
Boolean reconstructions of complex materials: Integral geometric approach

C. H. Arns*
School of Petroleum Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia

M. A. Knackstedt†

Department of Applied Mathematics, Research School of Physical Sciences and Engineering,
Australian National University, Canberra, Australian Capital Territory 0200, Australia

K. R. Mecke‡

Institut für Theoretische Physik, Universität Erlangen–Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
�Received 18 May 2009; published 30 November 2009�

We show that for the Boolean model of random composite media one can, from a single image of a system
at any particle fraction, define a set of parameters which allows one to accurately reconstruct the medium for
all other phase fractions. The morphological characterization is based on a family of measures known in
integral geometry which provides powerful formulas for the Boolean model. The percolation thresholds of
either phase are obtained with good accuracy. From the reconstructions one can subsequently predict property
curves for the material across all phase fractions from the single three-dimensional image. We illustrate this for
transport and mechanical properties of complex Boolean systems and for experimental sandstone samples.
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I. INTRODUCTION

How do we characterize the structure of a complex two
phase material and how do we relate structure to macro-
scopic physical properties? This question is both of funda-
mental interest and is crucial to the understanding of many
industrially important processes with applications ranging
from materials science to geophysics. We addressed this
question for the particular class of Boolean composites in a
recent publication �1�. Here we provide a more in depth
analysis.

Predicting the properties of complex materials relies on
the availability of accurate microstructural models, which in
turn relies on accurate statistical characterization. Beyond the
volume fraction of each phase and the interfacial surface
area, the most important statistical quantity has been the two-
point correlation function which is obtained from cross-
sectional micrographs or small-angle scattering experiments.
It is widely recognized that although the two-point correla-
tion function of a reference and a reconstructed system is in
good agreement, this does not ensure that the structures of
the two systems will match well and attempts to reconstruct
materials from experimentally measured two-point informa-
tion have not been very successful �2,3�. Two point informa-
tion is nonunique and does not capture many important fea-
tures of the microstructure. Other useful characterizations of
microstructure include the chord-length distribution function
�4� �and the related lineal-path function �5�� and the pore size
distribution function �6�. Additional accurate descriptors of
morphology can be constructed by considering Minkowski
functions, e.g., of parallel surfaces �7,8�.

Reconstructions of experimental data sets based on the
more complex morphological descriptors such as chord-
length distribution function �and the related lineal-path func-
tion� and pore size distribution �5,9–12� give a better repre-
sentation of the material structure and accurately predict
material properties �13,14�. These reconstructions have been
limited however to the same phase fraction as the original
image.

Extending the reconstruction schemes to a wide range of
phase fractions has not generally been attempted. Studies of
complex materials across a large range of phase fractions
have been limited to more generic model morphologies. Ex-
amples include Boolean models of overlapping particles
�see, e.g., �15� and references therein� and Gaussian random-
field models �2,3,16,17�. These methods have given impor-
tant qualitative information on structure or property relation-
ships but cannot be applied directly to a specific material.

The Boolean model is generated by the gradual build up
of a phase via the overlap of permeable “grains” �closed and
bounded convex shapes� each with arbitrary location and ori-
entation. Although idealized, the model is often used to re-
construct the morphology of complex materials �15�; ex-
amples in the literature include ceramic powders �18�, wood
composites �19�, paper �20�, sedimentary rock �21,22�, and
hydrating cement-based materials �23�. In many of these
studies the grain size of the matching Boolean model is cho-
sen by either matching two-point information or by choosing
some averaged grain size. The latter is often difficult since
for most real materials one has incomplete knowledge of the
full distribution of grain sizes and shapes.

In this paper we show that one can accurately reconstruct
arbitrary complex Boolean systems from analysis of morpho-
logical measures given by integral geometry. Integral geom-
etry provides powerful formulas for the Boolean grain
model. In particular one can directly relate local morphologi-
cal properties of the grains to global morphological mea-
sures. This allows one to derive, from a single three-
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dimensional �3D� image, an equivalent local Boolean grain
ensemble. This in turn, allows one to accurately reconstruct
the medium for all particulate phase fractions f . We illustrate
this methodology by predicting the percolation threshold of
either phase of a complex two-phase Boolean system from a
single image. From the reconstructions one can also predict
the f dependence of a range of material properties. Match of
the reconstructed system to the original complex material is
excellent for both transport and mechanical properties. We
illustrate the method for a complex Boolean system and an
experimental sandstone sample.

The plan of the paper is as follows: we review the neces-
sary mathematical background, namely, formulas for calcu-
lating the integral geometric measures of Boolean mixtures
of lattice grains. In Sec. III we derive local morphological
measures from single images of a range of complex Boolean
systems. In Sec. IV we generate reconstructions of a com-
plex system, compare the percolation thresholds, and derive
the full mechanical and transport properties for general �. In
Sec. V we compare different Boolean reconstructions of an
experimental image, a �non-Boolean� sandstone, across a
range of phase fractions �. We show the match to the me-
chanical and transport properties of the original image and
the different reconstruction strategies.

II. INTEGRAL GEOMETRY

Integral geometry �24� provides complementary methods
and tools for measuring spatial structure. These tools are
commonly used in other disciplines �e.g., digital picture
analysis �25�� but have only recently been developed as mea-
sures of complex media �7,26,27�. A family of measures, the
Minkowski functionals in particular, seem to be promising
measures for describing the morphology of complex materi-
als. The functionals characterize not only the connectivity
but the shape and content of spatial figures. As many physi-
cal phenomena depend essentially on the geometry of the
spatial structure, integral geometry may provide useful tools
to study physical systems. In particular, integral geometry
provides powerful formulas for the Boolean model.

