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We study a zero-dimensional version of the fluctuating nonlinear hydrodynamics �FNH� of supercooled
liquids originally investigated by Das and Mazenko �DM� �Shankar P. Das and Gene F. Mazenko Phys. Rev. A
34, 2265 �1986��. The time-dependent density-like and momentum-like variables are introduced with no
spatial degrees of freedom in this toy model. The structure of nonlinearities takes the similar form to the
original FNH, which allows one to study in a simpler setting the issues raised recently regarding the field
theoretical approaches to glass forming liquids. We study the effects of density nonlinearities on the time
evolution of correlation and response functions by developing field theoretic formulations in two different
ways: first by following the original prescription of DM and then by constructing a dynamical action which
possesses a linear time-reversal symmetry as proposed recently. We show explicitly that, at the one-loop order
of the perturbation theory, the DM-type field theory does not support a sharp ergodic-nonergodic transition,
while the other admits one. The simple nature of the toy model in the DM formulation allows us to develop
numerical solutions to a complete set of coupled dynamical equations for the correlation and response func-
tions at the one-loop order.
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I. INTRODUCTION

The slow dynamics of supercooled liquids near the glass
transition has been under intense theoretical and experimen-
tal investigation for many years. Among many theoretical
attempts to understand the slowing down of supercooled liq-
uids, the mode coupling theory �MCT� �1–4� stands out as
one of the most successful ones. It explains, for example, an
elaborate sequence of time relaxation processes with charac-
teristic exponents which are consistent with experimental
findings. In its initial form �5–7�, referred to as the standard
MCT, it predicts a sharp ergodic-to-nonergodic �ENE� tran-
sition at a critical temperature or density with the nonergodic
phase characterized by the density autocorrelation function
approaching a nonzero value called the nonergodicity param-
eter in the long time limit. Many experiments and numerical
simulations, however, show that this feature is not realized in
real supercooled liquids in finite dimensions, and that the
ergodicity is restored at finite temperature.

There have been many attempts to put the MCT into a
field theoretic framework �8–17�, since it has many advan-
tages including the possibility of a systematic improvement.
Das and Mazenko �DM� �8� studied the nonlinear feedback
mechanism of density fluctuations in supercooled liquids by
formulating a field theoretic renormalized perturbation
theory of the fluctuating nonlinear hydrodynamics �FNH� of
compressible fluids. They find that the sharp transition is
cutoff and the system remains ergodic at all temperatures or
densities. Recently, however, the validity of the DM results,
especially of those on the explanation of the cutoff mecha-
nism, was questioned in Refs. �11,17,18�. Some of these
works are based on a field theory developed in Ref. �11�
where the dynamical action is invariant under a set of linear

time-reversal transformations. This formulation allows one
to have a full set of fluctuation-dissipation relations �FDR�
relating linearly correlation functions to response functions.
The field theory of DM has only a limited number of linear
FDR and some relations hold only in the hydrodynamic
limit. This is one of the points on which the conclusion by
DM on the absence of the sharp ENE transition was ques-
tioned. The field theory with linear FDR was later improved
�14� for the case of interacting Brownian particles satisfying
the Dean-Kawasaki equation �19,20�, where the standard
MCT result was recovered at the one-loop order of perturba-
tion theory. This improved method was then applied to the
FNH �17� with results indicating a sharp ENE transition at
the one-loop order with the nonergodicity parameter satisfy-
ing the standard MCT result. In response to these develop-
ments, DM reexamined their work and showed �21� in a
nonperturbative analysis without resorting to the hydrody-
namic limit that the sharp ENE transition is not present in the
FNH after all. This conclusion is also supported by the recent
direct numerical integration of the generalized Langevin
equations of the FNH �22�.

It is somewhat puzzling to have completely different re-
sults from the two field theoretic approaches of the same
model. In this respect, it might be desirable to have a simpler
setting in which one can compare these two field theoretical
approaches and study where the difference originates. The
field theoretical treatment of FNH is complicated by many
factors including the presence of many dynamical variables.
This is especially the case for the field theory with linear
FDR. In this paper, we present a simple toy model of FNH,
which can shed some light on the issues described above
concerning the field theoretic approaches to the FNH. In this
toy model, there is no spatial dependence in the dynamical
field variables which consist simply of a density-like variable
and a single-component momentum-like variable. We de-
velop the two different field theories of the toy model,*jhyeo@konkuk.ac.kr

PHYSICAL REVIEW E 80, 051501 �2009�

1539-3755/2009/80�5�/051501�11� ©2009 The American Physical Society051501-1

http://dx.doi.org/10.1103/PhysRevE.80.051501


namely the original DM-type field theory and the one with
linear FDR. We show explicitly that, at the one-loop order of
perturbation expansion, a sharp ENE-type transition does not
occur in the DM-type field theory. On the other hand, the
field theory with linear FDR shows a sharp transition at the
one-loop order. By comparing the two field theories, we find
that the major difference between the two formulations lies
in the way of treating the density nonlinearities present in
FNH within the renormalized perturbation theory. In particu-
lar, the field theory with linear FDR results in a dynamical
action which contains nonpolynomial functions of field vari-
ables in contrast to the DM field theory. This implies that,
when the renormalized perturbation theory is performed at a
given order of the loop expansion, the two field theories end
up with treating the density nonlinearities in a different way,
since the field theory with linear FDR involves truncating the
nonpolynomial functions.

Although there is only a limited number of linear FDR,
the DM field theory at a given order of the loop expansion
can be regarded as a well-defined self-consistent theory
among the correlation and response functions satisfying a set
of coupled self-consistent equations. In this paper, we con-
struct the set of coupled equations at the one-loop order for
the DM field theoretic approach to the toy model and study
them numerically. Since the simple nature of the toy model
reduces the number of independent correlation and response
functions, we were able to solve these equations numerically.

