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We present a numerical technique, namely, triangular tessellation, to calculate the free energy associated
with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here
are sufficiently general to handle nonconvex patchy colloids with arbitrary surface patterns characterized by a
wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravi-
tational forces, but the method can be extended to take such effects into account. It is verified that the
numerical method presented is accurate and sufficiently stable to be applied to more general situations than
presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used
semianalytic approaches, especially when it comes to generality and applicability.
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I. INTRODUCTION

Small particles at liquid-liquid interfaces are of scientific
interest, but can also be exploited for industrial applications.
Particles adsorbed at an interface have a multitude of appli-
cations, ranging from the formation of two-dimensional �2D�
structures �1,2�, which may be utilized in optical devices, to
the stabilization of foams and pickering emulsions �3�. The
range of sizes, shapes, and material properties with which
colloids can be endowed makes them the ideal constituents
for self-assembled macroscopic structures. In addition, col-
loid tunability allows tailoring to specific systems, which
gives tremendous advantages over atomic materials. A more
fundamental impetus to the study of colloid adsorption is
based on gaining a better understanding in phase transitions
and critical phenomena of two-dimensional fluids of nano-
particles at an interface.

Many theoretical investigations of colloids at an interface
are based on studies into the behavior of a single particle at
the interface. The stability of an adsorbed colloid and the
manner in which it attaches to the interface give insight into
the way particles act at higher concentrations. The stability
of colloids at an interface was already considered by Pieran-
ski �1�, who studied the adsorption free energy based on
surface-tension arguments. This ground-breaking work was
built upon to encompass effects, such as line tension �4,5�,
capillary rise �6,7�, surface deformation due to gravity �8�,
surface heterogeneities �9–11�, and electrostatic effects
�12,13�. The influence of particle shape on colloid adsorption
has also been considered, for instance, ellipsoidal rods and
platelets �4,6�, and more complex shapes as well �14�. Nev-
ertheless, there are still many unanswered questions concern-
ing the adsorption of a single particle at an interface.

To the best of our knowledge, only one theoretical study
has been undertaken into the effects of anisotropic particles

adsorbed to the interface as a function of the particle’s ori-
entation �15�. Most studies have been limited to several
mathematically convenient particle orientations, namely,
parallel or perpendicular to the interfacial normal
�4,6–8,10,11,16,17�. These orientations are also found in ex-
perimental systems �5,14,18–21� and therefore the current
theoretical descriptions give insight into the behavior of the
particles. However, these insights are constrained to particles
that remain in one of these orientations. Therefore, these
theories cannot be used to analyze the mechanisms by which
colloids end up in these orientations or why these particular
orientations are preferred over other orientations.

Studying the free energy associated with the adsorption of
an arbitrary-shaped colloid with contact angle surface pat-
terns is quite involved, especially when the colloid is al-
lowed to have an arbitrary angle with the interface. We first
examine homogeneous uniaxial convex colloids and formu-
late the adsorption free energy. Determining this adsorption
free energy proves to be technically difficult for all but the
most basic shapes. Therefore, we introduce a numerical tech-
nique, which we refer to as “triangular tessellation,” to
evaluate the adsorption free energy. The accuracy of this
technique is verified by comparison to semianalytic results
for ellipsoids, cylinders, and spherocylinders. These semi-
analytic results are derived by methods similar to those used
in Ref. �15�. We improve some of these results. Furthermore,
we extend the semianalytic results of Ref. �15� to a wider
class of particles. Finally, we formulate a theoretical descrip-
tion and present a numerical technique to handle nonconvex
colloids with surface patterns.

In conclusion, we present a numerical scheme to deter-
mine the adsorption free energy of nonconvex particles with
or without surface patterns at the liquid-liquid interface,
which has many advantages regarding its applicability, sta-
bility, and generality over semianalytic techniques used so
far. More detailed studies based on this technique will be
presented elsewhere �22�.
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II. METHOD

A. Theoretical considerations

We consider a planar oil-water interface separating two
homogeneous half spaces of oil and water and a solid
uniaxial convex colloid adsorbed at this interface. We focus
here on an oil-water interface, but we note that any liquid-
liquid interface can be considered and to some extent the
theory is valid for liquid-gas interfaces as well. For simplic-
ity, capillary effects due to the presence of the colloid at the
interface are neglected. The coordinate frame is chosen such
that the normal of the interface is along the z axis. The po-
sition or depth of the interface with respect to the center of
the particle, at which the origin of the system is located, is
denoted by depth z, which can be both positive and negative.
For convenience, we assume that the rotational symmetry
axis of the particle is oriented in the xz plane. The half space
above the interface is called medium 1 �M1� and the half
space below the interface is called medium 2 �M2� �see Fig.
1�. The angle between the colloid’s rotational symmetry axis
and interfacial normal is denoted by �� �0,� /2�. Hence-
forth, � is referred to as the polar angle.

There are four surface areas with corresponding surface
tensions, which contribute to the adsorption free energy of
the colloid: �i� the surface area of the colloid above the in-
terface S1, �ii� the surface area of the colloid below the in-
terface S2, �iii� the surface area excluded from the interface
by the presence of the colloid S12, and �iv� the total surface
area of the interface �without adsorption� A. There is also a
contribution from the contact line, of length L, where the
three phases meet, i.e., M1, M2, and the colloid. Writing S for
the total surface area of the colloid, the following relations
are obtained: S=S1+S2 and S1 ,S2� �0,S�.

These surface areas and the corresponding surface ten-
sions, together with the contact line length and correspond-
ing line tension, give rise to an adsorption free energy. Such
an adsorption free energy was first considered by Pieranski
�1� and later extended to accommodate line tension, e.g.,
Refs. �4,16�. For a specific configuration, characterized by z
and �, this can be written as

V�z,�� = �12�A − S12� + �1cS1 + �2cS2 + �L , �1�

where �12 is the M1−M2 surface tension, �1c is the
M1-colloid surface tension, �2c is the M2-colloid surface ten-
sion, and � is the line tension. Note that we have dropped the
z and � dependences of S1�z ,��, S2�z ,��, S12�z ,��, and
L�z ,�� to lighten the notation. The tensions �surface and
line� are system parameters.

The systems to which Eq. �1� can be applied have negli-
gible capillary or gravitationally induced interfacial deforma-
tion, i.e., they have a flat interface and insignificant flotation
force. The validity of such an assumption for colloidal sys-
tems can be studied using the Bond-number parameter,
which gives the ratio between gravitational and surface-
tension-induced effects on an adsorbing particle. Equation
�1� holds in the zero Bond-number limit

Bo =
g��R2

�12
→ 0, �2�

where Bo is the Bond number, g is the gravitational accel-
eration, �� is the density difference between M1 and M2, and
R is the “characteristic” length scale associated with the par-
ticle. This result follows from conclusions in Refs. �8,17�.
The length scale R is not entirely well defined in the case of
acicular �nonspherical� colloidal particles, but can be taken
to be the mean radius of curvature. For colloids, we estimate
R to be at most 10−5 m. The surface tension �12 should be at
least 10−3 N m−1 for a liquid-liquid interface in the absence
of surfactants and the density difference can be at most of the
order 103 kg m−3 for physically reasonable systems. The
Bond number is thus estimated to be Bo�10−3. Hence it is
safe to take the zero bond number limit �17�, which implies
insignificant interfacial deformation due to gravity.

Capillary effects through immersion forces, anisotropy,
and electrostatic interactions, cannot be so easily estimated.
In Ref. �16�, capillarity is discussed in the context of inter-
colloid interaction on the interface, however, the effects on a
single particle’s adsorption are not included. The theoretical
validity of neglecting capillary deformation can be analyzed
via de Young-Laplace equation, as done for a single orienta-
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FIG. 1. A colloid �ellipsoid� adsorbed to the interface located at
depth −z, measured from the center of the colloid �0,0�, dividing
medium 1 �M1� and medium 2 �M2�. �a� shows an xz plane cross
section of the colloid and interface. The polar angle between the
interfacial normal and the rotational symmetry axis of the colloid is
denoted by �. The interface has total area A with corresponding
interfacial surface tension �12. The surface area of the colloid above
the interface is denoted by S1 with �1c the M1-colloid surface ten-
sion and the surface area of the colloid below the interface is de-
noted by S2 with �2c the M2-colloid surface tension. The presence
of the adsorbed colloid causes an area S12 to be excluded from the
interface, indicated by the dashed curve in the xz view. In �b�, this
excluded surface area is shown from an xy view, i.e., the region
enclosed by the dashed line. This dashed curve is the contact line,
with length L and corresponding line tension �. The outline of the
colloid �solid curve� is also included.
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tion of ellipsoidal particles in Ref. �6�. This analysis and the
consequences for comparison to experimental systems, per-
taining to the theoretical approach outlined in this paper, are
left for future study �22�.

