series
converges because 0=M'=1.

Depending on the model assumptions, i.e., whether a lag
phase is to be included and/or whether the exponent vy is
fixed by a model assumption on the geometry of the amor-
phous aggregation process or used as a free parameter, we
have various options to fit the implicit solution of Eq. (9) for
M’ (1) to the scaled experimental data. We can either use the
effective rate constant f” as the only parameter (with all oth-
ers fixed) or include the aggregation geometry exponent y
and/or an additional lag time via #[,, to perform the fits, thus
including up to at most three free parameters.

E. Aggregation geometry

As discussed above, the exponent y in the aggregation
rate equation is introduced to account for an increase in the
area available to the monomers to add on to the aggregate.
This area can be the total surface area of the aggregates in
some cases but it might be only some part of that in others.
The exponent 7y describes how the effective area relevant to
the aggregation process (i.e., presented to the monomers)
increases with the volume and hence the mass of the aggre-
gates.

In linear aggregation such as amyloid fibril formation, for
example, this effective area is independent of the volume
which corresponds to y=0 for one-dimensional aggregation.

Another interesting special case is that of an isotropic
aggregation process in three dimensions as also sketched in
Fig. 3. In this case, the effective area, A, and hence rate of
aggregation increase with the square of the aggregate’s ra-
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FIG. 5. Plot showing estimated variance between the fitted
curve and thaumatin experimental data for values of y between 0
and 1. Replicates A—C yield v values (i.e., minima of plots) of
0.45, 0.48, and 0.49, respectively, and a mean value of 7,
=0.47 = 0.02, where the quoted error is the standard deviation. The
large jump in error near y=0.10 corresponds to y=m, which leads
to a special case of the hypergeometric function solution.

dius R, while the volume V increases as R>. Therefore, at
constant density,

Aeffoc V2/3 o M2/3. (11)

We call y=2/3 the exponent for spherical or isotropic ag-
gregation.

Larger values, y>2/3, are possible when the area in-
creases faster than that relative to the volume. This could be
due to a roughening of the surface, for example.

When a deformation develops, on the other hand, there
are preferential directions of aggregation singling out a cer-
tain fraction of the total surface, with the result that the rel-
evant effective area, Ay, will grow slower than the aggre-
gate’s total surface. Simple examples are prolate
deformations which in the extreme case lead to linear aggre-
gation again or oblate deformations. The latter might be
modeled by a flat cylinder of increasing radius R but constant
height. Then, only the outer wall of the cylinder attracts fur-
ther monomers and the effective area increases only linearly
with the radius, A R, while the volume increases as R>.
This gives

Aeff o V1/2 o Ml/2, (12)

so that we call y=1/2 the exponent for cylindrical aggrega-
tion, which of course is a two-dimensional process.

IV. THAUMATIN RESULTS
A. Isotropic model

We first assume isotropic aggregation and fix y=2/3
=~().67 as the spherical exponent in our fits. The dashed lines
in Figs. 1(a) and 1(b) show the nonlinear regression fit to one
of the replicates for thaumatin, fixing y=2/3 and using f’
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TABLE I. Summary of experimentally and computationally derived parameters for the three proteins
analyzed.

T f=f'Ir
Protein m (min) Vet r® fg (min~")
Thaumatin 0.077° £0.002 ¢ 13.5+03 047+0.029 0.61+0.02 0.55=0.03 0.25=0.01
TL protein 0.039+0.011 12.1£0.1 0.37£0.09 0.67£0.08 0.63£0.03 0.27*0.01
a-lactalbumin 2.04+0.39 48.6+13.2 0.56%0.18 248+021 0.11£0.06 0.09*=0.03

a}’: 1+m-— Yrit-

®m, 7, Viie» and l{ag are each quoted as mean values across the repetitions.

“All quoted errors are SEs of the mean across the repetitions of the experiments unless stated otherwise.
“The errors in i are quoted as standard deviations (SDs) to give a more generous error estimate to account
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for the finite step size in the vy increment loops.

and t;,, as fitting parameters.” This is the same fit as the
dashed line for replicate Al in Fig. 4. Almost identical re-
sults are obtained for replicates Bl and C1 (dashed lines),
also shown in Fig. 4.

By inspection of the fits, the spherical exponent, y=2/3,
for isotropic (iso) aggregation is very well suited to describe
the data for the earlier times, #<t,. At later times, > t, the
quality of the fits deteriorates, however. The assumption of
isotropic aggregation appears to break down in the final
phase of the process typically after the half time, #,.

