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Recently many important biopolymers have been found to possess intrinsic curvature. Tubulin protofila-
ments in animal cells, FtsZ filaments in bacteria and double stranded DNA are examples. We examine how
intrinsic curvature influences the conformational statistics of such polymers. We give exact results for the
tangent-tangent spatial correlation function C�r�= �t̂�s� . t̂�s+r��, both in two and three dimensions. Contrary to
expectation, C�r� does not show any oscillatory behavior, rather decays exponentially and the effective per-
sistence length has strong length dependence for short polymers. We also compute the distribution function
P�R� of the end to end distance R and show how curved chains can be distinguished from wormlike chains
using loop formation probability.
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A cell hosts variety of polymeric filaments. Tubulin fila-
ments in eukaryotic organisms and FtsZ filaments in
prokaryotic organisms, are important members of the cellular
cytoskeleton. They also play important role during cell divi-
sion. Therefore in vitro properties of these filaments, both in
their isolated filament form as well as in bundled form, have
been of great interest �1–3�. One of the important mechanical
properties which tubulin and FtsZ filaments share is their
intrinsic curvature. The mechanisms by which microtubules
generate pulling force during chromosome segregation �1�
and FtsZ-ring generates contractile radial force during cell
constriction �4�, exploit their intrinsic curvature.

Interestingly biopolymers with intrinsic curvature and tor-
sion have been known for long. Prominent examples are the
alpha helices in proteins. They have also been extensively
modeled �5�. But polymers with only intrinsic curvature �but
no intrinsic torsion�, have not received much attention. This
is perhaps because the helical structures are visually easy to
detect compared to intrinsic curvature without torsion, ex-
cept in two dimensions �2D�. Intrinsic curvature is evident in
electron microscope �2� and atomic force microscope �AFM�
�3� pictures of FtsZ and AFM pictures DNA �6�. As our
analysis will reveal, in three dimensions �3D�, unless both
L / lp and lp /R0 are of order one, where R0 is the intrinsic
radius of curvature of the polymer, L its contour length and lp
its persistence length, it is difficult to differentiate them, vi-
sually, from a WLC. In this paper we will focus on confor-
mational properties of curved chains, that may distinguish it
from a WLC. Such diagnostic markers are important in the
context of ever increasing number of new biopolymers, with
properties which cannot be explained by the standard models
such as flexible Gaussian chains or WLC �7�, especially for
short contour lengths. We ignore excluded volume effects
and self crossings which are negligible if L /R0�1; but im-
portant otherwise, as well as for nondilute polymer solutions.
Interplay of the additional length scale R0 with lp and L is of
interest here.

Equilibrium, conformational statistics of such curved
polymers have been studied using Monte Carlo simulation

�8� and auxiliary field theory �9�. Their dynamics have been
studied by numerical solution of their nonlinear equation of
motion �10�. The field theoretic calculation �9� assumed zero
average torsion for the curved polymer and used a spatially
varying auxiliary field. They predicted an oscillatory decay

C�r��e−r/l̃p cos�r /R0� for the correlation function in three

dimensions. Here l̃p is the effective persistence length. This
oscillatory decay is geometrically suggestive, as the polymer
may wind around itself �loop� due to its intrinsic curvature.
This also implies that at large lp, for L�2�R0 the peak of the
distribution function P�R� of the end to end distance R will
alternate between R=0 and R=2R0, corresponding to com-
plete loops and half loops, respectively, as the length L is
increased.

We compute C�r� exactly both in 2D and 3D and show
that the decay is purely exponential, while oscillations can be
recovered in 2D through extra constraint on the sign of the
preferred interbond angle and through imposing torsion in
3D �5�. The absence of oscillations can be understood as
follows. Although intrinsic curvature constrains the magni-
tude of the local curvature � dt̂�s�

ds ��R0
−1, the direction of the

curvature vector dt̂�s�
ds remain uncorrelated along the contour,

leading to exponential decorrelation. In other words the local
plane of curvature keeps changing randomly which disfavors
formation of planar or helical loops. Although the functional
form of C�r� cannot distinguish WLC from curved chains,

the effective persistence length l̃p turns out to be N depen-
dent. We also compute the distribution function P�R� for
curved chains which shows difference with WLC.