In the next section, we present our toy model and con-
struct the field theories following the DM prescription and
the method involving linear FDR, respectively. In Sec. III,
we study the time evolution of the correlation functions us-
ing the Schwinger-Dyson equations for both field theoretic
formulations. We then analyze the time evolution equations
for the correlation function corresponding to the density au-
tocorrelation function of the FNH at the one-loop order for
the possible existence of a sharp ENE-type transition. In Sec.
IV, we present a set of coupled equations for the correlation
and response functions in the DM field theory at the one-
loop order and their numerical solutions. In the final section,
we summarize our results with discussion.

II. MODEL

Our model is a zero-dimensional version of the FNH of
compressible fluids developed by Das and Mazenko �8�. We
introduce as our dynamical variables a time-dependent
density-like variable a�t� and a single-component
momentum-like variable b�t� without any spatial degrees of
freedom. In order to construct the equations motion for these
variables, we introduce the effective free energy F where the
equilibrium distribution for the system at temperature T is
given by exp�−F /T�. The free energy can be written as
F=FK+FU where FK�a ,b� is the kinetic energy and the po-
tential energy part FU�a� is assumed to depend only on a. We
take the usual form for the kinetic part, that is FK= b2

2a . The
nonlinearity in the form of 1 /a plays an important role in the
following discussion.

Kim and Kawasaki �23� introduced a similar zero-
dimensional toy model of the FNH to the present one by

incorporating the multicomponent density-like and
momentum-like variables. However, in addition to having
multicomponent fields, their model differs from ours in a
fundamental way. Their free energy is quadratic both in the
density-like and the momentum-like variables without the
1 /a nonlinearity which is present in the FNH of compress-
ible fluids. In the present toy model, therefore, the actual
form of the equations of motion will be different from those
in Ref. �23�, but the derivation of the equations from the free
energy can be performed in the same way. In our model, the
equation of motion for the variable a�t� takes the form of a
zero-dimensional version of the continuity equation, namely

ȧ�t� + Jb�t� = 0 �1�

for some constant J. This can be regarded as the reversible
dynamics for a�t� which can be derived from

ȧ�t� = Qab
�F

�b
− T

�Qab

�b
, �2�

with Qab=−Ja playing the role of the Poisson bracket. The
equation of motion for b�t� has the dissipative part described
by the coefficient � in addition to the reversible part as fol-
lows:

ḃ�t� = Qba
�F

�a
− T

�Qba

�a
− �

�F

�b
+ ��t� , �3�

where Qba=−Qab and the Gaussian white noise � has the
variance ���t���t���=2�T��t− t��. In the present work, we
take the simple quadratic form for the potential energy part
FU of the effective free energy F as

FU�a� =
A

2
��a�2 �4�

with the fluctuation �a=a−a0 and the average value a0. We
thus have the equation of motion for b�t� as

ḃ�t� + J� b2

2a
� − JAa��a� + TJ + ��b

a
� = � , �5�

We can easily verify that the equilibrium stationary distribu-
tion corresponding to the above equations for a and b is
proportional to exp�−F /T�. The corresponding Fokker-
Planck equation for the probability distribution P�a ,b , t� is
given by �tP=LP where the Fokker-Planck operator is given
by L=L1+L2 with

L1 =
�

�b
��T

�

�b
+

b

a
� �6�

L2 =
�

�a
�Jb� +

�

�b
	J� b2

2a
� − JAa��a� + TJ
 . �7�

It is straightforward to show that P�exp�−F /T� satisfies
LP=0.

One can develop a field theory from the above Langevin
equations by using the standard Martin-Siggia-Rose �MSR�
formalism �24�. In the MSR procedure, the hatted fields â

and b̂ are introduced to enforce the equations of motion for a
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and b, respectively. We present in the following subsections
two different field theoretical approaches to this model and
compare the outcomes of both approaches concerning the
existence of an ENE transition. The first one is the original
Das and Mazenko approach �8�, where the 1 /a nonlinerari-
ties in the model are taken care of in a simple way by the
introduction of a single additional auxiliary field. The second
approach due to Refs. �11,14,17� incorporates the linear
time-reversal symmetry into the dynamical action resulting
in a set of linear FDR. In order to do that, more auxiliary
fields will have to be introduced.

A. Das-Mazenko approach

In the DM approach, an auxiliary velocity-like field c�t� is
presented such that the condition b�t�=a�t�c�t� is enforced
through a delta function

1 =� Dc�t���a�t�c�t� − b�t��

=� Dc�t�� Dĉ�t�exp
− iĉ�t��b�t� − a�t�c�t��� . �8�

The first equality holds up to a Jacobian. This Jacobian was
shown in Ref. �25� to have no effect on the correlation and
response functions and will be neglected in the following
analysis. Using this identity, we obtain the generating func-
tional Z as a functional integral over the fields �i�t�
=�a�t� ,b�t� ,c�t� and �̂i�t�= â�t� , b̂�t� , ĉ�t�. We can write

ZDM=��iD�iD�̂i exp�−SDM�� , �̂��, where

SDM =� dt��Tb̂2�t� + iâ�t��ȧ�t� + Jb�t��

+ ib̂�t��ḃ�t� − JAa0�a�t� + �c�t� + TJ +
Ja0

2
�c�t��2

+
J

2
�a�t��c�t��2 − JA��a�t��2� + iĉ�t�
b�t� − a0c�t�

− �a�t�c�t��� . �9�

We will use ��t� to represent any one of the six variables


�i , �̂i� in our model and denote the two-point correlation
function between arbitrary two variables ��t� and ���t�� by

G����t − t�� = ���t����t��� . �10�

�For the subscripts of G, we will use a instead of �a for
simplicity.� Note that among the correlation functions those
between two hatted variables vanish due to causality, that is

G�̂i�̂j
=0. It follows that iTJb̂�t� term in the action Eq. �9� has

no effect on the correlation functions and will be neglected in
the following. The causality also requires that G�i�̂j

�t�=0 for
t�0.