B. Global fits

Since these observed deviations from the isotropic aggre-
gation model could either be due to anisotropies in the ag-
gregation or roughening of the surface, as explained above,
we adopt an alternative model in which the exponent 7y is
varied to optimize the fits over a range of times around ¢, so
chosen as to include the essential part of the aggregation
process (excluding very early and very late times). To this
end, we scan the range of exponents 0= y<1 in increments
of 0.01.% This is done using a simple MATHEMATICA routine
to obtain for each value of y a nonlinear regression fit using
f" and 1}, as the two free parameters. The estimate of the
variance is plotted for each value against y in Fig. 5.4

The data range for the fits around ¢, is chosen as 2/3
=t'=4/3. This window includes the majority of the crucial

>The MATHEMATICA (Wolfram Research, Champaign, IL) function
NonLinearRegress is used for all of the fitting procedures. In this
procedure, the estimates of the model (fitting) parameters are cho-
sen to minimize the ) merit function, a function which measures
the difference between data and the fitting model for a particular
choice of the parameters given by the sum of squared residuals [19].

3Note that y=1 is a limiting case in that it leads to an exponential
growth at early times, while simple power laws M'(¢')~¢'V/(1-?
are obtained at small ¢’ for 0= y<1.

*The MATHEMATICA statistical output EstimatedVariance is equiva-
lent to the squared sum of fit residuals (difference between data and
fit estimate at any point) divided by the number of degrees of free-
dom [19].

The fitting window midpoint for y=2/3 was chosen to be the
inflection point which is reached slightly before the half time, .
The difference is insignificant, however.

central data and is mainly chosen to exclude the extremities.
The fits are otherwise stable under variations of this range
within reasonable limits.

For each of the three replicates we separately obtain a
value of vy, termed v, minimizing the estimated variance,
o2, as shown in Fig. 5. These values for the best fit over the
transition range lead to a global average over the three sets of
¥5:=0.47 = 0.02 for thaumatin. Figures 11 and 12 in Appen-
dix B, respectively, show similar plots for the TL protein and
a-LA, resulting in 5,=0.37*0.09 and y;;,=0.56*+0.18, re-
spectively.

Replicates Al, B1, and CI1 in Fig. 4 show the fits (solid
lines) resulting for each of the three sets of scaled thaumatin
experimental data (symbols) obtained with their respective
optimized geometry exponents, ;.. An excellent agreement
between fit and data is observed, in particular at later times,
t> 1, where the isotropic model (iso—dashed lines) starts to
fail.

V. DISCUSSION

Our interpretation of these results is that they provide
compelling evidence that the aggregation process for thau-
matin is very well described by an isotropic three-
dimensional process (corresponding to the spherical expo-
nent, y=2/3) in the early phases leading up to the half time,
to. After that, better fits are obtained for a value of vy, near
1/2 which implies that the aggregates start to develop more
of an oblate deformation eventually leading to an aggrega-
tion corresponding to the cylindrical exponent, y=1/2. The
two-dimensional model matches the data particularly well
during the late stages of the aggregation process and, in this
phase, it provides a very good description even considerably
beyond the range used for the fits.

Replicates A2, B2, and C2 in Fig. 4 show the original
thaumatin experimental data with the same fits using the 7y,
values, but after the original scaling from the left column,
corresponding to Eq. (3), is undone.

Table I gives a summary of the values obtained for the
various parameters of the three proteins. In order to compare
different systems such as different proteins, it is furthermore

useful to define a proper rate constant, f=f'/7, upon divi-
sion by the characteristic time 7 from the power law of Eq.
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FIG. 6. (a) Double logarithmic plot of thaumatin experimental aggregation (turbidity) data from Fig. 1(a), showing early times. The data
follow a straight line behavior, and this property can be readily captured by the model. (b) Thaumatin experimental aggregation (turbidity)
data from Fig. 1(a) for late times, presented as monomer concentration (ccA,—A). The plots exhibit asymptotic decay, and the inset shows
the A,—A axis logarithmically, giving approximate straight line behavior. These late-time properties can be accounted for when setting r
=1 which implies y=m. The dashed line shows the original fit for cy=4.0 mg/ml with y=m=0.08 as obtained from the power law in Eq.
(1). The solid line shows the result of an independent fit of this parameter to the late-time data resulting in m=y=0.45 which is precisely the
same value as obtained from the global fit for the geometry exponent y to these data [replicate A in Fig. 4 (see panel A2)].