It is customary to define the adsorption free energy with
respect to a reference point. The shifted adsorption free en-
ergy F�z ,�� is introduced by modifying V�z ,�� in such a
way that it is zero when the colloid is completely immersed
in M1, i.e., by subtracting �12A+�1cS. This yields

F�z,�� = ��1c − �2c��S1 − S� − �12S12 + �L . �3�

Often, the term “shifted” is ignored when referring to
F�z ,��. Only systems with M1�M2 are considered, hence
�12�0. Therefore it is possible to write �12 cos �=�1c−�2c,
where the contact angle � is introduced via Young’s equation
�23�. Using this definition, Eq. �3� is rewritten to

F�z,�� = �12��S1 − S�cos � − S12� + �L . �4�

Note that the contact angle � is a quantity, which depends on
the physical properties of the three components present at the
interface, whereas the polar angle � is a degree of freedom.

Dividing the adsorption free energy by �12S ��12�0� and
writing z=z��a2+2b2, with a the rotational symmetry semi-
axis, b the perpendicular semiaxis, and m�a /b the aspect
ratio, the following dimensionless adsorption free energy is
derived:

f�z�,�� =
F�z,��
�12S

= cos � �r1 − 1� − r12 + ��l , �5�

where r1�S1 /S and r12�S12 /S are surface area ratios,

�� �
�

�12
�S

, �6�

is the dimensionless line tension, and l�L /�S is a dimen-
sionless contact line length. The value �a2+2b2 is the length
of the semidiagonal of a rectangular beam with sides 2a
	2b	2b. Two inequalities, namely, 0
r1�z� ,��
1 and 0

r12�z� ,���1, hold for any value of z� and �. Note that
f�z� ,�� implicitly depends on cos �, m, and the shape of the
particle.

The dimensionless adsorption free energy, Eq. �5�, is scale
invariant, i.e., it is independent of the size of the colloid. For
��=0, our results for Eq. �5� hold for any size colloid. For
���0, the results for Eq. �5� can be translated back to any
colloid size under the condition that for each size, the line
tension is scaled appropriately. In this paper, we focus on Eq.
�5� rather than Eq. �4�, since our goal is to develop a general
method to describe the adsorption of arbitrary colloid shapes
at an interface. Therefore, semianalytic and fully numerical
results are compared for the dimensionless adsorption free
energy.

Before we present our numerical technique, we first intro-
duce some quantities which prove to be useful in describing
the results. The location of the adsorption free-energy mini-
mum in Eq. �5� is denoted by �zad

� ,�ad�, which is referred to
as the adsorption orientation. The corresponding adsorption
free energy reads fad� f�zad

� ,�ad�. Note that there may be
multiple minima, in which case there can be metastable ad-

sorption orientations. Several minima are labeled with a sub-
script i=1,2 , . . ., where the deepest minimum has the lowest
index. When there are two or more minima with equal ad-
sorption free energy, we label them arbitrarily.

For a given �, zdet
� ��� is defined as the positive value of z�

for which the interface just touches the top of the particle.
The colloid is detached when z��−zdet

� ��� or z��zdet
� ���.

The quantity zmin
� ��� is defined as the value for which

f�z� ,�� assumes its minimum as a function of z� for a given
�. The corresponding adsorption free energy is denoted by
fmin���� f�zmin

� ��� ,��. Note that it is a priori not excluded
that for a given �, the equi-�-curve has two or more �meta-
stable� minima. This can correspond to multiple zmin

� ���
curves in the free-energy landscape, running “side by side”
in the � direction. Often, we will write zdet

� and zmin
� for

zdet
� ��� and zmin

� ���, respectively, taking the polar angle de-
pendence to be implicit.

In summary, we have described our theoretical model for
a colloidal particle at a planar interface based on free-energy
arguments in the zero Bond-number limit. This model can be
straightforwardly generalized to encompass more complex
colloidal properties such as surface patterns �see Appendix
A�. Including the effects of gravity and capillary interfacial
deformation is, however, substantially more involved and
therefore not pursued here.

B. Numerical approximation scheme

Determining the dependences of S1, S2, S12, and L on z�

and � is highly nontrivial in general and deriving analytic
expressions is unpractical, if not impossible, for all but the
simplest particle shapes and orientations �see Appendix B�.
To analyze colloids adsorbed at an interface, the following
numerical technique is employed. The surface of the colloid
is bijectively parametrized by two angles, namely, 
1
� �0,2�� �azimuthal� and 
2� �0,�� �polar�. A parametriza-
tion can for instance take the form

P�
1,
2� = �r�
1,
2�cos 
1 sin 
2

r�
1,
2�sin 
1 sin 
2

r�
1,
2�cos 
2
� , �7�

where r�
1 ,
2� is some radial function, but many other
forms are imaginable. The strip �0,2��	 �0,�� is divided
into triangles, the vertices of which are mapped onto the
surface of the particle by means of the parametrization
P�
1 ,
2� �see Fig. 2�. A mapped triangle is formed between
the vertices of a corresponding triangle in the strip after P
has acted on them. From now on, the object, on which the
strip’s triangle mesh is mapped, is referred to as being tes-
sellated with triangles. The above method of modeling a 2D
or three-dimensional �3D� object by triangles �more gener-
ally polygons� is well known in computer science and has
been successfully applied to various surface-tension prob-
lems in physics �24–26�.

The surface area of the colloid is now approximated by
summing the surface areas of the mapped triangles. Suppose
that the vertices of a mapped triangle are given by x, y, and
z, then its surface area is given by a simple cross product
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	�z−x�	 �y−x�	 /2. This procedure can yield “in principle”
arbitrary precision by sufficiently refining the triangular
mesh. It should be noted that depending on the parametriza-
tion, some triangles have a vanishingly small or zero contri-
bution to the surface area. For example, in the case of a
sphere, several vertices coincide resulting in degenerate tri-
angles at the poles �see Fig. 2�. Note that this mapping is not
bijective, but only on a set of which the image has measure
zero.

The method described above can be amended in the fol-
lowing manner to enable calculation of S1, S2, S12, and L.
Suppose that the tessellated object is intersected by a plane,
then some of the triangles which compose the object lie
above it and others below it. Let �↑ denote the set of tri-
angles which lie strictly above, �↓ the set of triangles which
lie strictly below, and �p the set of triangles which intersect
the plane or touch it. The surface of the colloid is approxi-

mated by S̃=
∀i�↑,i+
∀j�↓,j +
∀k�p,k, where the tilde indi-
cates that this is an approximation, i, j, and k are indices, and
the notation for an element in a set doubles as the notation
for that triangle’s surface area.

Each intersected triangle �p,i is divided into three subtri-
angles �r,i, �s,i, and �t,i in the manner indicated in Fig. 3.
Two of these lie on one side of the plane and one on the
other. Applying this technique to all triangles in �p, a set of

partitioned triangles �̃p is obtained, of which the members
only have some vertices in common with the plane and do

not intersect it. Let �̃p,↑ and �̃p,↓ be the sets of triangles in �̃p
which lie above and below the interface, respectively, and let

�̃↑=�↑� �̃p,↑ and �̃↓=�↓� �̃p,↓. Using these sets of tri-
angles, the surface areas S1 and S2 are approximated in the
following way:

S̃1 = 

∀i

�̃↑,i, �8�

S̃2 = 

∀i

�̃↓,i. �9�

Note that by virtue of this technique, the equality S̃= S̃1+ S̃2
still holds, which can be used as a consistency check.

From the set of triangles �̃p, the points where the plane
intersects the original tessellation are extracted. These points
form a two-dimensional data set which approximates the sur-
face area that is cut out of the interface by the presence of the
colloid �see Fig. 4� from which S12 and L can be computed.

Typically, the boundary consists of several hundred grid
points, depending on the size of the triangular mesh. The

approximate surface area S̃12 is obtained by means of a trap-
ezoidal integration scheme, which is applied to the points
above and below the x axis after sorting them by increasing
x coordinate. Here we assume that the colloid is convex. The
excluded area S12 is always a connected set when the colloid

α1

2α

2π

π0

2αα1P( , )

FIG. 2. Example of a parametrization P�
1 ,
2� mapping the
vertices of triangles in the strip �
1 ,
2�� �0,2��	 �0,�� to points
on a sphere. In between these points, “mapped” triangles are formed
corresponding to the original triangles on the strip. The points at the
poles are degenerate; all vertices with 
2=0 and 
2=� coincide at
the corresponding pole. Only the front half of the sphere is tessel-
lated for clarity.