We can easily establish some nonperturbative relations
among the correlation functions which will be useful in later
discussion. If we use ��t��=�i�t��=�a�t��, b�t�� and c�t�� in
the identity

0 =� �
i

D�iD�̂i
�

�â�t�
���t��exp�− SDM�� , �11�

we obtain

− i
�

�t
��i�t��a�t�� − iJ��i�t��b�t�� = 0,

which can be rewritten as

Ġa��t� + JGb��t� = 0. �12�

On the other hand, if ��t��= �̂�t��= â�t��, b̂�t�� and ĉ�t�� are
used in Eq. �11�, we have

Ġa�̂�t� + JGb�̂�t� = − i��̂â��t� . �13�

Note that Eqs. �12� and �13� are direct consequences of the
zero-dimensional version of the mass conservation law given
by Eq. �1� in the DM approach. Note also that the bare cor-
relation functions obtained from the dynamical action SDM

�0�

which contains only the quadratic terms in the field variables
also satisfy these relations. Therefore, when we develop the
perturbation theory for the DM approach in the next section,
these equations will hold order-by-order in the perturbation
expansion.

In the DM approach, only a limited number of FDR exist
that relate linearly the correlation functions to response func-
tions. Assuming the time-reversal properties of the fields as
a�−t�=a�t�, b�−t�=−b�t�, and c�−t�=−c�t�, we can derive the
FDR for �=a, b, and c as

G�b̂�t� = −
i

T
��t�G�c�t� , �14�

where ��t�=1 for t	0 and vanishes for t�0. The detailed
derivation of the FDR closely follows the one given in Ref.

�8�. Since �̂i is a real field, we can show that the correlation
function between unhatted and hatted variables is a pure
imaginary number, that is

G
�i�̂j

� �t� = − G�i�̂j
�t� . �15�

B. Field theory with linear FDR

We apply the field theoretical approach developed in Refs.
�11,14,17� to our toy model given by the dynamic Eqs. �1�
and �5�. Among these methods, we will follow closely the
improved procedure described in Ref. �17�. In order to do
that, we present two auxiliary fields 
�t� and ��t� defined by


 =
�F

�b
−

b

a0
= −

b

a0
�
k=1

�

�− 1�k��a

a0
�k

� f
��a,b� �16�

� =
�F

�a
− A��a� = −

b2

2a0
2�

k=0

�

�− 1�k��a

a0
�k

� f���a,b� .

�17�

Note that these are nonpolynomial functions of the main dy-
namical variables �a and b. Presenting the hatted counter-
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parts 
̂�t� and �̂�t� to enforce these definitions for the
variables, we can construct the generating functional as
ZFDR=��iD�iD�̂i exp�−SFDR�� , �̂��, where �i�t�
=�a�t� ,b�t� ,
�t� ,��t� and �̂i�t�= â�t� , b̂�t� , 
̂�t� , �̂�t�. Simi-
larly to the DM case, we will use 
�t� to represent one of the
eight variables 
�i , �̂i�. The dynamical action in this case can
be written as a sum of the Gaussian and the nonlinear parts
as SFDR=SFDR

�0� +SFDR
�1� , where

SFDR
�0� =� dt	�Tb̂2�t� + iâ�t�
ȧ�t� + Jb�t� + Ja0
�t�� + ib̂�t�

��ḃ�t� − JAa0�a�t� − Ja0��t� + �
�t� +
�

a0
b�t��

+ i
̂�t�
�t� + i�̂�t���t�
 , �18�

and

SFDR
�1� =� dt�iâ�t�	J�a�t�
�t� +

J

a0
�a�t�b�t�
 − ib̂�t�

�
J�a�t���t� + JA��a�t��2� − i
̂�t�f
��a,b�

− i�̂�t�f���a,b�� . �19�

Note that we have used the identity

a0
�t� + �a�t�
�t� +
1

a0
�a�t�b�t� = 0, �20�

which follows directly from the definition of 
�t�, Eq. �16�.
The above actions SFDR

�0� and SFDR
�1� are separately invariant

under the time-reversal transformations given by

�a�− t� = �a�t�, b�− t� = − b�t� ,


�− t� = − 
�t�, ��− t� = ��t� ,

â�− t� = − â�t� −
i

T
��t� − i

A

T
�a�t� ,

b̂�− t� = b̂�t� +
i

T

�t� +

i

a0T
b�t� ,


̂�− t� = − 
̂�t� +
i

T
ḃ�t� ,

�̂�− t� = �̂�t� −
i

T
ȧ�t� . �21�

Applying the time-reversal invariance on the various corre-
lation functions by following the procedures described in
Refs. �11,14,17�, we obtain a set of FDR. Here we only list
those which are relevant to the discussion in the next section.
We have for �=a, b, 
, and �

G�â�t� = −
i

T
��t��AG�a�t� + G���t�� ,

G�b̂�t� = −
i

T
��t�	 1

a0
G�b�t� + G�
�t�
 ,

G�
̂�t� = −
i

T
��t�Ġ�b�t� ,

G��̂�t� = −
i

T
��t�Ġ�a�t� . �22�

III. RENORMALIZED PERTURBATION THEORY:
ONE-LOOP ORDER

In this section, we develop self-consistent renormalized
perturbation theories for the two field theoretic approaches
introduced in the previous section. We then focus on the time
evolution of two-point correlation functions using the
Schwinger-Dyson �SD� equation. In particular, we study the
t→� limit of Gaa�t�, which corresponds to the density auto-
correlation function in FNH, to explore the possibility of an
ENE transition. The formal development of the self-
consistent perturbation theory can be found in Refs.
�14,26,27�. The SD equation defines the self-energy �
through its relation to the propagator �the two-point correla-
tion function� G. It is given symbolically by

G−1 = G0
−1 − � , �23�

where the subscript 0 refers to the bare quantity obtained by
keeping only the Gaussian terms in the action. The self-
energy is obtained by differentiating the so-called two-
particle irreducible vertex function �2PI�G� with respect to
the propagator G. At the one-loop order of the loop expan-
sion of �2PI, there are only two kinds of diagrams for the
self-energy which are relevant to the two field theoretical
approaches studied in the previous section. These are shown
in Fig. 1. The diagram on the right hand side is needed to
take account of the quartic nonlinear terms in the dynamic
action. The contribution from this diagram to the self-energy
as a function of time t will be proportional to ��t�, and there-
fore does not play a significant role in the discussion of the
t→� limit given in this section. However, when we solve
numerically the full self-consistent equations among the cor-
relation functions in the DM approach in the next section, the
contributions from all the diagrams must be included.

A. Das-Mazenko approach

The SD equation for the DM field theory between arbi-
trary two fields � and �� is given by

FIG. 1. The one-loop diagrams contributing to the self-energy
�.
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������t − t�� = �
��
� dt�
�G0

−1�����t − t��G�����t� − t��

− �����t − t��G�����t� − t��� . �24�

We note that the causality requirement for the self-energy
reads ��̂i�j

�t�=0 for t�0 and ��i�j
�t�=0 for all t. Similarly

to the propagators, the self-energy between unhatted and hat-
ted variables is pure imaginary. Since there is no nonlinear
term containing b�t� in Eq. �9�, the self-energies involving b
must vanish. From this feature of the DM field theory, we
can derive nonperturbative relations among correlation func-
tions as

JGaâ�t� + Ġab̂�t� + Gaĉ�t� = 0, �25�

JGcâ�t� + Ġcb̂�t� + Gcĉ�t� = 0 �26�

from the �� ,���= �b ,a� and �b ,c� component of the SD
equation, respectively.

In order to study the time evolution of Gaa�t�, we look at

the �� ,���= �b̂ ,a� component, which yields

Ġba�t� + �Gca�t� − JAa0Gaa�t� − 2i�TGb̂a�t� = Fb̂a�t� ,

�27�

where

Fb̂a�t� = − i�
−�

t

ds
�b̂a�t − s�Gaa�s� + �b̂c�t − s�Gca�s��

− i�
−�

0

ds
�b̂b̂�t − s�Gb̂a�s� + �b̂ĉ�t − s�Gĉa�s�� .

�28�

Using Eqs. �12� and �14�, we can rewrite this equation for
t	0 as

G̈aa�t� − J�Gca�t� + J2Aa0Gaa�t� = − JFb̂a�t� . �29�

Now in order to investigate the possible ENE transition in
this model, we consider the t→� limit. Let us assume that
all the other correlation functions except Gaa�t� vanish in the
t→� limit. To the one-loop order of the perturbation expan-
sion, only the self-energy �b̂b̂�t� can be nonvanishing in the
t→� limit due to the diagram shown in Fig. 2, since it is
proportional to �Gaa�t��2. Therefore, the nonvanishing contri-
butions to Fb̂a��� come from the first and the third terms on
the right-hand side of Eq. �28�. Among the terms on the left
hand side of Eq. �29� only the third term is nonvanishing in
this limit. Using Eq. �14�, we therefore have

JAa0Gaa��� = �Gaa��� +
1

T
�b̂b̂����

0

�

dsGac�s� , �30�

where �=�0
�dsi�b̂a�s� is a finite real number. The relation

between Gac�t� and Gaa�t� can be obtained from the
�� ,���= �ĉ ,a� component of the SD equation, which is
given by

−
1

J
Ġaa�t� + a0Gac�t� = Fĉa�t� , �31�

where

Fĉa�t� = − i�
−�

t

ds
�ĉa�t − s�Gaa�s� + �ĉc�t − s�Gca�s��

− i�
−�

0

ds
�ĉb̂�t − s�Gb̂a�s� + �ĉĉ�t − s�Gĉa�s�� .

�32�

Now let us suppose that Fĉa�t� can be taken to zero for some
reason, then, by inserting the expression for Gac�t� from Eq.
�31� into Eq. �30�, we obtain an equation for Gaa���, which
may have a nonvanishing solution signaling an ENE transi-
tion. This is essentially what happens in the field theory with
linear FDR as we will see in the next subsection. In the DM
field theory, however, the presence of the first term on the
right hand side of Eq. �32� spoils this scenario. In fact, as t
→�, Fĉa�t� approaches

Gaa����
0

�

ds�− i��ĉa�s� ,

which is nonvanishing by assumption. Then the integral in
Eq. �30� becomes ill-defined and we are forced to abandon
the assumption of the nonzero Gaa���. This finding is con-
sistent with the recent nonpertubative proof by Das and Ma-
zenko �21� that the FNH will full spatial dependence does
not support a sharp ENE transition. We note that the absence
of the ENE transition in our model is directly related to the
presence of the self-energy �ĉa in our model. This is also
similar to the result of Ref. �21�, where the self-energy cou-
pling the hatted velocity field and the density field plays a
crucial role in removing the sharp transition.