We consider a two-component medium filling a cubic vol-
ume V=L3. A digitized set of either component can be de-
scribed by a collection of voxels of compact �closed and
bounded� convex sets. The mean values v� of the global
Minkowski functionals of a structure made up of Boolean
grains of density � �in units of a−3 and a is the lattice con-
stant� are �28,29�

v0��� = 1 − e−�V0,

v1��� = e−�V0�1 − e−�V1� ,

v2��� = e−�V0�− 1 + 2e−�V1 − e−��2V1+V2�� ,

v3��� = e−�V0�1 − 3e−�V1 + 3e−��2V1+V2� − e−��3V1+3V2+V3�� ,

�1�

where V��K� are the morphological measures of the indi-
vidual grains K. The measures V� are related to the familiar

morphological measures of volume fraction V, discretized
surface area S �number of plaquettes�, integral mean curva-
ture H �number of signed edges�, and Euler characteristic X
�28� of the individual grain:

V0 = V/a3,

V1 = S/�6a2� ,

V2 = H/�3�a� ,

V3 = X = 1. �2�

For Poisson distributed cubes of sidelength � we have
V0=�3, V1=�2, V2=�, and V3=1. This powerful formulas
illustrates that it is sufficient to know the morphology of the
individual grains V� to derive the mean values of the global
morphology, v����, for any �.

This result holds also for complex mixtures of grains
where V� is now replaced by proper averaged values. For
mixtures of polyhedra one can replace the quantities V� of a
single grain by averages over an ensemble of n grains,
weighted by the probability pj of their occurrence

�V�� = �
j=1

n

pjV�j for � = 0, . . . ,d , �3�

where pj =� j /� is the ratio of the densities of the Poisson
process. One may even consider correlated grains and re-
place V� by the effective measures

V�
corr�K� = V��K� −

�

2
� dR� dr�V��K � KR�r�����r�� �4�

of the individual grains, where KR�r�� denotes the �by the
vector r�� translated and rotated grain K and

��r�1 − r�2� =
���r�1���r�2��

���r�1�����r�2��
− 1 �5�

is the normalized and centered correlation function of the
grains, i.e., the distribution of distances r�1−r�2 of two grains
located at r�1 and r�2.

In order to evaluate the influence of curvature on the
physical properties of real systems and because of their wide
use as models of composites, we consider also spheroidal
grains. For discrete �voxelated� spheroids one must carefully
consider both discretization errors and projections of the
grains onto the planar axes. A detailed discussion of the deri-
vation of equivalent local measures for spheroidal systems is
given in the Appendix.

The global Minkowski functionals v���� can be measured
directly from any image made up of discrete voxels. For
example, the volume fraction v0 of a phase is trivially ob-
tained by dividing the number of voxels of that phase by the
total number of voxels. The other functionals are obtained by
considering the interface associated with the vertices of each
voxel. Global measures for each configuration are obtained
by configuration counts over all vertices on any voxelated
structure after normalizing by the total number of vertices
�26,30,31�.
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In �26� the algorithm used to calculate v� was validated
against Eq. �1� for a monodisperse grain ensemble. To further
validate the algorithm we measure the global MFs v���� for
an ensemble made up of mixtures of grains. For each of these
mixtures the MFs were computed on a minimum lattice size
of 2003 for a minimum of 50 realizations over the full range
of the volume fraction � in steps of ��=0.02. Figure 1
illustrates the results; for a system made up of a mixture of
cubes �23� and sticks �8	1	1� with p=1 /2 we observe
agreement between the theoretical and computational results.

III. DERIVATION OF LOCAL MORPHOLOGICAL
MEASURES

To date we have used knowledge of the local “grain”
morphology to predict global morphology of a Boolean pro-
cess �26,28�. Here we show that one can also do the inverse;
from a single snapshot of a complex Boolean process one
can derive the equivalent local grain morphology of the pro-
cess defined by �V��. For all Boolean models made up of
compact grains �V3�=1. As one can evaluate the four global
measures v� from a single 3D image, one can use Eq. �1� to
directly solve for �V0�, �V1�, �V2�, and Poisson density �. We
illustrate this first for Boolean samples made up of monodis-
perse grains.

A. Homogeneous Boolean mixtures

We generate realizations of Poisson distributed cubes of
different length ��=1, . . . ,16� for a range of phase fractions
on lattices of 2003 and 4003. From the image we determine
the global measures v� for different values of f and from Eq.
�1� evaluate the equivalent local measures for that image, �im
and V�

im. In Table I we compare �im ,V�
im to the exact values

for two specific systems using the norm of the relative error

E� =
	V�

im − V�	
V�

. �6�

In all cases the densities and the local measures vary little
from the analytic results.

Remarkably, even at high volume fractions where most
grains overlap and resolving the local grain ensemble is dif-
ficult, the predictions of the local measures are still good
�
2% error�.

We further consider a system of identical Poisson distrib-
uted spheres. As described in the Appendix, the exact local
measures of discretized spheres of radius r do not coincide
with their continuum counterparts. Exact values for the local
v� are given in Table II along with their prediction from
single digitized images at different f . As with the systems of
cubes the resultant local measures V�

im are in excellent agree-
ment over all f .

B. Heterogeneous Boolean mixtures

We now generate a very heterogeneous isotropic mixture
of five polyhedra �5-mix�: a system made up of sticks �40
	1	1�, plates �20	20	1�, cubes �8	8	8�, and two
other rectangular prisms �10	5	2� and �16	8	4� in the
ratio 10%:10%:40%:20%:20%. The analytic local measures
derived from Eq. �3� are given in Table III along with esti-
mates V�

im obtained from a single snapshot of the mixture at
L=500 for different f . The error in the local measures is
again very small despite the complexity of the mixture. This
indicates that one can define an equivalent local “grain en-
semble” from a single 3D snapshot of an extremely complex
material.

C. Error in morphological measures

In Tables I–III we note that at high particle densities,
where most particles overlap, the estimation of the local
measures �V�� is less accurate. At higher phase fractions one
may need to consider larger sampling volumes �L� to obtain
accurate predictions. Since we wish to characterize the local
�V�� from a single 3D image, we quantify the standard de-
viation ��L� of the measures V�

im as a function of image size
L and analyze the scaling of the standard deviation; analyti-
cally it has been shown that ��L�
L−3/2 �32�. We plot ��L�
for Boolean models of cubes ��=8� and spheres �r=4� at
three different particle fractions f in Fig. 2.