∆ t,i

∆ s,i

∆ r,i

∆ p,i

FIG. 3. Example of a triangle �p,i which intersects the interface
�dashed line�. Such a triangle can be cut into three pieces, �r,i, �s,i,
and �t,i, as indicated above. In this case, the first piece lies above
the interface and the second and third pieces below it. The two new
vertices lie on the interface.

( )

( )

a

b

FIG. 4. �a� shows an example of the boundary points of the
intersection of a colloidal cylinder with a planar interface, which
are obtained using the triangular tessellation scheme, together with
its convex hull �full curves�. In �a� all points are shown; in �b� only
those on the convex hull, with which the surface area S12 is com-
puted through a trapezoidal integration scheme as shown for the
area above the x axis. The convex hull also serves to compute the
length of the contact line L.
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is convex. For nonconvex colloids, the area excluded from
the interface can consist of two or more disjoined pieces,
e.g., for a dumbbell. To avoid such difficulties, we restrict
ourselves to uniaxial convex colloids and refer the reader to
Appendix A for a more general algorithm. It should, how-
ever, be noted that in the case of a dumbbell, the surface
areas are parts of circles and spheres and therefore this shape
can in principle be handled analytically �22�.

The trapezoidal integration scheme suffers from instabili-
ties due to small numerical uncertainties, which potentially
interfere with the sorting algorithm, as illustrated in Fig.
4�a�. These problems can easily be overcome by considering
the convex hull of the data set �Fig. 4�b�� thereby eliminating
such “noise.” Considering the convex hull does come at the
price of reducing the number of data points. However, for
several hundred grid points, this effect is negligible. The con-

vex hull of the boundary points is also used to determine L̃,
the approximate length of the contact line L.

In summary, we have introduced an explicit tessellation
scheme to compute the surface areas S1, S2, and S12 as well
as the contact line length L explicitly for any convex
�uniaxial� colloid particle. This scheme can, however, be
straightforwardly generalized to more complex colloidal
shapes with surface heterogeneities. Nonconvex shapes and
particles with surface patterns are discussed in Appendix A.

III. RESULTS AND DISCUSSION

In this section, we discuss the adsorption free-energy
landscape for several particle shapes, namely, ellipsoids, cyl-
inders, and spherocylinders, as shown in Fig. 5. We focus on
these three types of particles as they are frequently used to
model colloidal platelets and rodlike colloids in theoretical
work and computer simulations. In addition, these particle
shapes can be either prolate �m�1� or oblate �m
1� and

have relatively simple parameterizations. Note that in our
model, the spherocylinder has length a and width b. Contrary
to traditional notation, a includes the spherical end caps for a
prolate spherocylinder, while b includes the rounded side for
an oblate spherocylinder.

Only the dimensionless adsorption free energy, Eq. �5�, is
considered and the investigation here limits itself to two as-
pect ratios m=1 /4 and m=4, one contact angle cos �=
−1 /2, and several values of ��. Negative values for cos � are
used, since then the particle prefers M1. However, there is no
real difference between cos � and −cos � because it only
implies interchanging M1 and M2 in our model. That is to
say, when �zad

� ,�ad� is the location of a minimum for cos �
�0, then for −cos �, there is a minimum at �−zad

� ,�ad� if �� is
fixed. It should be noted that the line tension can be both
positive and negative �27� and can assume values in a range
spanning several decades �28–30� depending on the precise
details of the system. The line tension �� is therefore chosen
arbitrarily, without reference to a specific experimental sys-
tem. We have limited ourselves to several interesting con-
figurations to prove the accuracy of our method.

An equidistant mesh of 200	200 to 400	400 vertices is
employed, which via the various parameterizations is
mapped onto a heterogeneous triangular tessellation. For fu-
ture reference, we will denote a 200	200-vertex grid as a
2002-vertex grid, for instance. This yields relative fractional
accuracies in the range of 10−3–10−5 in S, S1, S2, S12, L, r1,
r12, and l, depending on the object parameterized. These un-
certainties are established using semianalytic values of the
surface areas and contact line length given in Appendix B.
The semianalytic nature refers to the fact that one-
dimensional �1D� integrals need to be evaluated numerically
in order to obtain a value. More than 5000 nonequidistant
grid points are used in these calculations to ensure a relative
fractional uncertainty lower than 10−6 �the magnitude is de-
termined using grid reduction�. These semianalytic results
are independent of mesh size and triangular tessellation and
can be used to test our method. For higher accuracy, meshes
of 10002 vertices are employed, although in most cases,
these results are indistinguishable from the 4002-vertex mesh
results or the semianalytic results. We are therefore confident
that the numerical scheme is sufficiently stable and can be
applied to shapes for which we have not performed analytic
verification.

A. Ellipsoids

We calculate the adsorption free energy f�z� ,�� of an el-
lipsoid with aspect ratio m=4 and contact angle cos �=
−1 /2. We use a 4002-vertex mesh for the tessellation and a
5000-point equidistant trapezium-rule grid for the semiana-
lytic approach. Figure 6�a� shows f�z� ,�� for ��=0 in a 3D
representation as a function of z� and �. In Figs. 6�b�–6�f�,
we plot � sections of the free-energy landscape for varying
��. The numerical results established using the tessellation
scheme presented above and the semianalytic results ob-
tained using the equations and techniques described in Ap-
pendix B agree within the line width of the curves, i.e., the
relative uncertainty is lower than 10−3 for all grid points.
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FIG. 5. Impression of the various colloidal shapes considered in
this paper. The left column represents oblate particles �a�b ,m
�1�; the right column prolate particles �a�b ,m�1�. Note the dif-
ference in shape between oblate and prolate spherocylinders.
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FIG. 6. The adsorption free-energy landscape for an ellipsoid with aspect ratio m=4 and contact angle cos �=−1 /2. Graph �a� shows
f�z� ,�� in a 3D representation as a function of z� and � for ��=0. Graphs �b� through �f� show � sections of this free-energy landscape for
�=0, � /8, � /4, 3� /8, and � /2, respectively, and for ��=−0.1, −0.05, −0.025, 0, 0.025, 0.05, and 0.1. The central dotted line in each graph
corresponds to a section of graph �a�, i.e., ��=0. The adsorption free energy � sections are shown for −1�z��1, but can be extended with
constant value 0 for z
−1 and 0.5 for z�1. Note the appearance of free-energy barriers for ���0 which must be crossed if the particle
adsorbs to the interface. When ���0.05, the adsorption free energy does not have a minimum. In this figure, numerical and analytic results
agree within the line width of the curves.
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Graphs similar to those in Fig. 6 can be made for ellipsoids,
cylinders, and spherocylinders of any aspect ratio, with any
contact angle and line tension. We have verified that the
semianalytic scheme in Appendix B and our tessellation
scheme yield the same results.

In the specific case of an ellipsoidal colloid with m=4 and
cos �=−1 /2 �see Fig. 6�, we find that for negative values of
��, there is a single minimum in all � sections of the free-
energy landscape. From these figures, it can also be derived
that there is in fact a single minimum in the adsorption free
energy for ���0. That is to say, there is a single minimum at
�=� /2 and there are no metastable secondary minima. We
will come back to this shortly. From Figs. 6�b�–6�f�, it is
clear that the single minimum in the � sections with −zdet

�

�z��zdet
� for ���0 vanishes with increasing ��. The mini-

mum free energy for a given � is then fmin���=0 and this
minimum is assumed when z��−zdet

� . In this case, the par-
ticle prefers to be detached from the interface and can move
freely in M1, where its adsorption free energy is lowest.

For certain ��, a � section can have two minima, for ex-
ample, ��=0.05 and �=� /2 �see Fig. 6�f��. Here, there is an
absolute minimum given by the detached state with
fmin�� /2�=0 and a metastable �local� minimum with
z�� �−zdet

� ,zdet
� �, i.e., when the particle is adsorbed at the in-

terface. For sufficiently positive ��, the presence of this local
metastable minimum in the � sections is dependent on the
value of �. There is a local minimum with z�� �−zdet

� ,zdet
� �

for �=� /2 and �=3� /8 when ��=0.025 for instance, but
this minimum is not present for the �
� /4 sections �see
Figs. 6�b�–6�f��. Conversely, the minimum with
zmin

� � �−zdet
� ,zdet

� � can be the absolute minimum and the de-
tached state �z��−zdet

� � a metastable minimum �see, for in-
stance, the � section in Fig. 6�f� with ��=0.025�.