B. Field theory with linear FDR

The SD equation in this case is given similarly to Eq. �24�
but now with the component 
 taking eight different field
variables, 
�i , �̂i�. So there are a lot more equations to con-
sider in this approach. The self-energies are, however, related
to each other through many FDR, which can be obtained by
applying the time-reversal invariance to the SD equation.
Here we list only the relevant FDR among the self-energies

to our discussion. For �̂= â, b̂, 
̂, or �̂, we have

��̂a�t� =
i

T
��t��A��̂â�t� − �̇�̂�̂�t�� ,

bb
a

a

a

a

FIG. 2. The one-loop diagram for �b̂b̂ that may have a nonvan-
ishing contribution in the t→� limit.
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��̂b�t� =
i

T
��t�	 1

a0
��̂b̂�t� − �̇�̂
̂�t�
 ,

��̂
�t� =
i

T
��t���̂b̂�t� ,

��̂��t� =
i

T
��t���̂â�t� . �33�

As in the DM approach, we study the time evolution of
Gaa�t� and its infinite-time limit for the possible ENE transi-

tion. From the �
 ,
��= �b̂ ,a� component of the SD equa-
tion, we have

Ġba�t� +
�

a0
Gba�t� − JAa0Gaa�t� − 2i�TGb̂a�t� + �G
a�t�

− Ja0G�a�t� = F̃b̂a�t� , �34�

where

F̃b̂a�t� = − i�
−�

t

ds�
��

�b̂���t − s�G��a�s�

− i�
−�

0

ds�
�̂�

�b̂�̂��t − s�G�̂�a�s� . �35�

Using the FDR in Eqs. �22� and �33�, we can rewrite the
above quantity �multiplied by T� as

TF̃b̂a�t� = ��b̂â � �AGaa + G�a���t�

+ 	�b̂b̂ � � 1

a0
Gba + G
a�
�t�

− ��b̂
̂ � Ġba��t� − ��b̂�̂ � Ġaa��t� , �36�

where the convolution between two function f�t� and g�t� is
defined by

�f � g��t� � �
0

t

dsf�t − s�g�s� . �37�

As in the DM approach, from the simple form of the equa-
tion for a�t� and Eq. �20�, we can derive a nonperturbative
relation, namely,

JGba�t� + Ġaa�t� = 0. �38�

We now consider the t→� limit. If we assume as in the
previous subsection that all the other correlation functions
except Gaa�t� vanishes in this limit, then to the one-loop
order, the only nonvanishing diagram in this limit is again
the one in Fig. 2. The contribution from this diagram to
�b̂b̂�t� is −2J2A2Gaa

2 �t�. Taking the t→� limit in Eq. �34� and
using Eqs. �36� and �38�, we obtain

− JAa0Gaa��� = A�̃Gaa��� −
1

JTa0
�b̂b̂����

0

�

dsĠaa�s� ,

�39�

where

�̃ =
1

T
�

0

�

ds�b̂â�s� . �40�

We therefore have

Gaa��� =
�b̂b̂���

J2ÃTa0
2
�Gaa��� − Gaa�0�� , �41�

where Ã=A�1+ �̃ / �Ja0��. Defining the nonergodicity param-
eter by f =Gaa��� /Gaa�0�, we have

f

1 − f
= c2f2, �42�

where

c2 =
2A2�Gaa�0��2

TÃa0
2

�43�

is a dimensionless quantity. This is exactly the standard MCT
equation for the nonergodicity parameter in the so-called
schematic model of the standard MCT �5,6�. The nonergodic
solution f 	0 exists when c2	4.

The origin of the difference between the results of the two
field theoretic approaches on the existence of an ENE tran-
sition can be traced back to the terms that are multiplied by
the self-energy �b̂b̂. In both cases, this term is expressed as a
time integral of a correlation function. In the field theory
with linear FDR, this correlation function is proportional to a
total time derivative of Gaa�t�. From this, a well-defined
equation like Eq. �42� follows for the nonergodicity param-
eter. In the DM approach, however, the correlation function
in the integrand is not a total time derivative of Gaa�t�, but
contains an extra contribution from the self-energy coupling
the hatted auxiliary field ĉ and the density-like field a. On
another level, we can understand that the difference comes
from the fact that, for the one-loop calculation in the field
theory with linear FDR, only the first-order terms are used
among those in the expression for the fields 
 and � in Eqs.
�16� and �17�. This truncation of the nonpolynomial action in
the perturbation expansion does not occur in the DM field
theory. This suggests that the cutoff of a sharp transition that
the DM approach exhibits at the one loop order is a kind of
nonpertubative information that only an infinite resummation
in the field theory with linear FDR would have an access to.

IV. NUMERICAL CALCULATIONS FOR THE
DAS-MAZENKO FIELD THEORY

In order to study not just the nonergodicity parameter, but
the full time evolution of Gaa�t�, it is desirable to have a
single equation for the correlation function that accounts for
the density feedback mechanism. In the original FNH in the
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DM field theoretic approach �8�, this was achieved only in
the hydrodynamic limit. It is, however, difficult even in the
simple toy model to find a time evolution equation only for
Gaa�t�. In this section, we show that despite the lack of a
complete set of linear FDR, the DM field theoretical formu-
lation presents a well-defined theory at one-loop order. We
do this by constructing a closed set of equations for all the
correlation functions involved and by solving them for Gaa�t�
numerically. Because of the simple nature of the toy model,
especially of Eqs. �12�–�14�, �25�, and �26�, we only have
five independent correlation functions in the DM field theory.
We choose them to be Gaa�t�, Gab̂�t�, Gaĉ�t�, Gcb̂�t�, and
Gcĉ�t�. All the other correlation functions can be expressed in
terms of these five functions.