A polymer of length L is described by a space curve
R�s� ,s� �0,L�. The Hamiltonian of an intrinsically curved
polymer is given by �10�, H

KBT =
lp

2 	s=0
L ���s�−R0

−1�2ds. The cur-

vature vector �� �s�= dt̂�s�
ds , where t̂�s� is the local tangent to the

curve �t̂�s�= dR�s�
ds � and R0 is the intrinsic radius of curvature.

Changing variable x= s
lp

, H
KBT = 1

2	x=0
L/lp�� dt̂�x�

dx �−
lp

R0
�2dx. This re-

veals that lp /L and lp /R0 are the two important dimension-
less ratios of the problem. In the discrete limit the monomers
are given by the position vectors Ri and the normalized bond
vectors are tî = �Ri+1−Ri� /b, where b is the bond length. The
discretized Hamiltonian reads*asain@phy.iitb.ac.in
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H

kBT
= 


i=1

N−1

hi =
1

2 

i=1

N−1 � �t̂i+1 − t̂i�
��

−
lp

��

R0

2

, �1�

where �=
L/lp

N . Since the Hamiltonian depends only
on nearest neighbor bond angles, we can use a standard
property �11�, �t̂i . t̂k�= �t̂i . t̂i+1��k−i�. This yields �t̂�s� . t̂�s+r��
=exp�−r / l̃p�, where the spatial separation r=b�k− i�. Thus
quite counterintutively, in 3D, C�r� does not show any

oscillation, but decays as exp�−r / l̃p�. We identify the

effective persistence length as l̃p=−b / ln�t̂i . t̂i+1� and

�t̂i . t̂i+1�=
	d�i cos �ie

−hi��i�

	d�ie
−hi��i� . Here �i is the angle between t̂i and

t̂i+1 and the integration is done by holding t̂i as the polar axis

and integrating t̂i+1 over the solid angle �i. The thermal

weight is exp�−hi�, where hi��i�= �
�1−cos �i

��
−

lp
��

�2R0
�2

�see Eq. �1��. �t̂i . t̂i+1� is given by

e−y2
�2�NR0�− L2lp − 2LNR0

2 + 2lpN2R0
2 + exp� 2lp

R0
�−y1

2
�L2lp + 2lpN2R0

2 + 2LNR0�lp + R0���

− ey2�2�Llp�L2lp + 3LNR0
2 − 2lpN2R0

2��erf�y� − erf�y − y1���/�2lpN2R0
2�2�NR0e−y2−y1

2
�ey1

2
− e

2lp
R0 �

+ �2�Llp�erf�y� − erf�y − y1���� , �2�

where y=�Llp /2N /R0, y1=�2Nlp /L. Using this expression

we plot l̃p / lp in Fig. 1 as a function of R0 and N. At finite

R0 ,L, but large N, l̃p / lp→1. But interestingly the discrete-
ness of the chain has practical importance. For example,
DNA has a finite bond length approximately equal to the size
of a base pair �bp� and experiments with short DNA strands
�15–90 bp� have revealed �12� an apparent persistence length
which is three to four times lesser than the standard value
�50 nm �150 bp�. To explain this Ref. �12� has ivoked new
physics at the scale of base pairs. Models with long range
correlation in the intrinsic curvature disorder in base pairs
has also been proposed �6�. But our calculation shows that a
simpler factor, such as an uniform curvature can lead to sub-

stantial decrease in l̃p. Figure 1 shows that for low R0 and

high lp the reduction in l̃p could be twofolds.
Since most curved polymers have been detected on 2D

substrates, 2D requires special attention. We will now com-
pute C�r� in 2D. Here the angle between the bond vectors t̂i

and t̂k, �i,k can be written as a sum of the intermediate angles

between the successive bond vectors. Denoting k= i+ l,
�i,i+l=
 j=i

k−1� j,j+1. Note that the sign of the angles are impor-
tant here and � j,j+1 is defined as the angle the t̂ j+1 vector has
to rotate with respect to the t̂ j vector, and thus C�r� is given
by