The appearance of a local metastable minimum with z�

� �−zdet
� ,zdet

� � is in part related to the formation of “adsorp-
tion barriers” in the free energy. That is to say, when �� is
sufficiently positive, the colloid has to cross a barrier to at-
tach at the interface from an immersed state in either me-
dium. From Figs. 6�b�–6�f�, we observe that positive values
for the line tension �� give rise to these adsorption barriers.
This behavior is most clearly visible in the �=� /2 sections
for the ��=0.025 and ��=0.05 lines in Fig. 6�f�. The height
of the barriers varies with the value of the polar angle and
they become more pronounced with increasing ��. These bar-
riers are quite intriguing, since they can prevent a particle
form reaching its lowest free-energy state when it is initially
introduced in its least favored medium.

The above results agree with the findings in Ref. �15�.
However, there are several differences between our results
and those of Ref. �15� as the expressions in Appendix B and
in Ref. �15� do not agree completely. Apart from minor ty-
pographical errors, there is a problem with the definition of
subdomains on which the equations hold, as well as the way
in which quantities are made dimensionless. Because of no-
tational differences, these problems are not immediately ob-
vious, but when comparing results, it is clear that the adsorp-
tion free-energy barriers induced by the line tension are far
less pronounced in our case. We believe that the way in
which � is made dimensionless in Ref. �15� violates scale
invariance, but from the description given, this is impossible

to determine. Despite the discrepancies with previously es-
tablished results, we are confident that our results are correct,
since we have used two independent methods, which yield
the same results within numerical uncertainty.

In addition to giving � sections, we have determined for
which zmin

� the adsorption free energy f�z� ,�� is minimal for
a given �. Figure 7 shows the minimum adsorption free en-
ergy fmin���� f�zmin

� ,�� for ellipsoids with m=4, m=1 /4,
cos �=−1 /2, and several �� corresponding to the choices in
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FIG. 7. The minimum adsorption free energy fmin��� for ellip-
soids with aspect ratio �a� m=4, �b� m=1 /4, cos �=−1 /2, and sev-
eral values of ��. The thick line indicates fmin����0, which is the
minimum free energy when ���0. Note that the metastable part of
the adsorption curves is shown as well, i.e., fmin����0. We only
concern ourselves with the presence of a minimum for a certain �
when z�� �−zdet

� ,zdet
� �, not with its stability. Depending on the value

of ��, a minimum in the � sections need not be present along the
entire � range �also see text�. For ��=0.1 in graph �a�, there is no
minimum adsorption free energy, in correspondence to the results
from Fig. 6. Again, the agreement between numerical and semiana-
lytical results is within the line width of the curves.
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Fig. 6. The minimum adsorption free energy is fmin��� under
the constraint that zmin

� � �−zdet
� ,zdet

� �. The trivial solution
fmin���=0 with z��−zdet

� , when ���0, is represented by a
thick horizontal line. Note that this solution is not in the
�−zdet

� ,zdet
� � domain. We have also indicated any metastable

part of the adsorption free energy, i.e., fmin����0. These
minima are metastable with respect to the fmin���=0 solu-
tion, for which z��−zdet

� . This local minimum need not exist
for all values of �, which results in the minimum adsorption
free-energy curves terminating when ���0.025 �m=4� and
���0.0 �m=1 /4�, respectively �see Fig. 7�. This is in agree-
ment with the behavior of the � sections given Figs.
6�d�–6�f�. For ���0.025, all minimum adsorption free-
energy curves are stable.

If there is a minimum adsorption free-energy curve for a
given ��, then we find that the �local� minimum of the free
energy is located somewhere on this curve, per definition.
For m=4, the location of the adsorption minimum of f cor-
responds to �ad=� /2. Similarly, when m=1 /4, the adsorp-
tion free energy f is minimal for �ad=0. This observation
proves to hold in general for ellipsoids because the �ad is
determined solely by the aspect ratio �22�. We alluded to this
result earlier, in describing Fig. 6, but the presence of a
single minimum and the monotonicity of the minimum ad-
sorption free-energy curves are much more evident in Fig. 7.
To summarize, the effect of positive line tension is found to
be twofold. First, it gives rise to an adsorption barrier, which
must be overcome for particles to attach to the interface.
Second, it destabilizes the adsorption of a colloid by reduc-
ing the depth of the free-energy minimum at adsorption, even
to the point that it is either metastable or nonexistent. The
angular dependence of this stability reduction can be attrib-
uted to the anisotropy in the particle shape.

B. Cylinders

We only study the minimum adsorption free energy as a
function of the polar angle � for cylindrical particles and
several �� when cos �=−1 /2. Figure 8 shows the corre-
sponding curves fmin��� for cylinders with m=4 �a� and m
=1 /4 �b�. Again, we find that for ���0.1, there is only one
minimum in the free energy with zmin

� �−zdet
� , namely, when

the colloid is completely immersed in M1. It can be shown
that this trend holds in general. When comparing Fig. 8�a� to
the results given in Ref. �15�, there is no correspondence.
This lack in accordance can be attributed to the fact that the
equations presented in Ref. �15� do not sample all possible
orientations of the cylinder with respect to the interface.
Again our results have been verified by comparison to the
semianalytic result. The agreement is better than that the line
width of the curves in Fig. 8 can show.

The cylindrical particles have two noticeable differences
with their ellipsoidal counterparts. First, we find that two
minima can appear in a single minimum adsorption free-
energy curve. Whereas for ellipsoids, these curves have
monotonic properties and the free energy therefore has only
one minimum; the cylindrical curves can have two minima.
For the configurations considered, the absolute minimum is
located at �ad=� /2 for m=4, i.e., the particle lies flat on the

interface. The metastable minimum is at �ad=0, i.e., the par-
ticle is perpendicular to the interface. The latter corresponds
to a cylinder which only has one of its disk-shaped end caps
flush with the interface and the rest of its surface in M1. The
free energy gained by excluding a disk from the interface and
not having any other part in contact with M2, which is ener-
getically unfavorable, can be sufficient to generate a local
metastable minimum. It is also possible to choose parameters
such that this “odd” configuration has the lowest adsorption
free energy and is therefore stable. Second, we also observe
the presence of a kink in some of the minimum adsorption
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FIG. 8. The minimum adsorption free-energy curves fmin���
with cos �=−1 /2 and several values of �� for a cylinder with �a�
m=4 and �b� m=1 /4. The thick line indicates fmin����0, which is
the stable minimum when ���0. The agreement between numerical
and semianalytical results is within the line width of the curves.
Note the appearance of a secondary minimum in fmin���. The kink
in the minimum free-energy curves �graph b� for the oblate cylinder
is caused by the sharp edge of the cylinder �see text�.
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free-energy curves �see Fig. 8�b��. This feature is related to
the sharp corners of the cylinder itself, which gives rise to
ridges in the adsorption free-energy landscape. For the two
configurations considered here, only the minimum free-
energy curves for m=1 /4 follow parts of these ridges and
consequently a kink appears. For the prolate cylinder, the
minimum is found away from the ridges in the free-energy
landscape and the kinks do not appear in the minimum ad-
sorption free-energy curves.

C. Spherocylinders

For spherocylinders, we again concentrate on determining
for which zmin

� the adsorption free energy f�z� ,�� is minimal
for a given � under the constraint that zmin

� � �−zdet
� ,zdet

� �. The
minimum adsorption free-energy curves fmin��� for sphero-
cylindrical particles with m=4 �a�, m=1 /4 �b�, cos �=−1 /2
are given in Fig. 9 for several values of ��. Note that for
spherocylinders, these curves are similar to those for ellip-
soids. The agreement between numerical and semianalytic
results is again better than can be appreciated from the line
width. For the semianalytic results, a grid of 8000 nonequi-
distant points was used to evaluate the one-dimensional in-
tegrals using Aitken’s method �31� �also see Appendix B�.
This yields a relative error of 10−7 based on grid reduction.
The numerical tessellation scheme is based on 10002 vertices
to obtain a relative accuracy of 10−5 per point or better when
compared to the semianalytic curves.

There is only one minimum per minimum adsorption free-
energy curve, as the particle shapes are smooth and in that
sense more similar to ellipsoids than to cylinders. For
spherocylinders, �ad is also completely determined by the
aspect ratio m, i.e., �ad=0 for m�1 and �ad=� /2 for m
�1 �22�. This property further distinguishes smooth convex
uniaxial particles, e.g., ellipsoids and spherocylinders, from
nonsmooth particles, e.g., cylinders. However, the mecha-
nism behind adsorption to the interface is quite subtle, de-
pending not only on m, S, cos �, and ��, but to a large degree
on the shape and surface patterning of the colloid. A more
detailed study on the effect of particle shape and surface
patterning will be the topic of future work �22� and will be
presented elsewhere.