We note that the standard deviations increase with f and
observe the analytical scaling behavior for all local mea-
sures. For reasonably large images, L�400, about 50 times
larger than the grain size, ��L� is 
1%. At these resolutions
one would therefore expect to accurately define an equiva-
lent grain ensemble. Accurate reconstruction techniques for
complex morphologies have long been sought. Given that
microcomputed tomographic imaging techniques can now
produce images at scales of �5003 voxels one should be able
to define equivalent local grain information from experimen-
tal images.

IV. PROPERTIES OF EQUIVALENT BOOLEAN
STRUCTURES FOR ALL FRACTIONS

Having accurately derived the equivalent grain ensemble
defined by V�

im from a single image at any f one can use this
to reconstruct statistically equivalent complex materials. In
the simplest case one might derive an equivalent rectangular

0.0 0.2 0.4 0.6 0.8 1.0
f

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
v 1,

v 2,
v 3

v1

v2

v3

theoretical prediction

FIG. 1. Minkowski measures over particle fraction for a mixture
of cubes and sticks ��1i=2, �21=8, �22=�23=1, and p1=1 /2�.
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TABLE I. Local morphological measures for systems of Poisson distributed cubes at �=4 �L=200� and
�=8 �L=400�. The first row �labeled exact� gives the analytical values for the local V�: the subsequent rows
give the prediction of V�

im from the measurement of v� and use of Eq. �1� for different �. � in the table is the
analytic Poisson density from Eq. �1� and �im gives the density measured from the images.

�=4

V0 V1 V2

Exact 64 16 4

f
E0

�%�
E1

�%�
E2

�%�
�

�10−3� �im

0.2000 0.090 0.079 0.060 3.529 3.486	10−3

0.5000 0.157 0.159 0.143 10.92 10.83	10−3

0.8000 0.291 0.308 0.342 25.56 25.14	10−3

�=8

V0 V1 V2

Exact 512 64 8

f
E0

�%�
E1

�%�
E2

�%�
�

�10−3� �im

0.1000 0.158 0.132 0.089 0.2076 2.058	10−4

0.2000 0.106 0.110 0.117 0.4340 4.359	10−4

0.3000 0.003 0.008 0.030 0.7031 6.969	10−4

0.4000 0.097 0.094 0.085 0.9917 9.980	10−4

0.5000 0.084 0.093 0.093 1.376 1.354	10−3

0.6000 0.101 0.128 0.117 1.818 1.790	10−3

0.7000 0.001 0.025 0.048 2.311 2.352	10−3

0.8000 0.456 0.413 0.273 3.195 3.143	10−3

0.9000 1.91 1.82 1.47 4.486 4.496	10−3

TABLE II. Local morphological measures of systems of Poisson distributed spheres at r=4 �top� and r
=8 �bottom� on a 2003 lattice. The theoretical values of the single grains in the first lines are for discretized
spheres.

r=4

V0 V1 V2

Exact 251 45 7

f
E0

�%�
E1

�%�
E2

�%�
�

�10−3� �im

0.2000 0.523 0.491 0.397 0.8709 8.893	10−4

0.5000 0.333 0.295 0.160 2.801 2.762	10−3

0.8000 0.683 0.669 0.476 6.594 6.417	10−3

r=8

Exact 2103 193 15

f
E0

�%�
E1

�%�
E2

�%�
�

�10−4� �im

0.2000 0.010 0.574 0.427 0.9584 1.060	10−4

0.5001 1.12 1.15 1.20 3.441 3.295	10−4

0.8000 2.55 1.98 2.47 8.076 7.651	10−4
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prism with sidelengths �1, �2 and �3 that match the observed
V�

im. For example, a Boolean model with a grain defined by a
rectangular prism with ��1=17.047, �2=6.516, and �3
=3.341� is equivalent to the heterogeneous five-mix system
at �=0.50 �V0

im=371.1, V1
im=63.26, and V2

im=8.967�. How-

ever, to generate equivalent Boolean models on a lattice we
must generate mixtures of structures with integral � ji. The
best match of a single equivalent Boolean voxelated “grain”
to the five-mix system ��1=23, �2=4, and �3=4� however
gives a poor match to the V�

im �Table IV�. We therefore obtain
the best two-grain match to the observed V�

im. To do this we
consider the local measures of possible combinations of two
grains with �� �1;50�, �1��2��3. The equivalent two-
Boolean-grain match �BG2� is defined in Table IV. The mor-
phology of the BG2 model closely matches the original five-
mix system according to the Minkowski functionals. Figure
3 depicts realizations of the Boolean original mixture and its
reconstructions for two-particle fractions. As additional mor-
phological measure we calculate the pair volume-volume
correlation function given as convolution of the characteris-
tic function � of the microstructure, with �=1 for all voxels
covered by a particle, and �=0 for all void voxels:

TABLE III. Local morphological measures of the five-mix sys-
tem of 10% sticks �40	1	1�, 10% plates �20	20	1�, 40%
cubes �8	8	8�, 20% each of rectangular prisms of size �10	5
	2� and �16	8	4� on a 5003 lattice. The theoretical values of the
mixture are given in the first line, the others are the predictions
from the simulations taken at different particle fractions f .

V0 V1 V2

Analytic 371.2 63.23̄ 8.966̄

f
E0

�%�
E1

�%�
E2

�%� �im

0.2000 0.089 0.075 0.049 5.731	10−4

0.5000 0.075 0.121 0.213 1.754	10−3

0.8000 0.472 0.450 0.188 4.405	10−3

0.0000 0.0002 0.0004 0.0006
L
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0
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line fit

l=8, p=0.2

l=8, p=0.5

r=4, p=0.2

r=4, p=0.5

l=8, p=0.8 r=4, p=0.8

FIG. 2. Scaling of the standard deviation ��L� of the local mea-
sures V� for Boolean models with cubes of �=8 �left� and spheres
of r=4 �right�. Data points are from right to left for L=150,
200,300,400,600, and L=800. We show the scaling fit with the the-
oretical scaling L−1.5. One obtains a very low standard deviation in
the local measures from images measured at large L. Top: f =0.2,
middle: f =0.5, and bottom: f =0.8. Each data points represents at
least 100 realizations.