�cos �i,i+l� = Re�ei
j=i
k−1�j,j+1� = Re�	d�ei�e−h���

	d�e−h��� �l

. �3�

Note that if the symmetry of h��� with respect to 	� is not
broken then the integrals 	−�

� are real and hence �cos �i,i+l�
will decay exponentially, as in 3D. The integral can be esti-
mated by noting that the numerator gets its maximum con-
tribution from �=�0 �and not −�0, to break the symmetry�
where the exponent �

�1−cos �0
��

−
lp

��
�2R0

� is zero. In the continuum
limit �b /Ro
1� the maximum occurs at a small value of
�0�b /R0 which allows the approximation cos ��1− �2

2 . The
resulting integral can be evaluated analytically �Eq. �4�� and
its agreement with the numerical evaluation of the exact in-
tegral in Eq. �3� is excellent �figure not shown�.

Re���−�

�

ei�e−
y1

2

2
�� − �0�2

d�

�
−�

�

e−
y1

2

2
�� − �0�2

d� �
l

� = e−r/lp cos�r/Ro�Re�� erf��i + y1
2�� + �0��/�2y1� − erf��i − y1

2�� − �0��/�2y1�

erf��� + �0�
y1

�2
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FIG. 1. �Color online� The effective persistence length l̃p / lp with
respect to R0 and N, at lp /L=0.2 �left� and lp /L=10 �right�.
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where r= l�L /N�. For finite R0 ,L, but large N, the
N-dependent factor Re�..�→1 and we get C�r�
=e−r/lp cos�r /Ro�. Thus because of the preferred direction of
the angle �0 �as opposed to 	�0� the decay is oscillatory.
This is analogous to imposing an intrinsic torsion in 3D.

We now compute the distribution function P�R�, using
transfer matrix methods. We also verified these results using
a Monte Carlo �MC� simulation which gave additional in-
sights into the typical configurations of the curved chain �see
inset of Fig. 2�. The distribution function of the end to end
vector R is P�R�=C	dt̂1¯	dt̂Ne−�H��
i=1

N t̂i−R�, where C is
the normalization constant for 	dRP�R�=1. Following Ref.
�13�, P�R� can be connected to the partition function
Z�f�=	dt̂1¯	dt̂N exp�−�H+ f	x=0

L/Lpt̂i
zdx�, where f is an exter-

nal field �analogous to external magnetic field in Ising
model�. This connection is made via the reduced probability
distribution p�z�=	dRP�R���R3−z�, which is the probability
that one end of the polymer is fixed at R=0, and the other
end lies in a given z plane. Using the definition of P�R� it
turns out that the Laplace transform of p�z�,
p̃�f�=	−L

L dz exp�fz / lp�p�z�=Z�f� /Z�f =0�. For computation
purpose we converted this Laplace transform to
a Fourier transform by choosing f purely imaginary.
Substituting the Hamiltonian in Z�f� we get Z�f�
=
t̂1

..
t̂N
exp�
i=1

N−1�hi+
f�
2 �t̂i+ t̂i+1� . ẑ�+ f�

2 �t̂1+ t̂N� . ẑ�. Z�f� can
be computed using transfer matrices �14�.

Z�f� = 

t̂1



t̂N

�t̂1�VN−1�t̂N�exp� f�

2
�t̂1 + t̂N� · ẑ
 �5�

where the elements of the transfer matrix V are
�t̂i�V�t̂i+1�=exp�−hi+

f�
2 �t̂i+ t̂i+1� · ẑ�. After computing

Z�f� /Z�f =0� numerically, we inverse Fourier transform it to
obtain p�z� and using the relation P�R�=− 1

2�z � dp�z�
dz �z=R �which

is obtained in Ref. �13� using tomographic method and the
isotropy of P�R�� we obtain P�R�.