(1). This definition is independent of the reference concen-

tration, c{)ef, used in the turbidity measurements, and the re-

sults for f are also quoted in Table I. Details of correspond-
ing analyses for the TL protein and @-LA are included in
Appendixes A and B.

We found that the values of r for thaumatin (and the TL
protein) were less than 1, the value expected from first-order
kinetics. We rationalize this on the basis that heating is used
to activate the monomers for aggregation. As a result, a sta-
tistical distribution of monomers is present, some of which
are still in their native (folded) form, others which are par-
tially unfolded, and others which are completely unfolded.
Therefore, a certain proportion of the total monomers present
in the system is unavailable for aggregation (e.g., those in the
native form). In physical terms, when this proportion is
smaller at larger densities, due to an increased number of
collisions for example, this can give rise to an r value de-
creased from 1. Conversely, the r value for @-LA was found
to be greater than 1. In this case, however, a reducing agent
was used to induce aggregation by breaking the four disul-
fide bonds of a-LA to cause the protein to partially unfold.
This chemical method results in practically all of the mono-
mers being partially unfolded [12] and therefore activated for
aggregation, and it can therefore not explain the observed r
value larger than 1. Rather, the resulting value of r around
2.5 may indicate that a few nucleation steps, where more
than one monomer is involved in forming the nuclei, might
need to be included in the pathway to aggregation for a-LA.
This is beyond the scope of the present model and will be
left as a future extension.

Further verification of the validity of the model requires a
thorough analysis of the early and late-time data. Figures
6(a) and 6(b) show the thaumatin experimental aggregation
data from Fig. 1(a) for early and late times, respectively,
emphasized on respective double-logarithmic and semiloga-
rithmic axes (the same trends are seen for the TL protein and
a-LA data, not shown here). For the early-time case, the

monomer concentration changes very little (¢~ c), so the
entire system is described by Eq. (5) only. Integrating this
equation gives

M o 1109 (13)
for early times. Therefore, our model predicts that double-
logarithmic plotting of early-time aggregation data should
result in straight lines (of slope l%y). This behavior is ob-
served very clearly as shown for thaumatin in Fig. 6(a)
where we included the isotropic aggregation model fits with
y=2/3 for the limiting values of the initial monomer con-
centrations from Fig. 1 to indicate the band of lines expected
for initial concentrations between 2.0 and 4.0 mg/ml. After
about 2 min the data align with this band and we conclude
that the three-dimensional isoptropic model with M o« ¢* cap-
tures the early-time behavior of the aggregation process very
well.

For the case of late times, one might intuitively expect a
simple exponential decay of the monomer concentration.
However, this requires r=1+m—y=1. Otherwise the aggre-
gation process would be fully completed in maybe large but
strictly speaking finite time as can be seen from Eq. (9)
which results in a finite t'=z,, for M'=1 when 1+m—vy
=r differs from 1. As this would appear to be rather unphysi-
cal we must assume that r=1 at least asymptotically at late
times. Then, from Eq. (9),

M. — M = exp[— (co/c)" 1], (14)

where the constant of proportionality depends on y=m.
The late-time data for M,,—M of thaumatin are compared
to such model solutions with r=1 and exponential decay in
Fig. 6(b). The dashed line is obtained when using the value
of the exponent m from the power law [Eq. (1)], i.e., with
y=m=0.08. The solid line is the result of an independent fit
of this parameter to the late-time data which incidentally
leads to a value y=m=0.45 coinciding with the result of the
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global fit for the geometry exponent vy, to these data, repli-
cate A [see Fig. 4 (A2)], as described in Sec. IV B. Identical
values are obtained for replicates B and C with very small
errors. They are all consistent with the thaumatin average of
the global fit parameter y;,=0.47 =0.02 for approximately
cylindrical aggregation, as listed in Table I.

The late-time data are then also well described, and we
observe that the extracted value of the geometry exponent is
insensitive to the necessary modification of r. We reiterate,
however, that r=1 is required for the expected exponential
decay of the monomer concentration at late times. The fact
that this is in conflict with the empirical value of r used so
far shows the limitation of the model. An obvious improve-
ment would, of course, be to assume that the required devia-
tions from r=1 in Egs. (4) and (6) tend to zero, i.e., that r
— 1 at late times. In physical terms such a modification
would be very well justified. For thaumatin and the TL pro-
tein this is because one would expect the density dependence
of the activation process to die off as monomer collisions do
when their density approaches zero. Likewise, the compen-
sation for potential nucleation steps in the case of a-LA, by
adjusting the value of r to around 2.5, should really only be
applied during the early phases with r— 1 after nucleation.