IV. CONCLUDING REMARKS

We have presented a numerical framework to determine
the adsorption free energy, in terms of surface and line ten-
sion contributions, of a nonconvex patterned colloid ad-
sorbed at a flat interface. This framework is a natural exten-
sion of established theoretical models, e.g., Refs. �1,4,15,16�.
Because of the complexities which arise when determining
the adsorption free energy for complex colloidal shapes, a
numerical technique based on triangular tessellation is devel-
oped. The accuracy and stability of this method has been
extensively verified for convex uniaxial colloids, such as el-
lipsoids, cylinders, and spherocylinders. This analysis was
performed by comparing semianalytic results to the results
produced by our tessellation technique. The expressions used
to obtain the semianalytic results are given in Appendix B

and thereby amend previous results �15�. Exact correspon-
dence is found between the numerical and semianalytical re-
sults and the established analytic expressions for specific
configurations of colloids adsorbed at a flat interface �4�.

Despite the fact that all of the presented results can be
derived semianalytically, the numerical method presented
here has substantial merits. On the one hand, the semiana-
lytic results can be calculated numerically substantially more
quickly than the triangular tessellation results. Only the value
of one-dimensional integrals needs to be approximated for
these. On the other hand, the process of determining analytic
expressions can be very labor intensive and may result in
equations which are incorrect. Therefore, the numerical
scheme can be employed to verify the equations derived by
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FIG. 9. The minimum adsorption free-energy curves fmin���
with cos �=−1 /2 and several values of �� for a spherocylinder with
�a� m=4 and �b� m=1 /4. The notations are analogous to those in
Figs. 7 and 8. Again, the agreement between the two methods used
to generate the results is better than the line width of the curves.
Note that in both graphs, there is only one �ad per minimum curve.
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analytic means. However, verification is not the true strength
of the numerical technique. Determining an appropriate pa-
rametrization and corresponding tessellation is much less in-
volved than obtaining the analytic expressions and hence the
numerical method is more suited to quickly determine the
adsorption free-energy landscape of a range of different
shapes and surface patterns.

It should also be pointed out that, once implemented, the
triangular tessellation scheme will have the same numerical
limitations for any system it is applied to. By identifying
these limitations, they can be avoided, making the method
very robust. Semianalytic results are different in this respect,
since they suffer from a lack of uniformity in the numerical
techniques that are needed. The diversity of 1D and 2D in-
tegrals, which require numerical evaluation, obtained by
studying general systems is limitless. The numerical evalua-
tion of these should be scrutinized on a case by case level; a
numerical integrator that works for one integral, is not nec-
essarily suited for another. In our experience, the merits of
the triangular tessellations scheme greatly outweigh those of
the semianalytic approach for generality, stability, and appli-
cability. Hence, our method based on such a triangular tes-
sellation scheme can be used to examine the physics behind
interfacial adsorption of general colloidal particles as well as
to make a link between theory and experiments �22�.
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APPENDIX A: EXTENSION OF THEORY AND
NUMERICAL SCHEME TO NONCONVEX PATTERNED

PARTICLES

1. Theoretical model

In this section, we extend our theory to nonconvex col-
loids with surface patterning. We consider a colloid, of which
the surface is divided into several areas with different liquid-
solid surface-tension properties, as is illustrated in Fig. 10.
The surface patterning, other than the most basic, breaks the
rotational symmetry properties of our system. Hence, an ar-
bitrary nonconvex patterned particle is described by an angle
� in addition to the two parameters z and � used earlier �see
Fig. 10�. Suppose an arbitrary axis is fixed through the center
of mass of the particle, at which the origin of the system is
located, then � is the angle between this axis and the inter-
facial normal. The angle � describes rotations around this
axis. Rotations by � are well defined if they are with respect
to some initial orientation. This initial orientation can, how-
ever, be arbitrarily chosen.

Let the particle be partitioned into n patches Pi, with the
index i=0,1 , . . . ,n �see Fig. 10�. Each patch has a specific
patch-medium surface tension �1ci

�Pi−M1� and �2ci
�Pi

−M2�, in addition to a line tension �i. Let S1i
be the surface

area of patch Pi in M1, S2i
the surface area in M2, and Li the

length of the contact line. These three quantities can be any

value between 0 and their maximum, depending on the ori-
entation of the colloid. The adsorption free energy of the
colloid is given by

V�z,�,�� = �12�A − S12� + 

i=0

n

��1ci
S1i

+ �2ci
S2i

+ �iLi� .

�A1�

We define Si�S1i
+S2i

, such that the total surface area is S
=
i=0

n Si. As before, we can set the adsorption free energy to
be zero in M1, by subtracting

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

S12

ωφ
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FIG. 10. A nonconvex surface-patterned colloid adsorbed to �a�
an interface in schematic representation and �b� the same colloid’s
surface patterning. The orientation of the colloid is described by
three quantities: �i� the depth z; �ii� the angle �, which some arbi-
trary but fixed axis through the colloid’s center of mass makes with
the interfacial normal; �iii� the angle � which gives rotations around
the chosen axis. The angle � is defined with respect to a predeter-
mined initial configuration. The origin �0,0� is located at the center
of mass of the colloid. Again A is the total �macroscopic� surface
area of the interface, S12 the area excluded from the interface by the
presence of the particle, and �12 the medium 1 �M1�-medium 2
�M2� surface tension. The individual patches are labeled by Pi �b�,
where i=0, . . . ,n. Each patch has a Pi−M1 surface tension �1ci

, a
Pi−M2 surface tension �2ci

, and a line tension �i. The surface area
of Pi in M1 is given by S1i

, the surface area in M2 by S2i
, and the

contact line length by Li.
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�12A + 

i=0

n

�1ci
Si �A2�

from V�z ,� ,��, to obtain the shifted adsorption free energy

F�z,�,�� = 

i=0

n

���1ci
− �2ci

��S1i
− Si� + �iLi� − �12S12.

�A3�

The following quantities are introduced analogous to the the-
oretical description given earlier: �12 cos �i��1ci

−�2ci
via

Young’s equation, ri�Si /S, r1i
�S1i

/S, r12�S12 /S, li

�Li /�S, and �i
���i /�12

�S. Using the above definitions, Eq.
�A3� is reduced to the elegant dimensionless from

f�z�,�,�� = 

i=0

n

�cos �i �r1i
− ri� + �i

�li� − r12, �A4�

where the shifted adsorption free energy has been divided by
�12S. Here, z is made dimensionless by introducing z�

=z /R, with R the radius of the smallest sphere which en-
closes the particle.

Note that in our model, we have glanced over one detail,
namely, that it is possible to have a four-phase contact line
on the boundary of two patches if the interface coincides
�partially� with this boundary. We define the line tension as-
sociated to this four-phase contact line to be the average of
the line tensions of the two patches for mathematical conve-
nience. The contribution to the adsorption free energy is the
length of this four-phase contact line times the averaged line
tension. To the authors’ knowledge, little is known about the
properties of such four-phase line tensions. There have been
studies into four-phase contact lines �32�, but the line tension
is not included. We believe that averaging is not unreason-
able. However, multiphase line tensions and point tension
contributions to the adsorption free energy certainly merit
further investigation. Sharp features in the colloid, such as
cusps and facets, and their possible adsorption free-energy
contributions due to stresses induced on the interface by sur-
face exclusion are also not considered here.

2. Improved numerical scheme

The numerical scheme, based on triangular tessellation as
described in the main part of this paper, is suited to handle
nonconvex shapes, with the exception of the surface area
excluded from the interface. In this section, we extend the
numerical scheme to handle nonconvex patterned particles.
Note that it is not excluded that these particles have handles.

First, the object is tessellated with triangles using a suit-
ably chosen parametrization. This tessellation obeys the fol-
lowing rules. �i� Patch boundaries are approximated by tri-
angle edges; consequently, a single triangle has a single set
of surface properties. �ii� Each triangle is labeled according
to the patch it is in, with the label Pi. �iii� The direction of
the surface normal of each triangle is known and is required
to point outwards from the particle. �iv� A sufficiently large
number of small triangles is used where the surface of par-
ticle changes abruptly, either via a large gradient or a cusp-
like feature.