For semiflexible polymers with intrinsic curvature the en-
ergy of a configuration is proportional to lp, at fixed L.
Therefore at large lp, little deviation of local R from R0
makes the energy cost for such fluctuations large. Such rare
but important small angle fluctuations, which requires large
sampling in a Monte Carlo simulation, can be efficiently cap-
tured by transfer matrix method. In this stiff limit the peak of
the end-to-end distribution function P�R� is pushed away
from the entropy dominated Gaussian peak �see Fig. 2� and
forces the polymer to make circular arcs of radius R0. But at
small R0, very small globules, smaller than even that of a
flexible Gaussian chain �of same N�, can form �Fig. 2�.
Whereas for small value of lp the behavior will be dominated
by the flexible limit and the peak of P�R� moves toward the
Gaussian peak.

In Fig. 3 we show how loop formation probability
P�R=0� changes with contour length, in different regimes of
lp /R. Reference �8� had reported similar result using a Monte
Carlo sampling. They found that as R0 increases the peak of
P�R=0� unexpectedly shifts to L values lesser than 2�R0.
This was argued as thermal softening of the polymer. But it
is unclear why thermal fluctuations should favor larger bend-
ing over smaller bending �relative to curvature R0

−1�. We ar-
gue that actually the shift occurs due to the competition be-
tween two different peaks in P�R=0�, and it also gives us a
diagnostic tool to differentiate a curved chain from a WLC.
At small lp /R0 i.e., in the WLC limit P�R=0� has a peak at
approximately L / lp�3 which emerge from a competition of
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FIG. 2. �Color online� P�R� vs R /L for stiff chains �L / lp=1� for
different radii of curvatures, �A� R0=0.1, �B� R0=0.3 and �C�
R0=10 �in units of lp�. At large R0 / lp the WLC limit �symbols� is
reached while at small R0 the peak of P�R� can go past the flexible
limit to smaller values of R, and thus can attain a globule size
smaller than that of flexible Gaussian chain. We used the same N for
all the chains. Inset: typical configurations of �a� flexible, �b� WLC,
and �c� intrinsically curved chain. �b� and �c�, both have lp /L=1 and
�c� in addition has R0=0.2. These configurations were generated
using MC simulation.
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FIG. 3. �Color online� Probability of forming closed loops
P�R=0� versus contour length �L�, gotten from transfer matrix cal-
culation. From top to bottom R0=1.5, 3, 7.5 and 20, at fixed
lp=10. We fitted all the curves �solid lines� with the
approximate formula derived by Shimada and Yamakawa �5�:
P�R=0�= �896.32 / l�5exp�−14.054 / l+0.246l�, for WLC in the
range l=L / lp
10. In these fits lp was used as an open parameter.
For the bottom two curves �small lp /R0, i.e., WLC limit� the fit is
good and lp�10 was reproduced; but for the top two curves �large
lp /R0� the fit fails and yields lp�5. This provides us a diagnostic
tool for distinguishing a curved polymer from a WLC. Experimen-
tally, P�0� is measured by counting the fraction of closed loops in
an ensemble of mono disperse polymer strands. It is interesting to
note that despite an exponentially decaying tangent-tangent corre-
lation function, short curved chains with high lp /R0 �top two
curves� do show a strong tendency to form a flat circular �R0� loop
of length L=2�R0, even in 3D. The conformation �c� in the inset of
Fig. 2 also show such tendency.
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bending energy and entropy �5�. Whereas for large lp /R0 the
curved chain has a peak at L=2�R0 which is driven by en-
ergetics of intrinsic curvature. Notice that for the upper most
plot �in Fig. 3� the peak is located at L /2�R0=1, while in the
lower most plot it is located at L / lp�3. We note that Ref. �8�
had fitted their data for P�R=0� with a formula in Ref. �5�,
which however was derived for a curved polymer with non-
zero torsion.