The overall effect of this modification is expected to be
small, however, because the model describes the data very
well over almost the entire aggregation process, including
the depletion of monomers and the subsequent plateau re-
gion, as seen, e.g., in Fig. 4. Furthermore, the predicted ge-
ometry exponent is seen to be left unaffected. We therefore
conclude that implementing r— 1 might be a rather cosmetic
improvement. In doing so, the model would probably lose its
mathematical simplicity which is one of its most appealing
features.

Another limitation of the model in its present form is that
there is no reference made to individual aggregates and their
numbers. As a result, the model does not allow for the case
where alternative growth pathways exist depending on the
concentration of certain sizes of aggregates. For example, for
large aggregate sizes, clumps of these big aggregates may
begin to form rather than the simple addition of individual
monomers to growing clusters. Therefore, further extensions
of the model would need to account for a variable size dis-
tribution in order to rationalize and incorporate multiple ag-
gregation pathways.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed a model for aggregation
involving a geometry exponent y to model its various forms
including the well-studied one-dimensional linear processes
for y=0, two-dimensional or cylindrical processes for 7y
=1/2, and isotropic three-dimensional processes with 7y
=2/3. Moreover, this exponent can provide an indication of
the geometry of the process and changes in geometry of the
aggregates over time.

While simple in its form, the model is widely applicable
to a number of amorphous aggregation processes, not neces-
sarily limited to protein aggregation. To use this model on
other systems, the experimentally obtained data simply need

PHYSICAL REVIEW E 80, 051907 (2009)

to be proportional to the volume of the aggregates and obey
a scaling law; the method is, therefore, not limited to turbi-
dimetry data.

Nevertheless, this model is very well suited to describe
the turbidimetry data for the thaumatin protein presented
herein as a first example. In particular, for thaumatin we
observe that the first half of the aggregation process is very
well described by an isotropic three-dimensional form corre-
sponding to y=2/3, while the second half displays more of a
two-dimensional cylindrical behavior with y=1/2. Similar
results are obtained for a TL protein and a-LA (whereby the
rather limited scaling properties of the a-LA system lead to
somewhat larger uncertainties—see Appendixes A and B).

A possible explanation for the geometry change at later
times for the thaumatin protein may be that the hydrophobic
interactions between aggregate and monomer are the primary
modes of attraction [20] and, therefore, not all of the surface
of an aggregate is available for a monomer to add. This is
particularly the case for larger aggregates, where the hydro-
phobic regions will tend to point inward, exposing as little
hydrophobicity as possible to the aqueous solution and hence
reducing the number of sites available for monomers to add.
Oblate deformations may result along with growth with re-
duced dimensionality in preferred directions. Whether it does
or whether it leads to some other means to reduce the effec-
tive area relative to the volume is an open question which
deserves further study.

An alternative explanation for the decrease in vy for later
times could be that big aggregates might clump together to
form huge aggregates. This would decrease the effective sur-
face area available for monomer addition, consistent with the
v change. Furthermore, such a competing process would be
more likely for later times when there are fewer monomers
present and only big aggregates remain. Extensions of the
model would need to account for such multiple growth path-
ways which depend on the size distribution of the aggregates
at any time.

An analysis of the early-time behavior of the model
shows that it is consistent with the experimental data and
physical observations. On the other hand, we need to assume
that r— 1 at late times to avoid the unphysical situation of a
finite aggregation time. This is a minor limitation of the
model which has little effect on the aggregation process as a
whole. The model nevertheless reproduces the correct overall
trends even at late times.