Determining the approximated total surface area S̃ is
analogous to the procedure outlined before. Similarly, the
surface area of patch i, Si, is approximated by summing the
surface area of triangles with label Pi, yielding S̃i. The sur-
face area of a patch above the interface S1i

is obtained by
partitioning the triangle mesh in the manner described ear-
lier. The approximated surface area is denoted S̃1i

. The area

S̃2i
can also be determined in this way. The equality Si=S1i

+S2i
also holds in approximated form S̃i= S̃1i

+ S̃2i
and can be

used as a consistency check.

The calculation of S̃12 and L̃i is, however, a little more
involved. In partitioning the triangles, two points are ob-
tained for each triangle if the sides of the original triangle are
intersected by the interface. These two points span a line
segment, which is oriented via the normal of the triangle.
That is to say, after partitioning a set of line segments, say �,
is obtained �see Fig. 11�a��. The members of �, say �i with
i an index, are encoded with information on the location of
the particle. This encoding is as follows. For a triangle inter-
sected by the interface at an angle, the triangle’s normal is
projected onto the interface and normalized. This unit vector
is referred to as the directional �unit� vector because it gives
orientation to the line segment. A triangle which lies flush
with the interface needs to be special cased; here the word
flush indicates that all vertices are located in the plane of the
interface. The directional unit vectors for each of its sides
point outward; the implementation of which is trivial. Each
vector �i has seven components: two give the xy location of
the starting point of the line segment, two give the end point

I

II

III

(a) (b)

(c)

FIG. 11. Illustration of the loop reduction procedure for the

approximated interfacial cutout S̃12 corresponding to a nonconvex
colloid. We chose not to complicate the figure by composing S12 out
of disjoined pieces, but the procedure for this situation is analogous.
�a� shows the line segments obtained after partitioning triangles,
i.e., the set �. Note that some sides have multiple directional unit
vectors, indicated by arrows, associated to them. These are double
instances of a line segment, which occur whenever triangles have
one or more sides flush with the interface as is explained in the text.

�b� shows �̃, the set of segments after removing all double and

internal line segments. �c� shows the subdivision of �̃ into three
closed oriented loops.
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of the segment, two give the direction of the unit vector, and
one gives the patch it is associated to. All directional unit
vectors obtained in this way point outward from the colloid
�at least locally�.

To determine S̃12, the set of line segments � needs to
undergo several refinement steps first. Consider all instances
of a �i, for which there is a � j, which has the same line
segment coordinates, but not necessarily the same directional
vector, e.g., see Fig. 11�a�. The situations in which there are
two “overlapping” segments are the following. �i� When one
of the sides of a triangle is flush with the interface �all points
off that side are located in the plane�, this gives one line
segment. The second segment is given by the triangle which
shares that particular side with the original triangle. Both of
these segments have the same directional vector. �ii� When
an entire triangle is flush with the interface, all three sides
contribute a line segment. These segments need not neces-
sarily be a part of the boundary of S12 or equivalently not a
part of the contact line; they may be internal �see Fig. 11�a��.
If one of the sides of the original triangle is an interior side,
the adjacent triangle must also be entirely flush with the
interface. Otherwise, it would not be an internal segment,
i.e., lie in the interior of S12. This adjacent triangle gives a
second instance of the line segment, for which the directional
vector is opposite to that of the first segment �see Fig. 11�a��.
To eliminate unnecessary segments, � j is removed from � if
�i and � j have the same directional vectors. If, however, the
directional vectors have opposite signs, both instances are
removed, since then these are interior segments. By subject-

ing each element in � to this procedure, a new set �̃ is
formed. This set contains only segments which are a part of
the boundaries of S12 �see Fig. 11�b��.

The set �̃ is subdivided into closed loops. A loop is de-

termined by choosing a segment in �̃ and adding its neigh-
bors recursively until no more new neighbors can be added.
This procedure is illustrated as follows. Let �i be the starting
segment. Then after one iteration, we obtain the sequence
�i−1−�i−�i+1 and after m iterations �i−m− ¯−�i−1−�i
−�i+1− ¯−�i+m. The last neighbors to be added are either
equal, i.e., �i−m=�i+m, in which case only one is added, or
have a common vertex, in which case the loop is also closed.
We thus obtain a loop which is ordered by construction. This

procedure is repeated until �̃ is subdivided into loops. It is a
priori not excluded in the above that a loop crosses itself,
e.g., a lemniscatelike structure. Crossover points are however
easily located by the fact that such a vertex will have at-
tached to it an even number of line segments greater than
two. All loops are subsequently cut into closed pieces which
do not cross themselves �see Fig. 11�c��. Let these loops be

denoted by Ci with i and index then �̃=�∀iCi and �∀iCi
=�.

It is necessary to determine the type of closed loop, i.e.,
whether it is outward or inward, because �by construction�
loops cannot contain both outward and inward segments. For
a loop where all the directional vectors point inwards the
following holds: any half line, starting at either end point of
a line segment in the loop, in the direction indicated by the
directional vector, will intersect another line segment in the

loop. For a loop where all directional vectors point outward,
there is at least one line segment for which one of the half
lines drawn through its end points as before will not intersect
another line segment in the loop. Numerically checking this
criterion efficiently is not trivial, however, the maximum
length over which a half line needs to be checked for inter-
section is 2R, with R as in the definition of z�. After each
loop has been labeled either “outward” or “inward,” the area

enclosed by each Ci in �̃ is easily calculated using a polygo-
nal version of Green’s theorem. In practice, it is seldom re-
quired to use such a complicated scheme to determine the
orientation of the loop. Any knowledge on the possible in-
terfacial cutouts can be used to make the algorithm more
efficient. A dumbbell, for instance, only has outwardly ori-
ented loops, which can be easily derived from its symmetry
properties.

The line segments in a loop Ci define a set of 2D points in
the plane, which are ordered by the ordering of the loop.
Map these points onto three-dimensional vectors a j, where
the first two components are xy coordinates, the last compo-
nent is zero, and j is an index. Let the set of these vectors be
ordered according to the ordering imposed by Ci. If there are
ñ−1 distinct points which define the loop, let j=0, . . . , ñ with
añ=a0. The area of Ci is then given by

A�Ci� = �

j=0

ñ−1

a j 	 a j+1� , �A5�

where the 	 symbol indicates the cross product and the ver-
tical bars the norm of the vector obtained by summation.
Note that this is indeed an adaptation of Green’s integral
theorem to polygonal shapes. It can be shown that Eq. �A5�
is only valid when there are no self-intersections, which is
why these needed to be eliminated first. Define S�Ci� to be +1
when the orientation of the closed loop is outward and −1 if
the orientation is inward. The approximated surface area ex-
cluded from the interface by the presence of the particle is
given by

S̃12 = 

∀i

S�Ci�A�Ci� . �A6�

The calculation of the approximated contact line lengths L̃i is

also possible from the set �̃ by summing over the lengths of
line segments which have the same label Pi. Note that one
needs to special case the instances when the contact line
coincides with patch boundaries, as described in the previous
section.

In summary, we have presented a method that can be used
to determine the free energy of an arbitrary patterned colloid
adsorbed to a flat interface. This numerical scheme will be
applied in future work �22� on for instance colloidal dumb-
bells and particles which have Janus-like patterning. There
are, however, still open problems, such as point tensions,
cusp effects, and four-phase line tensions which merit further
investigation. Finally, it should be noted that in specific
cases, this scheme can be greatly reduced in complexity if
properties of the possible interfacial cutout shapes are
known.
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APPENDIX B: ANALYTIC EXPRESSIONS FOR THE
ADSORPTION FREE ENERGY

In this appendix, we reproduce the analytic expressions
for ellipsoids, cylinders, and spherocylinders used to verify
the accuracy of the triangular tessellation method. To keep
this appendix concise, derivation of the results is not in-
cluded. The methods used are however analogous to those
applied in �15�. Only the expressions for S, S1, S12, and L are
considered here. We aim to keep the formulation as general
as possible, while at the same time showing the similarities
and dissimilarities between the various shapes.

Some expressions can be reduced in specific cases, i.e.,
several integrals for ellipsoids can be evaluated to give
closed expressions in terms of standard functions. However,
such a reduction may result in the expression only holding
for oblate and not for prolate particles or vice versa. Some
integrals can be reduced using symmetry properties. This
will not be done here in order to emphasize similarities. In
the case of a spherocylinder, the strong difference in shape
between oblate and prolate necessitates differentiation be-
tween the two aspect ratios. A general equation which de-
scribes both types of spherocylinder cannot be given.