Our transfer matrix calculation is different from the usual
one in that we cannot use periodic boundary condition which
allows one to approximate the partition function as �max

N ,
where �max is the largest eigenvalue of the transfer matrix V.
This is because we work in the regime lp�L where the effect
of the boundary conditions can propagate deep inside the
chain. In other words, our system size is not larger than the
correlation length and hence strong finite size effects are ex-
pected. In Eq. �5�, Z�f� is obtained as a weighted sum over
all the matrix elements of VN−1. In order to evaluate VN−1

numerically, the angular space ���� ,�� for a bond vector t̂i
is divided into n=n1�n2 bins. Thus the matrix V has dimen-
sion n�n. Note that while obtaining VN−1 in Eq. �5� a matrix
multiplication V2=	dt̂V�t̂��t̂�V is numerically implemented
through a discrete sum: �V2�ik=	d� jV��i ,� j�V�� j ,�k�
=c
 j=1

n Vij sin � j� jlVlk=c�VSV�ik. Here the matrix Sjl
=� jl sin � j, with no summation over j intended, �15� arose
from d� j =sin � jd� jd� j and c=d�d�= �� /n1�� �2� /n2�. Fi-
nally, in order to get VN−1 we needed a multiplication of the
type VSVSVS . . .V. Since for high lp and R0, the main contri-
bution to Z�f� comes from configurations where the inter-
bond angles are small �and even smaller if N is increased�,
the angular discretization has to be dense enough to pick up
the contribution from the small interbond angles. This is
computationally expensive. So we chose length discretiza-
tion as N−2=2m so that using ��log2 N� number of matrix
multiplications we could obtain the matrix �VS�N−2.

Now we discus connection of our model with one of the
discrete models for WLC, namely the Freely jointed chain
model �FRC� �7�. FRC has fixed bond lengths b, with the
interbond angles fixed at �0. In the continuum limit
�0 ,b→0,N→�, the quantities lp=2b /�0

2 and L=Nb are fi-

nite. So macroscopically there are two scales. Where as in
our curved chain model there are three macroscopic scales
L , lp and R0, and thus it is expected to be different from FRC.
Only if the dimentionless ratio lp /R0→0 then curved chain
model and WLC are identical. We have made this compari-
son in Figs. 2 and 3.

Is there a limit where our discrete model reduce to FRC?
For finite N, our model surely has higher entropy than FRC,
because both � and � can vary in our model, where as in
FRC � is fixed. Here �� ,�� is the orientation of the bond t̂i+1

holding the polar axis along t̂i. Quantitatively, in our model
the probability of having an interbond angle � is
P����exp�−h���� �see Eq. �1� and just above Eq. �2��.
In the small � limit, expanding cos �, we arrive at
h���= 1

2� ��−�0�2, where �0=b /R0. For large N and finite
L , lp, i.e., for �→0, P��� is a Gaussian of zero width,
equivalently a delta function, reducing our model to FRC.
But note that here �0= b

R0
���1 /N�, where as in FRC

�0���1 /�N�. So the two models are close only for large N,
but not identical. It is important to note, that merely the

effective persistence length of our model l̃p→ lp, for large N,
does not mean that in the continuum limit the models are
identical; difference in the other observables, namely, P�R�
and loop formation probability P�0� do indicate that there
exists another important macroscopic length scale R0.

In summary, we showed by exact calculation that both in
2D and 3D, intrinsically curved polymers give exponentially
decaying tangent correlation, C�r�, as semiflexible polymers.

But the apparent persistence length l̃p is substantially lesser
than lp for short chains, when the ratio lp /R0 is large. Con-
trary to physical expectation C�r� does not have oscillatory
decay with period L=2�R0, unless we impose torsion in 3D
or fix the sign of the preferred interbond bending angle in
2D. Curved biofilaments of FtsZ or tubulin can be distin-
guished from WLCs’ through loop formation probabilities,
which has not been measured yet for curved polymers.
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