If we define the Fourier transform by f̃���=�−�
� dtei�t f�t�

for an arbitrary function f�t�, the Fourier transforms of these
five correlation functions can be written as

G̃aa��� =
J2

�D����2

�aR����2�2�T − �̃b̂b̂����

− 2 Re�aR����R
�����̃b̂ĉ���� − ��R����2�̃ĉĉ���� ,

�44�

G̃ab̂��� =
− iJaR���

D���
, �45�

G̃aĉ��� =
− iJ�R���

D���
, �46�

G̃cb̂��� =
� + J�̃ĉa���

D���
, �47�

G̃cĉ��� =
i�2 − iJKR���

D���
, �48�

where Re denotes the real part and

aR��� = a0 − i�̃ĉc��� , �49�

�R��� = � + i�̃b̂c��� , �50�

KR��� = JAa0 − i�̃b̂a��� , �51�

D��� = aR�����2 − JKR���� + i�R����� + i�̃ĉa���� .

�52�

Note that the Fourier transforms of seven self-energies are

involved in the above equations, which are �̃b̂a���, �̃b̂c���,
�̃ĉa���, �̃ĉc���, �̃b̂b̂���, �̃b̂ĉ���, and �̃ĉĉ���. Note also that
other correlation functions can be written in terms of the five

given above. For example, we have G̃ba���= �i� /J�G̃aa���,
which is nothing but the mass conservation law given in Eq.
�12�. When one evaluates the self-energies order–by-order in
the perturbation expansion, one can easily see from Eq. �44�

and this explicit relationship between the two correlation
functions that the conservation law holds automatically.

At the one-loop order of the perturbation theory, these
seven self-energies are given by functions of the five inde-
pendent correlation functions thus yielding a closed set of
equations. It is more convenient to present the one-loop self-
energies in the time domain. �The detailed derivation of the
one-loop self-energies in terms of the correlations functions
will be given elsewhere �28�.� They are given by

�b̂a�t� = − 2ia0J2ATGab̂�t�Gcb̂�t� + ia0JTGcb̂�t�Gcĉ�t�

− 4J2A2Gaa�t�Gab̂�t� − 2iJATGab̂�t�Gaĉ�t� ,

+
1

2
JTGcb̂�0+���t� , �53�

�b̂c�t� = − ia0
2J2T�Gcb̂�t��2 − ia0JTGab̂�t�Gcĉ�t�

+ 2ia0J2AT�Gab̂�t��2 − 2JAGaa�t�Gaĉ�t� , �54�

�ĉa�t� = − 2JAGaa�t�Gcb̂�t� + 2iJAT�Gab̂�t��2

− iTGab̂�t�Gcĉ�t� − iTGaĉ�t�Gcb̂�t� , �55�

�ĉc�t� = 2ia0JTGab̂�t�Gcb̂�t� + iTGab̂�t�Gaĉ�t� − Gaa�t�Gcĉ�t� ,

�56�

�b̂b̂�t� = − 2J2A2�Gaa�t��2 − 2a0J2AT2�Gab̂�t��2

+
1

2
a0

2J2T2�Gcb̂�t��2, �57�

�b̂ĉ�t� = − 2iJATGaa�t�Gab̂�t� + a0JT2Gab̂�t�Gcb̂�t� ,

�58�

�ĉĉ�t� = − iTGaa�t�Gcb̂�t� − T2�Gab̂�t��2. �59�

Note that these expressions are valid only for t	0. The self-
energies in Eqs. �53�–�56� vanish for t�0 due to causality.
The remaining self-energies satisfy �b̂b̂�−t�=�b̂b̂�t�, �ĉĉ�−t�
=�ĉĉ�t�, and �b̂ĉ�−t�=−�b̂ĉ�t�. The last term in Eq. �53� is
the contribution from the diagram on the right hand side of
Fig. 1.

There is one point that requires caution in performing a
numerical calculation on these types of self-consistent equa-

tions. We note that G̃cĉ��� does not decay to zero as �→�.
This suggests that there is a delta-function singularity in
Gcĉ�t� at short time, which has to be treated separately in a
numerical calculation. We write Gcĉ�t�= i���t�+ regular
terms for some real constant �. If we denote by f� and f� the
real and imaginary parts of a complex function f , respec-
tively, then we can write

G̃cĉ� ��� = � + G̃cĉ�
�reg���� , �60�

where lim�→� G̃cĉ�
�reg����=0. From Eqs. �48�, �49�, and �52�,

we find that �−1=a0+lim�→� �̃cĉ� ���. At the one-loop order,
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a nonvanishing contribution to �̃cĉ� ��� in the infinite-� limit
comes from the diagram depicted in Fig. 3. We thus have

lim
�→�

�̃cĉ� ��� = − ��
−�

� d�

2�
G̃aa��� = − �Gaa�0� , �61�

and

Gaa�0�
a0

2 =
1

a0�
−

1

�a0��2 �62�

is the initial value of the dimensionless correlation function
Gaa�t� /a0

2. Therefore, the initial value of the correlation func-
tion is determined self-consistently in the present field theo-
retic approach. This is in contrast to other approaches �14,17�
where the static limit of the correlation functions was used as
an input for the initial condition. Note that Gaa�0� /a0

2�1 /4
where the maximum value occurs when a0�=2. We believe
that this peculiar behavior is due to the one-loop perturbation
theory and that if we consider a higher-loop theory this con-
dition will certainly change.