It is always implied that the following symmetry proper-
ties:

S2�z,�� = S − S1�z,�� , �B1�

S1�− z,�� = S − S1�z,�� , �B2�

S12�− z,�� = S12�z,�� , �B3�

L�− z,�� = L�z,�� , �B4�

are used to describe the system and speed up numerical cal-
culation. The equations and variables considered are there-
fore only given on the �z ,�� domain

D = �0,�� 	 �0,�/2� . �B5�

It will prove necessary to subdivide this domain into “dis-
joined” pieces on which equations are defined. It can be
shown that the equations defined on these subdomains
change into each other continuously on the common edges. It
can also be shown that these equations reduce to previously
established results, Refs. �4,10�, when �=0 and �=� /2. We
do not include these calculations here in the interest of brief-
ness.

Because of the large number of symbols required to for-
mulate the expressions for S, S1, S12, and L, we are forced to
recycle notations on a paragraph by paragraph basis. How-
ever, an attempt is made to use the same symbols for similar
quantities as much as possible. The same holds for the defi-
nitions of the subdomains for the various species of particle.
To further reduce the notation, the dependence of variables
on z and � is often implicit. In the case that a parameter has
a different value on several subdomains, it is implied that
any function depending on this parameter should be evalu-
ated with the appropriate value.

All particles considered analytically require the numerical
evaluation of one-dimensional integrals in order to calculate

the various surface areas or the contact line length. There-
fore, we refer to this method as semianalytic. For ellipsoidal,
cylindrical, and prolate spherocylindrical particles, a simple
equidistant trapezoidal scheme can be implemented with
relatively small numerical error. However, a more stable
technique is required for oblate spherocylinders due to diver-
gences in some of the integrands near the integration bound-
ary points. A midpoint scheme gives reasonable results, al-
though we found that an application of Aitken’s method �see
Ref. �31�� near the boundaries, combined with a trapezoidal
scheme in the nondivergent section, yields more accurate and
stable results.

1. Ellipsoids

In the case of an ellipsoidal particle, there are three sub-
domains which partition D, namely,

D11 = �0,p1� 	 �0,�/2� , �B6�

D12 = �p1,p2� 	 �0,�/2� , �B7�

D2 = �p2,�� 	 �0,�/2� , �B8�

where

p1 = a cos � , �B9�

p2 = �a2 cos2 � + b2 sin2 � . �B10�

These boundaries give zdet��� and a transition point in the
integration domain, where there is a change in integration
kernel. It should be noted that the definition of subdomain
here is slightly convoluted, since p1 and p2 depend on �. The
notation �0, p1�	 �0,� /2� means that for a specific �
� �0,� /2�, the z domain is the line segment �0, p1����.

Let us introduce the following parameters, which corre-
spond to two coordinates of the plane-ellipsoid intersection:

x� =
− b2z tan � � ab�p2

2 − z2

�a2 + b2 tan2 ��cos �
, �B11�

y� =
a2z � ab tan ��p2

2 − z2

�a2 + b2 tan2 ��cos �
. �B12�

Using the above definitions, the semiaxes of the ellipsoidal
cutout and S12 are determined. The long semiaxis is given by

across =
1

2
��y+ − y−�2 + �x+ − x−�2, �B13�

and the short semiaxis by

bcross = b�1 − � y+ + y−

2a

2

− � x+ + x−

2b

2

. �B14�

Let us further define the integral kernels

I1��� = 2�ab�1 − �1 − �b

a

2��2, �B15�
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I2��� =
I1���

�
arccos� z − a� cos �

b sin ��1 − �2
 , �B16�

which can be applied to both oblate and prolate particles.
Using Eqs. �B15� and �B16�, the following expressions are
obtained:

J1 = �
�y+/a�

1

I1���d� , �B17�

J2 = �
�y−/a�

�y+/a�

I2���d� , �B18�

which are related to the surface area S1, as we will show
now.

The total surface area of an ellipsoidal particle is now
given by

S = �
−1

1

I1���d� , �B19�

the surface area above the interface by

S1�z,�� = �J1 + J2, �z,�� � D11

J2, �z,�� � D12

0, �z,�� � D2,
� �B20�

and the cutout surface area by

S12�z,�� = ��acrossbcross, �z,�� � D11 � D12

0, �z,�� � D2.
�

�B21�

To simplify the equation for the contact line length, the fol-
lowing notations are introduced

ccross
2 �

across
2 − bcross

2

across
2 , �B22�

Lcross = 4across�
0

�/2
�1 − ccross

2 sin2� d� , �B23�

so that

L�z,�� = �Lcross, �z,�� � D11 � D12

0, �z,�� � D2.
� �B24�

Equations �B22�–�B24� hold for both oblate and prolate el-
lipsoids, provided ccross

2 is allowed to assume negative values,
when the particle is oblate.

2. Cylinders

For cylinders, it is necessary to distinguish between two
regimes in polar angle, separated by �̃=arctan�a /b�, both of
which have three z domains. The angle �̃ gives the natural
angle corresponding to the ratio of sides, which determines
whether or not the plane can intersect the shaft of the cylin-
der without intersecting one of the end caps. Some subdo-

mains can be merged, which leads to the following partition-
ing of D:

D11 = �0,p1� 	 �0,�̃� , �B25�

D12 = �0,p1� 	 ��̃,�/2� , �B26�

D2 = �p1,p2� 	 �0,�/2� , �B27�

D3 = �p2,�� 	 �0,�/2� , �B28�

where

p1 =�a cos � − b sin � , � � �0,�̃�

b sin � − a cos � , � � ��̃,�/2� ,
� �B29�

p2 = a cos � + b sin � , �B30�

give the z boundaries. These boundaries represent zdet��� and
the position of the edge between the shaft and cap of a cyl-
inder.

The following parameters are introduced to aid notation:

q� =
z � a cos �

b sin �
, �B31�

u� = arccos q� − q�
�1 − q�

2 , �B32�

v� = q� arccos q� − �1 − q�
2 , �B33�

w� = b2�u� � 2v� tan �� . �B34�

The parameter q� is related to the intersection of the plane
and the end cap; the others are parts of evaluated integrals.
The integral kernel

K��� =
2b

cos �
�1 − sin2 � sin2 � , �B35�

is defined to help determine the contact line length.
Using the above definitions, the following equations for S,

S1, S12, and L, are derived. The total surface area is

S = 2�b2 + 4�ab . �B36�

The area of the colloid’s surface above the interface is given
by

S1�z,�� = �
�b2�1 − 2q− tan �� , �z,�� � D11

w+ + w−, �z,�� � D12

w−, �z,�� � D2

0, �z,�� � D3,
�

�B37�

and the area of the cylinder-plane intersection is given by
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S12�z,�� =�
�b2

cos �
, �z,�� � D11

b2�u− − u+�
cos �

, �z,�� � D12

b2u−

cos �
, �z,�� � D2

0, �z,�� � D3.

� �B38�

The contact line length is found using the following “set of equations”

L�z,�� =�
�

−�/2

�/2

K���d� , �z,�� � D11

�
arcsin q−

arcsin q+

K���d� + 2b�1 − q+
2 + 2b�1 − q−

2 , �z,�� � D12

�
arcsin q−

�/2

K���d� + 2b�1 − q−
2 , �z,�� � D2

0, �z,�� � D3.

� �B39�

The above equations hold for both oblate and prolate cylin-
drical particles.

3. Spherocylinders

For spherocylinders, the situation is even more compli-
cated than it is for cylinders. Recall that in this paper we
deviate from the classical definition of aspect ratio for
spherocylinders by including the caps in the length of a pro-
late particle and the toroidal rim in the width of an oblate
particle. Hence, there are terms proportional to �a−b�
present in the equations for prolate spherocylinders, which
correspond to the traditionally used length, and �b−a� terms
for oblate particles, which correspond to the traditionally
used width �also see main text�.

Since we did not succeed in formulating a single set of
equations which holds for both oblate and prolate spherocyl-
inders, we have split this section into two parts. The first part
describes prolate particles, the second part describes oblate
particles. For both species, there are again two polar angle
regimes, each having four z regimes. This makes the notation
in the following quite heavy, especially because a large num-
ber of parameters is introduced to formulate these equations
as elegantly as possible.

a. Prolate

In the case of a prolate spherocylinder, there are two polar
angle regimes, separated by the angle �̃=arctan��a−b� /b�,
each of which can be split into four z domains. Again, �̃ is
the natural transition angle related to the ratio of sides of the
cylindrical part of the particle. After reduction, D can be
written as D=D11�D12�D2�D3�D4, with

D11 = �0,p1� 	 �0,�̃� , �B40�

D12 = �0,p1� 	 ��̃,�/2� , �B41�

D2 = �p1,p2� 	 �0,�/2� , �B42�

D3 = �p2,p3� 	 �0,�/2� , �B43�

D4 = �p3,�� 	 �0,�/2� , �B44�

where

p1 =��a − b�cos � − b sin � , � � �0,�̃�

b sin � − �a − b�cos � , � � ��̃,�/2� ,
�

�B45�

p2 = �a − b�cos � + b sin � , �B46�

p3 = �a − b�cos � + b . �B47�

The three boundary values for z correspond to zdet���, the
transition between the shaft and a partially intersected sphere
cap, and the transition between to the situation where only
the sphere cap is intersected and not the shaft.