TABLE IV. Match of the equivalent Boolean model to the five-
mix system. The norm of the relative errors in the local measures
�Eq. �6�� are given. To accurately match the morphology one must
consider a two-particle system.

Model Mixture E�

BG1 23	4	4 E0=0.86%

Single Boolean E1=5.43%

grain E2=15.2%

BG2 84.2% :17	6	2 E0=0.026%

Two Boolean 15.8% :18	14	5 E1=0.040%

grain E2= .0041%

(b)(a)

(c) (d)

FIG. 3. Original five-mix system of 10% sticks �40	1	1�,
10% plates �20	20	1�, 40% cubes �8	8	8�, 20% each of rect-
angular prisms of size �10	5	2�, and �16	8	4� on a 5003 lat-
tice at �a� 20% and �b� 80% grain fraction and �c� and �d� corre-
sponding two-particle reconstructions.
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S�h� =
1

N
�

hij=h

��r�i���r� j� , �7�

where hij = 	r�i−r� j	 is the distance between a pair of points at
locations ri and rj and the sum runs over all N pairs of points
�voxel� at hij =h. A comparison of the two-point correlation
functions of the original mixture and its reconstruction is
given in Fig. 4.

Having defined an equivalent voxelated Boolean grain en-
semble, the question remains; does this equivalent system
exhibit similar physical properties to the original system? To
investigate this we compare the percolation, transport, and
mechanical properties of the original five-mix and equivalent
BG2 Boolean system.

A. Prediction of percolation thresholds

An important test for any microstructural model used to
describe transport and mechanical properties of random ma-
terials is the ability to estimate the percolation threshold pc
as a function of volume fraction. Rough bounds on the per-
colation threshold of polydisperse systems have been derived
�33� based on excluded volume arguments, where 0.084

vc
0.295 for continuum percolation in 3D. Accurate es-
timation of the percolation thresholds for arbitrary complex
materials is primarily based on numerical simulations
coupled with the knowledge of the size, shape, and orienta-
tion of the grains in the original ensemble �34�. However, for
most real random materials �e.g., cements, sedimentary
rocks, etc.� one has no knowledge of the full distribution of
grain sizes and shapes. Here we show that the equivalent
grain model derived from the single 3D snapshot allows us
to obtain a good estimate of pc of the original model.

We vary the density of the original five-mix system de-
fined in Table III and the equivalent BG2 ensemble given in
Table IV and numerically determine the percolation thresh-
olds for both phases of the two models. For the determina-
tion of the percolation threshold pc of either phase we use
finite-size scaling techniques �35�, measuring the size depen-
dent pc�L� for various L and using the ansatz: pc= pc�L�
+aL−b. The number of realizations was dependent on the
sample volume; in general the number of realizations was
chosen to obtain pc�L� to within a standard error of 10−4. As

an example, for a large lattice �L=400�, 30 realizations were
required, compared to 3	106 realizations for L=10. Results
are summarized in Table V.

The error in the predictions of pc for the equivalent sto-
chastic model is 
0.3% for the particulate phase and 
1%
for the inverse phase. This ability to closely predict pc of
either phase from one 3D image at any phase fraction under-
lines the power of a morphological characterization and re-
construction based on the integral geometric measures for
Boolean models.

B. Prediction of transport properties

The ability to accurately reconstruct the morphology of
complex two-phase materials across the full density range of
grains also allows us to generate the full property curves for
the material for all phase fractions. We illustrate this for the
transport and mechanical properties of the complex five-mix
system and its Boolean equivalent.

The conductivity calculation is based on a solution of the
Laplace equation with charge conservation boundary condi-
tions. The three-dimensional voxel microstructure is first
converted into a network of resistors by connecting each pair
of adjacent pixels by a resistor. The conductivity of the local
bonds are assigned via the field average method given in
�16�. A potential gradient is then applied diagonally across
the sample and the system is relaxed using a conjugate gra-
dient technique to evaluate the field. We consider grids sizes
of 1503 and compare results at the same scale �16,17,36�.

We compare the effective conductivity �e of the five-mix
system with the equivalent BG2 model at both infinite con-
trast �1 :�2=0:1 and 1:0 and at finite contrast �1 :�2=10:1
and 1:10, where �1 is the conductance of the grain phase. In
Fig. 5 we summarize the results. The match of the equivalent

0 5 10 15 20 25
h [voxel]

0

0.05

0.1

0.15

0.2

0.25

S(
h)

0 5 10 15 20 25
h [voxel]

0.65

0.7

0.75

0.8

S(
h)

(b)(a)

FIG. 4. �Color online� Comparison of the correlation functions of the original five-grain mixture �shown as spheres� of 10% sticks
�40	1	1�, 10% plates �20	20	1�, 40% cubes �8	8	8�, 20% each of rectangular prisms of size �10	5	2� and �16	8	4� to the
two-grain reconstruction �BG2, shown as cubes� given in Table IV for particle fractions of �a� 20% and �b� 80%.

TABLE V. Comparison of the percolation thresholds for the
complex five-mix model and its matching Boolean model defined in
Table IV.

Phase pc
original pc

stochastic

Particulate 0.143 0.146

Inverse 0.112 0.100
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Boolean model to the original five-mix system is excellent in
all cases. For comparison, conventional two-point Hashin-
Shtrickman bounds �37� are shown in the figure. Even at
infinite contrast, where accurate matches are notoriously dif-
ficult, the result is excellent. It is remarkable that from the
equivalent BG2 reconstruction one can generate the conduc-
tance curve across all phase fractions from a single image of
the original heterogeneous five-mix system. Clearly the mor-
phology of the equivalent Boolean model captures the impor-
tant structural aspects affecting the conductivity of the two-
phase medium in the original image.