We now present numerical solutions to the above coupled
equations. We start by evaluating the one-loop self-energies
using Eqs. �53�–�59� from some appropriate initial form of
the correlation functions �e.g., the bare correlation functions�
given as functions of time. We make Fourier transforms of
these self-energies and update the correlation functions by
using Eqs. �44�–�48�. Then, the inverse Fourier transforms
are performed to compare the input and output correlation
functions. This procedure is repeated until the convergence is
achieved. We find that the convergence is achieved in less
than 100 iterations in most cases. The number N of mesh
points used in the time and frequency integrals ranges from
8000 to 26 000. The cutoffs, �t and ��, for the time and
frequency integrals, respectively, must be adjusted so that all
the five correlation functions and the seven self-energies are
accommodated both in the time and frequency spaces. We
maintain that �t���N� to have a consistent numerical Fou-
rier transform �29�. As we will explain below, Gaa�t� can in
general be a relatively long-ranged function, but other corre-
lation functions such as Gcb̂�t� and Gcĉ

�reg��t� are short-ranged
so that we need large �� for those functions. As functions of
short and long-ranged are mixed in the calculations, both �t
and �� must be sufficiently large.

For a numerical calculation of the above coupled set of
equations, we need to put everything in dimensionless forms.
From Eqs. �1� and �5�, we see that a0 /� has the dimension of
time. Once we put all the correlation and response functions

in their respective dimensionless forms, we find that the self-
consistent equations are completely described by two dimen-

sionless parameters, � and T̃ defined by

� � � Ja0

�
�2

a0A, T̃ � � J

�
�2

a0T . �63�

In Figs. 4 and 5, we plot the normalized correlation function
C�t��Gaa�t� /Gaa�0� which corresponds to the density auto-
correlation function in the FNH for various values of the

parameters � and T̃. These are compared with the corre-
sponding bare correlation functions. From these figures, we
can see that in general the one-loop correlation functions are
more stretched in later times compared to the bare correla-
tion functions. We perform numerical calculations for fixed

value of T̃ /�=T / �a0
2A�. The analytic expressions for the bare

correlation functions can easily be obtained from the Gauss-
ian part of Eq. �9�, and we note that the initial value of the

bare function Gaa
�0��t� is given by Gaa

�0��0� /a0
2= T̃ /� in dimen-

cc
aa

cc

FIG. 3. The one-loop diagram contributing to �̃ĉc� ��� in the �
→� limit
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FIG. 4. Normalized correlation function C�t� as a function of

time t measured in units of a0 /� for fixed T̃ /�=0.1. The solid lines
are the solutions to the self-consistent one-loop equations for

T̃=0.05, 0.025, 0.01, 0.005, 0.0025, and 0.001 from left to right.
The dashed lines are the corresponding bare correlation functions.
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FIG. 5. Normalized correlation function C�t� as a function of

time t measured in units of a0 /� for fixed T̃ /�=0.2. The solid lines
are the solutions to the self-consistent one-loop equations for

T̃=0.1, 0.05, 0.02, 0.01, and 0.005 from left to right. The dashed
lines are the corresponding bare correlation functions.
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sionless quantities. As we can see by comparing Figs. 4 and
5, the difference between the renormalized correlation func-

tions and the bare ones is small for small T̃ /�, but the non-

linear effects increase with increasing T̃ /�. The value of a0�
in Eq. �62� is also determined from the numerical calcula-

tion. For fixed T̃ /�, we find that a0� and thus Gaa�0� /a0
2 is

almost constant when we change T̃. As we increase T̃ /�, the
initial value Gaa�0� /a0

2 increases as well. We find that the
numerical solutions for the self-consistent equations exist

only for T̃ /� less than some maximum value which is found
to be around 0.37 for the one-loop theory when Gaa�0� /a0

2

reaches it maximum value 1/4. We note that this has nothing
to do with the ENE singularity which we discussed earlier,
since it involves the short-time behavior of the correlation
functions. Indeed, as we approach this maximum value, the
response functions, Gcb̂�t� and Gcĉ

�reg��t� become increasingly
short-ranged in time. For example, the initial time derivative

Ġcb̂�0+� approaches −� as T̃ /� approaches 0.37. We can un-
derstand these behaviors by investigating carefully the t
→0+ limit of the SD. Equation �24� �28�. We believe that the
particular values of the parameters are specific to the one-
loop calculation and will change as higher-loop contributions
are considered.

As expected from the discussion in the previous section,
C�t� shows a completely ergodic behavior decaying to zero
as t→� for all parameter values in our numerical calcula-
tions. We note that, in the standard MCT �1–4� above the
ENE transition, the density autocorrelation function exhibits
a plateau before its eventual decay in time. This is not obvi-
ous in our numerical results. We believe that the present toy
model, without having realistic wavenumber dependence, is
too simple to capture the plateau, if any, in the density auto-
correlation function calculated from the one-loop approxima-
tion. In order to see if the DM field theoretical approach to
FNH produces a plateau in a given order of the loop expan-
sion, one would have to solve wavenumber-dependent ver-
sions of Eqs. �44�–�59�. This remains to be seen in the future
study.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented and studied the toy
model of FNH of supercooled liquids containing only a
couple of dynamical field variables a�t�=a0+�a�t� and b�t�
without any spatial dependence. We have developed two dif-
ferent field theoretic formulations of this model first by fol-
lowing the DM prescription and then the method involving a
set linear FDR. We were also able to perform numerical cal-
culations on the coupled equations for the correlation and
response functions in the DM field theory at the one-loop
order.