Let us now redefine some variables. Note that in the fol-
lowing, q�, u�, and v� play a similar role as for the cylinder:

TRIANGULAR TESSELLATION SCHEME FOR THE … PHYSICAL REVIEW E 80, 051405 �2009�

051405-15



q� =
z � �a − b�cos �

b sin �
, �B48�

s� = cos2 ��1 + �1 − q�
2 �tan2 � � q� sin2 � , �B49�

t� = arcsin q� + q�
�1 − q�

2 , �B50�

u� = arccos q� − q�
�1 − q�

2 , �B51�

v� = q� arccos q� − �1 − q�
2 , �B52�

w� = q� cos ��1 − q�
2 , �B53�

x� = �1 − q�
2 sin2 � , �B54�

x�
2 � 1 − q�

2 sin2 � , �B55�

y� = arccos�q� cos �

x�

 , �B56�

�+ = x+y+, �B57�

�− = x−�� − y−� , �B58�

�+ = x+
2y+, �B59�

�− = x−
2�� − y−� , �B60�

where q� and s� are intersection related quantities and the
other quantities are to simplify the notation of evaluated in-
tegrals. The value x�

2 is introduced here, because x�
2 is de-

fined as 1−q�
2 sin2 � rather than 	1−q�

2 sin2 �	. The appear-
ance of the absolute value in the latter would be a natural
consequence of taking the square of x�. In this way, the
notation here is similar to ccross

2 for ellipsoids, for which we
also used a “�” symbol. We realize that this notation is
somewhat unconventional, but there are instances where x�

2

�0 in our definition. However, it should be pointed out that
taking the square root to determine x� is not a problem be-
cause on the domains that x�

2 is negative, the equations do
not contain instances of x�. The following integral kernels:

K��� =
2b

cos �
�1 − sin2 � sin2 � , �B61�

L��h� = 2b2 arccos� �h � q��tan �

�1 − h2 
 , �B62�

are �re�defined. Here, the � sign in Eq. �B62� is the cause of
an asymmetry which appears in the integration boundaries
later.

Using the above equations and kernels, the following
physical quantities are derived, which determine the adsorp-
tion free energy:

S = 4�ab , �B63�

S1�z,�� =�
2�b2�1 − q− tan �� , �z,�� � D11

�
−q−

s−

L−�h�dh − �
q+

s+

L+�h�dh + �b2�2 − q+ − q−� + 2b2�v+ − v−�tan � , �z,�� � D12

�
−q−

s−

L−�h�dh + �b2�1 − q−� − 2b2v− tan � , �z,�� � D2

2�b�p3 − z� , �z,�� � D3

0, �z,�� � D4,

� �B64�

S12�z,�� =�
�b2

cos �
, �z,�� � D11

b2�t+ − t−�
cos �

+ b2��+ − w+� + b2��− + w−� , �z,�� � D12

b2u−

cos �
+ b2��− + w−� , �z,�� � D2

�b2x−
2 , �z,�� � D3

0, �z,�� � D4,

� �B65�
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L�z,�� =�
�

−�/2

�/2

K���d� , �z,�� � D11

�
arcsin q−

arcsin q+

K���d� + 2b��+ + �−� , �z,�� � D12

�
arcsin q−

�/2

K���d� + 2b�−, �z,�� � D2

2�bx−, �z,�� � D3

0, �z,�� � D4.

� �B66�

Note that the sign asymmetry in the integration boundaries of
the L� integrals in Eq. �B64� is induced by the � sign in Eq.
�B62�. Attempts to rewrite the integral in such a way that the
asymmetry is eliminated lead to results which look contrived
and are still asymmetric in a certain way. Although the ap-
pearance of asymmetries may seem unphysical, we have ex-
tensively verified that these equations indeed hold.

b. Oblate

For oblate particles, none of the integral equations, which
describe the surface areas and contact line length, can be
evaluated to obtain closed analytic expressions in terms of
standard functions. Again, five relevant domains are found,
where the � domain is split by �̃=arctan�a / �b−a��. The
angle �̃ is related to the dimensions of the cylindrical core of
the prolate spherocylinder. The subdomains are given by

D11 = �0,p1� 	 �0,�̃� , �B67�

D12 = �0,p1� 	 ��̃,�/2� , �B68�

D2 = �p1,p2� 	 �0,�/2� , �B69�

D3 = �p2,p3� 	 �0,�/2� , �B70�

D4 = �p3,�� 	 �0,�/2� , �B71�

where

p1 =�a cos � − �b − a�sin � , � � �0,�̃�

�b − a�sin � − a cos � , � � ��̃,�/2� ,
�

�B72�

p2 = �b − a�sin � + a cos � , �B73�

p3 = �b − a�sin � + a . �B74�

The three z domain pi indicate zdet��� and the position natu-
ral transition points on the particle’s surface.

To ease notation, the following variables are introduced:

x�
t = cos � �z − �b − a�sin �� � sin ���a + z − �b − a�sin ���a − z + �b − a�sin �� , �B75�

x�
b = cos � �z + �b − a�sin �� � sin ���a + z + �b − a�sin ���a − z − �b − a�sin �� , �B76�

��
i = 2�a�a − x�

i + �b − a�arccos� x�
i

a

� , �B77�

where i can be either “t” or “b.” These stand for “top” and “bottom,” respectively, but the latter is in no way related to the
rotational radius of the particle, which is also given by b. The points x�

t and x�
b are locations where the interfaces intersects the

spherocylinder in a conveniently chosen coordinate frame. The quantities ��
i originate form the evaluation

of integrals. The following useful functions are defined to aid notation:
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h�x� = z sin � −
x − z cos �

tan �
, �B78�

k�x� = �b − a�2arccos� h�x�
b − a


 − h�x���b − a�2 − h2�x� ,

�B79�

r�x� = �b − a� + �a2 − x2, �B80�

w�x� = �r2�x� − h2�x� . �B81�

Here, h stands for a height related function, k is a integration
reduction function, r is a radial distance function, and w is a
width function. In this paragraph, a prime denotes a deriva-
tive with respect to x, e.g., h��x���h�x� /�x. For the oblate
spherocylinder, three integral kernels are required, namely,

N1�x� =
2ar�x�

�a2 − x2
arccos�h�x�

r�x�

 , �B82�

N2�x� =
2w�x�
sin �

, �B83�

N3�x� = 2�1 + �h��x��2 + �w��x��2. �B84�

The first of the integral kernels is used in determining the
area S1, the second to determine S12, and the third is used to
determine the contact line length.

The above equations and kernels are applied to derive the
following equations:

S = 2��b2 + �� − 2�ba − �� − 3�a2� , �B85�

S1�z,�� =�
�

x−
t

x+
b

N1�x�dx + ��b − a�2 + �+
b , �z,�� � D11

�
−a

a

N1�x�dx + k�a� + k�− a� , �z,�� � D12

�
x−

t

a

N1�x�dx + k�a� , �z,�� � D2

�
x−

t

x+
t

N1�x�dx , �z,�� � D3

0, �z,�� � D4,

�
�B86�

S12�z,�� =�
�

x−
t

x+
b

N2�x�dx , �z,�� � D11

�
−a

a

N2�x�dx , �z,�� � D12

�
x−

t

a

N2�x�dx , �z,�� � D2

�
x−

t

x+
t

N2�x�dx , �z,�� � D3

0, �z,�� � D4,

� �B87�

L�z,�� =�
�

x−
t

x+
b

N3�x�dx , �z,�� � D11

�
−a

a

N3�x�dx + 2w�a� + 2w�− a� , �z,�� � D12

�
x−

t

a

N3�x�dx + 2w�a� , �z,�� � D2

�
x−

t

x+
t

N3�x�dx , �z,�� � D3

0, �z,�� � D4.

�
�B88�

Note that although the above equations are more symmetric
than those for prolate spherocylinders, there is still a degree
of asymmetry in the boundary conditions.
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