Calculation of the full conductivity curve via reconstruc-
tion and numerical simulation over a range of phase fractions
requires significant computational resources. A much simpler
estimation of the conductivity can be derived from the solu-

tion for the microscopic conductivity �m of a Bethe lattice
�38–40� with the same pc as the complex material. The value
of pc for a Bethe lattice of coordination number z is pc
=1 / �z−1� and the exact solution of the microscopic electri-
cal conductance �m on the Bethe lattice is given in �41� as
well as a set of explicit formulas for binary mixtures ��1
=1 and �2=0� used here �i� p
 pc, �ii� p close to 1, �iii� p
close to pc, and �iv� conductivity at high coordination num-
ber z

�i = 0, �8�

�ii 

z�z − 2�

z − 1
�1�1 − c�1 + �1 + pc��

n=2

�
pc

n−1

1 + pc
2n−1
� ,

�9�

�iii 
 0.761
2z

z − 2
�1� p − pc

pc
�2

, �10�

�iv 
 − z�1�
n=0

4

Gn, where

G0 = − �p,

G1 = 0,

G2 =
pc

2

p2�pc ,

G3 =
pc

3

p5�p
2c�p�2p − 1� + 3�pc� ,

G4 =
pc

4

p6�p
2c�3c2�p − 2pc + �p�1 − 3p + 3p2�

+ 5�p
2c

2p − 1

p
+ 15�p

3c2 1

p2� , �11�

and c=1− p, �p= p− pc. The solution was obtained as an in-
terpolation between the different approximations

� =�
0 p 
 pc

p

pc
�iii + �1 −

p

pc
��iv 1 


p

pc

 1.1

�1 − p2��iv + p2�ii
p

pc
� 1.1. � �12�

From the average conductivity of the network � the micro-
scopic conductance �m was calculated as

�m =
z − 1

z2 − 2z
� . �13�

For site based disorder one equates the microscopic conduc-
tance to the macroscopic effective prediction of the material
�eff via
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FIG. 5. �Color online� Effective conductivity over fraction f for
the original five-particle mixture given in Table III compared to its
equivalent two-grain Boolean model defined in Table IV. The
equivalent model defined from the single 3D image at f =50%
matches the full f-conductance curve for both phases. Top: conduc-
tivity grain:pore contrasts 1:0 and 0:1. Bottom: conductivity con-
trasts 1:0.1 and 0.1:1. �0 is the larger conductivity of the constituent
materials
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�eff = �mp , �14�

where only a fraction 
p is conductive on the interface of
the domain. This assumes that the total conductive fraction is
comparable to the effective conductive fraction. The match
of this empirical fit to the data shown in the upper Fig. 5 is
excellent.

C. Prediction of mechanical properties

We use a finite element method �FEM� to estimate the
elastic properties of the model system. FEM uses a varia-
tional formulation of the linear elastic equations and finds the
solution by minimizing the elastic energy via a fast conjugate
gradient method. Each voxel is taken to be a trilinear finite
element. A homogeneous strain is applied, with the average
stress or the average elastic energy giving the effective elas-
tic modulus. Further details of the theory and the programs
can be found elsewhere �23,42,43�. In Fig. 6 we show the
simulation results for the original five-mix and the equivalent
BG2 match. The agreement is excellent for both 1:0 and 0:1

contrasts �44�. Again the morphology of the equivalent Bool-
ean model captures the structural aspects which effect the
mechanical properties of the two-phase material.

V. EQUIVALENT BOOLEAN MODEL OF A SANDSTONE

Having illustrated the ability of the method to reconstruct
complicated Boolean models, we now attempt to accurately
reconstruct experimental 3D microtomographic images of
sandstone cores. We note that the microstructure of a sand-
stone is a result of a complex physical process which can
include consolidation, compaction and cementation of an
original grain packing. More complex and realistic models of
sandstones have been derived �45,46�. These methods re-
quire however, the simulation of the generating process in-
cluding primary grain sedimentation followed by a diage-
netic process such as compaction and cementation. This
process is both computationally expensive and requires sev-
eral fitting parameters. Reconstructing the microstructure of
sandstones by a simplistic Boolean model may therefore not
lead to the excellent match observed in the previous section.
However, a Boolean sphere pack has been proposed as a
model which gives a reasonable representation of consoli-
dated sandstone and yields good qualitative information on
structure or property relationships. Moreover, other work
�21,22,47,48� has shown that the Boolean sphere model
gives a very good match to Fontainebleau sandstone data.
Here we consider a number of sandstone samples; a suite of
homogeneous Fontainebleau sandstone at different porosities
and a more heterogeneous cross-bedded sandstone. We com-
pare the reconstructions to three different Boolean models; a
sphere pack with matching two-point information, the
equivalent Boolean ensemble defined by local morphological
measures, and a model based on the probability density of
covering spheres �48�.

A. Experimental data sets

The Fontainebleau images were obtained from 4.52 mm
diameter cylindrical core samples extracted from four blocks
with bulk porosity �=7.5%, 13%, 15%, 22%. A 2.91 mm
length of each core was imaged �49–51�. The reconstructed
images have a resolution of 5.7 �m resulting in 795	795
	512 imaged sections. From the original cylindrical plug we
extract a 4803 cubic subset for analysis corresponding to a
volume of 20.5 mm3. The cross-bedded sandstone image is
of a cylindrical plug, with an original image size of 512
	512	666 at 10 �m resolution. We select a central 300
	300	600 sample for further analysis. Both images exhib-
ited strong bimodal distributions of x-ray densities; the im-
ages were thresholded using a kriging-based thresholding
method �52� to give a binary pore-solid image �53,54�.