The major difference between the two field theoretic for-
mulations is the way of treating the density nonlinearities
that appears in the problem in the form of 1 /a�t�. In the DM
field theory this is treated in a simple way by presenting a
single auxiliary field c�t� and its hatted counterpart ĉ�t�. On
the other hand, in the field theory with linear FDR, a couple

of auxiliary fields 
�t� and ��t�, as well as their hatted part-
ners, are presented in such a way that the dynamical action
becomes invariant under a set of time-reversal transforma-
tions. This manipulation results in the dynamical action with
terms which are nonpolynomial functions of the main field
variables �a�t� and b�t�. We note that these terms are propor-
tional to 
̂�t� and �̂�t� fields. Therefore, in the renormalized
perturbation theory at a given order of the loop expansion,
one has to truncate the nonpolynomial functions at the ap-
propriate order. In some sense, we might say that, because of
the truncation, the effect of the density nonlinearities would
not be fully incorporated into the field theory at any finite
order of the perturbation theory. We believe that this is one
of the reasons why the sharp ENE-type transition appears at
the one-loop order in this formulation.

This is in contrast to the DM field theory where no trun-
cation of the dynamical action is necessary when the loop
expansion is performed. The loop expansion, therefore, has a
different meaning from the field theory with linear FDR. We
have shown that the self-energy �ĉa�t� which corresponds to
the one that couples the density and the hatted velocity fields
plays a key role in removing the sharp transition in the one-
loop calculation. This is consistent with the original finding
by DM �8� and with the recent nonperturbative analysis of
the FNH �21�. This fact has often been interpreted as the
coupling between the current and the density being respon-
sible for the ergodicity restoring mechanism. In our toy
model, the field ĉ�t� is presented in the DM field theory to

take care of the density nonlinearities as 
̂�t� and �̂�t� are in
the other formulation. Even though we only perform the one-
loop calculation, we might say that the self-energy �ĉa�t�
contains the nonperturbative information arising from keep-
ing all the terms in the expansion of the 1 /a nonlinearities. It
is, however, not obvious how the expansion of the 1 /a-type
terms in the dynamic action is related to the field theoretic
loop expansion in detail. To test more rigorously whether or
not this kind of nonperturbative information is indeed cap-
tured in the order-by-order of field theoretic loop expansion
of the DM type, it would be necessary to perform higher-
loop order calculations and to study the existence of the ENE
transition. This is left to the future work. In this respect, it
may be more appropriate to regard the cutoff mechanism
resulting from the full nonperturbative treatment of the den-
sity nonlinearities than from the coupling between the cur-
rent and the density. The recent numerical calculation �22�
where a direct integration of the generalized Langevin equa-
tions in FNH are performed also demonstrates that the 1 /�
nonlinearities �� is the density� are playing an essential role
restoring the ergodic behavior in supercooled liquids.

It is sometimes discussed in literatures that the DM field
theory is inconsistent with the FDR. However, a set of FDR
does hold in the DM field theory, which is given in Eq. �14�
for our toy model. In the field theory with linear FDR, a
larger set of FDR exists as in Eqs. �22� and �33�. In the
original analysis of 1986 �8�, Das and Mazenko used another
FDR �linking Gaa and Gaâ in the toy model notation� in
addition to Eq. �14� and simplified the equations involved.
This is valid only in the hydrodynamic limit. In the present
paper, we do not use such additional simplifications. Instead,
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we keep only Eq. �14�, and take the equations which the
correlation functions satisfy, Eqs. �44�–�59�, as a set of self-
consistent equations, and solve them numerically in Sec. IV.
This program could be generalized to a realistic situation
where the full spatial dependence is present. What we have
shown in this paper is that the DM field theory, viewed as a
collection of self-consistent equations for the correlation
functions at a given order of loop expansion, is a well-
defined field theoretic approach to glass forming liquids.

There are other field theoretic approaches to the FNH than
those considered in this paper. A similar toy model of the
FNH to ours but of different nature has been studied by Kim
and Kawasaki �23� some time ago. In this model, the N com-
ponent of density-like and the M component momentum-like
field variables are presented without spatial dependence.
They consider the limit where the numbers N and M ap-
proach infinity, and find that a sharp transition is present
when the condition M �N is maintained in the limiting pro-
cess, while it is absent when M =N. In Ref. �9�, a simpler
version of the FNH than that of DM was considered, where
the sharp transition was found to be absent. We note, how-
ever, that in both cases the effective free energy is quadratic
in both density and the momentum variables from the outset.
There is no need to introduce the auxiliary fields and a full
set of linear FDR exist in these models. Therefore the kind of
density nonlinearities discussed in this paper is not present
and the absence of the sharp transition found in these works
is probably of a different origin.

The work by Mayer et al. �30� is another interesting zero-
dimensional model for glass forming liquids. It is in general
hard to make a direct connection between the projection op-
erator approach, in which Ref. �30� is set, and the field the-
oretical one. It is, however, clear from Ref. �30� that a non-

perturbative effect that comes from considering an infinite
number of equations is responsible for cutting off the sharp
transition. In Ref. �30�, the sharp transition is always present
when one considers only a finite number of equations. This is
related to our finding that, when the density nonlinearities
are treated in the field theory with linear FDR within the loop
expansion, one has to truncate a nonpolynomial function,
and the sharp transition follows. We might say that the non-
perturbative information that cuts off the sharp transition is
somehow preserved in the DM approach, since one can
avoid truncating the dynamical action at a given order of the
loop expansion.

There are many ways in which the present result can be
generalized. An obvious generalization is to consider a
higher-order perturbation theory. Because of the simple na-
ture of the model, one can without much difficulty construct
the higher-loop DM field theory of the model and perform
the numerical calculations as done in this paper. It will be
interesting to see how the one-loop results, especially the
particular initial values of the correlation functions, get
changed when the higher-loop contributions are considered.
We believe that the numerical methods developed in Sec. IV
for treating the coupled equations for the correlation and re-
sponse functions, especially those concerning the short-time
behavior of functions, will prove to be useful for an eventual
application to the full wavenumber dependent FNH in the
future.
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