Future work will also include tests of the model in other
systems. In addition, the findings could be reconciled with
other data, such as time series of protein hydrodynamic radii
as studied in [21]. Finally, one could incorporate the capacity
to include a number of nucleation steps prior to aggregation
in the model along the lines of the linear aggregation model
developed in Ref. [9]. This could then be used to devise a
criterion for whether nucleation is important or not in any
given amorphous aggregation process.
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FIG. 7. Left column, A1-C1: TL protein experimental data with the time and turbidity axes scaled with the half time, #j, and asymptotic
turbidity, A, respectively. The three figures represent three repetitions of the experiment (replicates A—C). The solid curves are the fits by
the model to the scaled data with g, values, and the dashed curves are fits by the (isotropic—iso) model with y:%, Right column, A2-C2:
TL protein experimental data from the left column unscaled to reproduce the original time series overlayed with the fits by the model using
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APPENDIX A: MATERIALS AND METHODS
1. Materials

Thaumatin (mixture of I and II) from Thaumatococcus
daniellii was purchased from MP Biomedicals (Solon, OH,
USA) and calcium depleted, type III, a-LA was purchased
from Sigma Chemical Co. (St Louis, MO, USA), both being
used without further purification. A thaumatinlike (TL) pro-
tein was isolated (>98% purity) from Semillon grape juice
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FIG. 8. Left column, A1-El: a-LA experimental data with the time and turbidity axes scaled with the half time, f), and asymptotic
turbidity, A.., respectively. The five figures represent five repetitions of the experiment (replicates A-E). The solid curves are the fits by the
model to the scaled data with vy values and the dashed curves are fits by the (isotropic—iso) model with y= % Right column, A2-E2: a-LA

experimental data from the left column unscaled to reproduce the original time series overlayed with the fits by the model using ;.

(Adelaide Hills, South Australia, 2005) by cation exchange 2. Determining protein concentrations

and hydrophobic interaction chromatography [22]. Dithio- Concentrations of thaumatin (€,5=27 755 M~! cm™",
threitol (DTT) was obtained from Sigma. All buffers and  1a55=22 204 Da [23]) and @-LA (€250=28 540 M~ cm,
solutions were filtered (0.45 wm) before use. mass=14 000 Da [24]) were determined spectrophotometri-
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cally at 280 nm with a Cary 5000 UV-visible spectrophotom-
eter (Varian, Melbourne, VIC, Australia).

For the TL protein, the concentration of the final purified
protein was determined by high-performance liquid chroma-
tography [25].

3. Monitoring aggregation by turbidimetry

Stock solutions of thaumatin (5.0 mg/ml) in a model wine
buffer solution (pH 3.2, 12% v/v ethanol/water, 1.25 g/l po-
tassium hydrogen tartrate, and 1 g/l Na,SO,) were prepared.
Appropriate dilutions were made with the model wine buffer
to give protein concentrations in 0.5 mg/ml increments from
2.0 to 4.0 mg/ml plus a control containing no protein (base-
line). For the TL protein, the same model wine buffer was
used except the pH was 3.5 and 100 mM potassium malate
was included. The concentration range was 3.0-5.0 mg/ml in
0.5 mg/ml increments. Apo @-LA (10 mg/ml) in phosphate
buffer (pH 7.2, 50 mM Na;PO,, 100 mM NaCl, and 2.5 mM
ethylenediamine tetra-acetic acid) was used from 2.0-4.0
mg/ml in 0.5 mg/ml increments.

Incubation was at 60 °C with 2 s of shaking after each 30
s cycle for thaumatin and the TL protein. The a-LA aggre-
gation experiments were performed at 37 °C (no shaking)
and initiated by including DTT to a final concentration of 20
mM. The aggregation was monitored via turbidimetry at 340
nm using a Fluostar Optima microplate reader (BMG La-
btechnologies, Melbourne, VIC, Australia). The data in each
assay were averaged between duplicates and baseline sub-
tracted, then normalized using the A, value for 4.0 mg/ml
(c{ff) for each repetition such that the A., turbidity values for
4.0 mg/ml were always 1.0 (justifiable because turbidity is an
arbitrary scale). This procedure produced the aggregation
profiles in the right column of Fig. 4 and those of Figs. 7 and
8, whereby the thaumatin and TL protein experiments were
repeated three times and five times for a-LA due to the
greater variability in the data.

APPENDIX B: TL PROTEIN AND a-LA RESULTS AND
DISCUSSION

Inspection of Figs. 7 and 8 (left columns) shows that the
individual data for the aggregation of the TL protein and
a-lactalbumin (a-LA), respectively, “scale” to an approxi-
mation. This allows us to use the scaling technique to ana-
lyze the data and fit the model to them in the same manner as
described for thaumatin. It should be noted, however, that the
scaling for a-LA is not as consistent as for thaumatin and the
TL protein.