Analysis of each full image gives us a single value for the
porosity and therefore little data to compare to stochastic
model predictions. However, both samples exhibit reason-
ably strong heterogeneity in the pore volume fraction. We
show in Fig. 7 traces of the porosity for the Fontainebleau
sandstone samples. The Fontainebleau data show little direc-
tional dependence.
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FIG. 6. Bulk and shear modulus over solid grain fraction f for
the heterogeneous five-particle mixture defined in Table III com-
pared to the BG2 model with equivalent local measures V�. The
elasticity contrasts are 1:0 and 0:1 for the Young modulus. The
Poisson’s ratio of the solid phase is set to �s=0.25 in both cases.
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scale. On the left side we compare the prediction
of the IOSC and OSC systems to the ROS2 model
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FIG. 7. Variation in the porosity distribution
along the x, y, and z axes for the Fontainebleau
sandstone samples of size 2.7	2.7	2.7 mm3.
The Fontainebleau sample exhibits negligible di-
rectional heterogeneity. Mean of porosity and
variance along the z-direction are for the Fon-
tainebleau samples: �=8.29� .54% for fb7.5, �
=12.9� .95% for fb13, and �=17.7�1.0% for
fb15.
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Due to the natural heterogeneity exhibited by sedimentary
rock and by appropriately choosing different window sizes
on the image we are able to measure morphological param-
eters for the sandstone plugs across a range of pore volume
fractions �. This enables us to more comprehensively com-
pare the experimental images to equivalent Boolean models.
For the Fontainebleau samples we consider cubic blocks of
4803, 2403, and 1203 from the full sample volume. This pro-
vided in all cases a good spread of porosities across different
sampling volumes. The measured morphological properties
v���� are summarized in Fig. 8. With decreasing sampling
volume the variability of the measures increases slightly, but
the values are consistent with the data for the larger volumes.

B. Morphological reconstruction

In this section we generate the equivalent Boolean recon-
structions for the sandstone images based on the two-point
correlation function �IOSC model�. The correlation function
for the phase external to the spheres of radius r0 in the IOSC
model is p�2��r�= p���r�� for r
2r0 and p�2��r�=�2 for r
�2r0 where ��r�=1+ 3r

4r0
− r3

16r0
3 and s /v=−3� ln � /r0. The

matching sphere radius is given in Table VII.
The equivalent local grain measures V� are derived via

Eq. �1� using the v� obtained from the four full images of the
sandstone samples. Results are summarized in Table VI. We
first attempt to fit a single equivalent Boolean grain �IOSB�
to this data. The best matching grain model is similar to that
obtained by matching to the two-point correlation function.
However, as was observed previously for the heterogeneous
five-mix system, a single Boolean sphere does not give a
good match to the data �Table VIII�. By attempting to fit a
single equivalent spheroidal grain �ROS1 model� to the local
V� we see only a slight improvement in the prediction. We
therefore define the best two-particle match for Boolean
spheroids �ROS2 model�. Values are given in Table VII. The
match to the local V� of the experimental image is now ex-
cellent �Table VIII�.It is interesting to note that the unique
information obtained from the integral geometric measures
leads to a quite complex equivalent stochastic model for
Fontainebleau sandstone; the ROS2 model equivalent �Table
VII� is composed of two very different particle sizes.

TABLE VI. Local Minkowksi measures for the four Fontaineb-
leau sandstone samples �denoted fbx ·y, where x ·y is the porosity in
percent of the original macroscopic sample�

Sample
V0

�10−3 mm3�
V1

�10−3 mm2�
V2

�mm�

fb7.5 0.4019 3.994 0.0473

fb13 0.3619 3.752 0.0466

fb15 0.4506 4.520 0.0523

fb22 0.3361 3.965 0.0509

TABLE VII. Parameters for the Boolean models of the Fontainebleau sandstones. The first IOS model
�IOSC� was matched using the void-void correlation function, the other models are matched using the
Boolean reconstruction. All spheroids are randomly oriented �ROS�.

Model Sample pj

a
��m�

b
��m�

c
��m�

IOSC fb7.5 1 71.3 71.3 71.3

fb13 1 65.8 65.8 65.8

fb15 1 69.1 69.1 69.1

fb22 1 59.0 59.0 59.0

IOSB fb7.5 1 45.8 45.8 45.8

fb13 1 44.6 44.6 44.6

fb15 1 47.4 47.4 47.4

fb22 1 43.2 43.2 43.2

ROS�1� fb7.5 1 48.3 44.9 44.3

fb13 1 44.9 44.3 43.7

fb15 1 51.1 49.4 42.6

fb22 1 43.2 43.2 43.2

ROS�2� fb7.5 0.848 12.5 11.9 8.52

0.152 83.5 80.7 77.2

fb13 0.863 15.9 11.4 9.09

0.137 84.6 76.7 76.1

fb15 0.794 15.3 12.5 8.52

0.206 84.6 80.1 76.7

fb22 0.751 16.5 10.8 8.52

0.249 74.4 67.0 63.6
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Recently Thovert et al. �48� introduced a reconstruction
technique based on a Boolean sphere pack for sandstone
where the sphere size distribution is defined by the probabil-
ity density of the covering radius for spheres �OSC model�.

We employ this method to generate a third equivalent Bool-
ean model for the four sandstone images. Details of the
analysis and the resultant distributions of covering radius are
given in Appendix, Sec. 2.

In Fig. 8 we compare the morphological measures of the
IOSC model, the ROS2 model and the OSC model to mea-
sures of the original sandstone images. The fit of the ROS2

model is superior. We now compare the predictions of these
three Boolean ensembles for structural, transport, and me-
chanical properties of the original sandstone images.

C. Structural, transport, and mechanical properties

The original sandstone microstructure and the matching
IOSC, ROS2, and OSC models are illustrated in Fig. 9 for
one subset of the Fontainebleau sandstone suite and for one
subset of the crossbedded sandstone sample. Visual inspec-
tion suggests that the ROS2 and OSC models more closely
resemble the microtomographic image than the IOSC model.
In Fig. 10 we illustrate the porosity distributions of the
IOSC, ROS2 and OSC reconstructions �compare to Fig. 7�. It
is difficult to distinguish which reconstruction gives the bet-
ter match for the Fontainebleau data sets, but the ROS2 and
OSC models better reflect the structure and heterogeneity of
the crossbedded sample. In particular, the IOSC recon-

(a) (b)

(c) (d)

FIG. 9. Visual comparisons of Fontainebleau sandstone recon-
structions 2403, �=18.2% to the original data sets. �a� Original
sandstone image. �b� reconstruction based on the IOSC model. �c�
reconstruction based on the ROS2 model. �d� reconstruction based
on the OSC model.

TABLE VIII. Errors in the morphological match of the Boolean
models to the Fontainebleau sandstone samples.

Model Sample ��V0� /V0 ��V1� /V1 ��V2� /V2

IOSC fb7.5 3.4 3.6 2.5

fb13 2.4 2.6 1.8

fb15 3.1 3.4 2.5

fb22 1.6 1.8 1.3

IOSB fb7.5 5.3	10−3 0.71 0.022

fb13 0.016 0.66 6.8	10−3

fb15 4.1	10−3 0.058 0.84

fb22 2.5	10−3 0.44 0.67

ROS�1� fb7.5 8.1	10−5 0.64 0.91

fb13 1.1	10−3 0.62 0.83

fb15 5.0	10−4 0.57 0.80

fb22 2.5	10−3 0.44 0.67

ROS�2� fb7.5 1.5	10−7 7.5	10−6 1.5	10−4

fb13 9.1	10−8 5.4	10−7 3.0	10−5

fb15 1.8	10−7 2.7	10−6 8.9	10−5

fb22 2.1	10−7 2.0	10−6 1.6	10−5

OSC fb7.5 7.4 5.2 2.4

fb13 12 8.6 4.1

fb15 5.3 3.9 2.0

fb22 3.2 2.4 1.4
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FIG. 10. Variation in the porosity distribution along the z axis of
the Boolean reconstructions to the Fontainebleau sandstone. Sample
size is the same as in Fig. 7.
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structed image clearly does not capture the inherent hetero-
geneity of the original rock image.

D. Transport and mechanical properties of reconstructions

The morphology of the sandstone determines its macro-
scopic physical properties. We now compare the mechanical
and transport properties of the original sandstone data set to
the model Boolean reconstructions.

In the conductivity simulations we apply the potential gra-
dient across the x-, y-, and z-axes. As the system is no longer
periodic, we consider open boundary conditions on the four
faces parallel to the direction of the gradient. We consider an
infinite conductivity contrast: grain : pore=0:1 mimicking a
measurement of the electrical conductivity of a fluid satu-
rated sample. The conductivity is calculated on images at
1203. The conductivity of the pore space measured on cells at
this scale are in good agreement with simulations on larger
grids �55�, give a large ensemble of samples �64 per core�,
and provide a good spread of porosities from each core. This
allows us to obtain the conductance curve across a range of
porosities from each image �Figs. 11�.

The predictions of the model reconstructions are also
shown in Figs. 11. All reconstructions do quite well. The
OSC reconstruction gives a poor match to the data for the
low porosity sample and the IOSC model is poorest for the
high porosity sample.

When calculating the elastic properties via FEM, all im-
ages are assumed to have periodic boundary conditions. We
use the elastic properties of quartz with bulk modulus K
=37 GPa and shear modulus G=44 GPa for the solid phase
and K=G=0 for the pore space. As with the conductivity
simulation, the data exhibit little variability at a cell size of
1203 and one can obtain an elastic modulus-porosity curve
from each image �43�. These are shown in Figs. 12 and 13.
The results for the elastic properties of the reconstructed
morphologies are again in good agreement with data derived
directly from the images. For all samples the OSC model
gives the worst predictions. The IOSC model matches best
for the high porosity Fontainebleau samples, and the ROS2

model for the low porosity samples. We have noted for the
high porosity samples due to the strongly bimodal equivalent
grain ensemble in the ROS2 model that many of the small
particles lie “suspended” in the pore space. This unrealistic
morphology for sedimentary rock �a consequence of using a
Boolean model to model a non-Boolean process� leads to the
observed under prediction of the elastic modulus for the
ROS2 model at higher porosities. Methods to condition the
matching Boolean ensemble to better mimic real structure
are discussed further in the summary section.

VI. CONCLUSIONS

The goal of much research in computational materials sci-
ence is to quantify necessary morphological information and
then to develop stochastic models which both accurately re-
flect the material morphology and allow one to estimate mac-
roscopic properties. We have shown that for the Boolean
model of random composite media one can define a set of

measures from a single image at any phase fraction � which
allows one to accurately reconstruct the medium for all other
phase fractions. The accuracy of the reconstruction is illus-
trated by accurately predicting pc for the reconstructed data
sets and the ability to predict property curves for both con-
ductive and linear elastic properties across all phase frac-
tions.
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FIG. 11. Comparison of the prediction for conductance of the
three matching Boolean models to the Fontainebleau sandstone
data. �a� fb7.5, �b� fb13, and �c� fb15. The overlapping sphere
model reconstruction �OSC� based on covering radius gives a poor
match to the data for the low porosity sample and the identical
overlapping sphere model based on reconstruction through the cor-
relation function �IOSC� is poorest for the high porosity sample.
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We have illustrated the method for a experimental sand-
stone image. We show that, in general, the Boolean recon-
struction based on integral geometric measures gives a better
match to both the morphology and mechanical and transport
properties than the commonly used IOSC and the recently
developed OSC model. Moreover, unlike the IOSC and OSC
models, the current method is not limited to spherical inclu-
sions but can be used to generate more complex inclusion
shapes. A development that will further highlight the utility
of the proposed technique is based on conditioning the

equivalent ensemble to better mimic the local morphology of
the medium. This could be done by conditioning to local
curvature measures or chord-length distribution measure-
ments which will limit the choice of grain “shape” to use in
the equivalent Boolean ensemble. In oil recovery from petro-
leum reservoir rocks, an area of particular interest to the
authors, recovery depends crucially on the mean curvature of
the surfaces where immiscible phases meet at a contact
angle. Conditioning an equivalent Boolean ensemble to ex-
hibit the same distribution of local mean curvature should
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FIG. 12. Comparison of the prediction of the bulk modulus of
the matching Boolean models to the water saturated Fontainebleau
sandstone data. �a� fb7.5, �b� fb13, and �c� fb15.
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FIG. 13. Comparison of the prediction of the shear modulus of
the matching Boolean models to the water saturated Fontainebleau
sandstone data. �a� fb7.5, �b� fb13, and �c� fb15.
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lead to excellent prediction of multiphase flow properties on
reconstructed images.