Once again, the double-logarithmic plots of the character-
istic parameters produce straight lines for both the TL protein
(Fig. 9, m=0.039+0.011) and o-LA (Fig. 10, m
=2.04+0.39). The value of m for the TL protein is of the
same order as thaumatin, but a-LA is two orders of magni-
tude greater than the other two. This is likely to be due to its
dramatically different aggregation profile and that the condi-
tions used to induce aggregation (i.e., reduction versus heat-
ing) lead to a much longer period of aggregation.

The fits by this amorphous aggregation model to the TL
protein data produce strong correlations (Fig. 7) even though
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FIG. 9. Double logarithmic plots of 7, against A, for the TL
protein, showing all three replicates. The linear fits of logo(¢y/ 7)
versus log;o(A,) for replicates A-C, respectively, give slopes
(=m) of =0.033, —0.024, and —0.061, R? values of 0.62, 0.34, and
0.56, and 7 values of 11.83, 12.12, and 12.29 min, corresponding on
these plots to the #; values with A.=1.0. This gives mean values of
m=0.039*=0.011 and 7=12.08 £0.13 min, where errors are quoted
as SEs of the mean.

the data are slightly more noisy than for thaumatin. Repli-
cates Al, B1, and C1 of Fig. 7 show that a y value of 0.67
(the isotropic model) gives better fits for the early-time TL
protein data, but the value which gives the best fit for mid to
later times is y=~0.40 (i.e., v from Fig. 11). Therefore, the
same interpretation can be used as with thaumatin—there
appears to be a change in the aggregate geometry from iso-
tropically aggregating entities for early times, t<<t, to cylin-
drically aggregating entities for mid to later times, #>f,.
Since the change in vy is more significant for the TL protein
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FIG. 10. Double logarithmic plots of #; against A, for a-LA,
showing all five replicates. The linear fits of logo(ty/7) versus
log o(A.,) for replicates A-E, respectively, give slopes (—m) of
-2.90, —1.64, —2.04, —2.81, and —0.80, R? values of 0.98, 0.53,
0.98, 0.99, and 0.99, and 7 values of 27.7, 56.7, 36.8, 25.2, and 96.7
min, corresponding on these plots to the #, values with A,=1.0.
This gives mean values of m=2.04+0.39 and 7=48.6* 13.2 min,
where errors are quoted as SEs of the mean.
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FIG. 11. Plot showing estimated variance between the fitted
curve and the scaled TL protein experimental data for values of y
between 0 and 1. Replicates A—C yield vy values (i.e., minima of
plots) of 0.36, 0.28, and 0.46, respectively, and a mean value of
¥5:=0.37 £ 0.09, where the quoted error is the standard deviation.

than thaumatin, it suggests that these effects are more exag-
gerated in the TL case, perhaps leading to greater oblateness.
The greater approximation to scaling for the a-LA data
makes it difficult to draw any firm conclusions about whether
the fits are improved by changing the geometry exponent, 7.
Figure 8 (replicates A1-E1) shows the fits to the scaled data
by the model and it is difficult to distinguish whether the fit
is improved by y=0.67 (is0) or 7y, (from Fig. 12). While the
latter gives a lower overall error in the fit, we cannot con-
clude with greater confidence whether y=0.67 gives better
fits at early times. Therefore, we cannot interpret whether a
change in aggregate shape occurs for a-LA. Nevertheless,
the same overall trend is observed, that is 7, is near 0.5.
The less consistent scaling of @-LA could be due to the
longer time period of aggregation exaggerating the effect of
scaling with 7. It could also be due to the greater variation of
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FIG. 12. Plot showing estimated variance between the fitted
curve and the scaled a-LA experimental data for values of y be-
tween 0 and 1. Replicates A-E yield g, values (i.e., minima of
plots) of 0.75, 0.47, 0.35, 0.75, and 0.48, respectively, and a mean
value of y5;,=0.56=0.18, where the quoted error is the SD. Repli-
cates A and D do not scale as well (Fig. 8, sets Al and D1) and
consequently give larger errors overall and also give much higher
vs values. Therefore, these 75, values are not as reliable as those
for B, C, and E.

the profiles between experiments. Finally, it may be that dif-
ferent mechanisms are involved for the concentration range
examined and therefore scaling would not be expected to
occur. In fact, higher concentrations do not scale nearly as
well (data not shown), indicating that the latter may be the
case.

While the fits by the model are reasonable, improvements
could be made for a-LA, for example, by adding several
nucleation steps to the model. This would be a reasonable
approach since it is thought that a-LLA aggregation occurs via
a nucleation-dependent pathway.
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