The current work is based on deriving equivalent local
measures from an image for Boolean grain models �Eq. �1��.
Extension of the methodology to more general systems;
hard-sphere mixtures, soft sphere models, and models based
on Gaussian random fields is now being considered. The
further development will enable one to develop accurate re-
constructed images for a wide range of complex materials.

In further work we are considering a wider range of com-
plex materials including ceramics, composite materials, and
fibrous media.
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APPENDIX: CALCULATION OF EQUIVALENT
BOOLEAN MODELS

This appendix details the derivation of equivalent Bool-
ean models based on Eq. �3�. Explained are subtle points
important for calculating the local measures of a grain on the
lattice. This is done in two steps, first for lattice oriented
polyhedras and then for arbitrarily oriented spheroids.

1. Local measures of oriented prisms

For a random mixture of solid three-dimensional oriented
rectangular prisms of sidelengths � j1, � j2, and � j3 all
n-dimensional boundaries of the grains coincide with the lat-
tice. As a result the projections of the grain onto the axes and
planes of the �lattice� coordinate system in any of the 6 dis-
tinct orientations reflect the intrinsic morphological measures
of the grain. Defining pj as the probability of the occurrence
of a grain by the ratio of the Poisson processes pj =� j /� of
the grains Eq. �3� becomes

�V0� = �
j=1

n

pj� j1� j2� j3,

�V1� =
1

3�
j=1

n

pj�� j1� j2 + � j1� j3 + � j2� j3� ,

�V2� =
1

3�
j=1

n

pj�� j1 + � j2 + � j3� ,

�V3� = 1. �A1�

For a single rectangular oriented prism of sidelength �i

this reads �V0�=�1�2�3, �V1�= 1
3 ��1�2+�1�3+�2�3�, and

�V2�= 1
3 ��1+�2+�3�, leading to a cubic equation in �:

�3 − 3�V2� � �2 + 3�V1�� − �V0� = 0. �A2�

In normal form and with x=� and further r=−3�V2�, s
=3�V1�, and t=−�V0� this becomes �56�

x3 + rx2 + sx + t = 0, �A3�

which can be written in reduced form �56�, using the substi-
tution y=x+r /3, p= �3s−r2� /3, and q=2r3 /27−rs /3+ t:

y3 + py + q = 0. �A4�

Depending on the sign of the discriminant D the equation has
one or three solutions. Here we are only interested in solu-
tions for D
0, leading to three real solutions and the con-
dition:
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FIG. 14. Illustration of the influence of rotation on the average
of the 1D lattice projections of an ellipse with aspect ratio 10:1. �a�
Projection length V1 over rotation angle for an ellipse with aspect
ratio of 10:1. a, b, and 1

2 �a+b� are given as base cases of the
continuum measures. �b� Projection length over rotation angle for
ellipses with varying aspect ratios.
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D = � p

3
�3

+ �q

2
�2


 0. �A5�

For D=0 two or three sides of the prism have the same
length. The reduced equation is solved using, i.e., the Carda-
nian formulas �56�.

2. Local measures of spheroids

Two complications arise in the calculation of the intrinsic
measures of the spheroids as considered in this paper. The
first is to generalize from lattice oriented grains, which gen-
erate an anisotropic structure, to uniform random oriented
grains constituting an isotropic structure. The second is the
well-known problem of representing curved grains on a cu-
bic lattice.

We start with a system of aligned spheroids. For a lattice
oriented spheroid of half-axes a ,b ,c the projections of the
spheroid into lower dimensional space onto the x-y, y-z, and
x-z planes are ellipses, and onto the x ,y ,z—axes are the axes
of the spheroid �one-dimensional �1D��, thus giving for the
�apparent� local measures in the continuum:

�V0� =
4

3
�abc

�V1� =
�

3
�ab + bc + ac�

�V2� =
2

3
�a + b + c�

�V3� = 1. �A6�

This again leads to a cubic equation which reduces to normal
form using x=a ,b ,c and further r=− 3

2 �V2�, s= 3
� �V1�, and t

=− 3
4� �V0�. For D=0 ellipsoids or spheres result.
For spheroids not aligned to the lattice coordinate system,

the matter becomes more complex. This is illustrated in the
following for the two-dimensional case. Taking the �V1�
measure, the projections of an ellipse onto the axes have
different length depending on the rotation angle of the ellipse
to the x axis. To derive the correct �V1�, an integration over
the rotation angle is necessary. As can be seen in Fig. 14�a�,
V1=a+b of the aligned system is a lower bound for V1��� of
a randomly oriented ellipse. Further the upper bound is given
by the length of the longer ellipse axis �V1=2a�. The differ-
ence between V1 for an individual ellipse aligned to the co-
ordinate system as compared to a randomly oriented one is
quite substantial for aspect ratios bigger than 2:1 and be-
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FIG. 15. Probability density of the discretized spheres used for the reconstruction of the sandstone samples �the radius distribution is not
evenly spaced�. �a� fb7.5, �b� fb13, and �c� fb15.
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comes maximal for an ellipse collapsing into a single line
�b→0�, in which case V1��=0�=a and V1�= � �

4 �=�2a. Then
V1��� is given as

V1��� = a�cos � + sin �� , �A7�

and it follows

�V1� =
a

�
�

0

�

�cos � + sin ��d� , �A8�

where all terms are interpreted as areas, giving �V1�= �4
−2�2�a, as compared to �V1�=a for the oriented case, a rela-
tive difference of about 17%.

In three dimensions only integral equations can be given
for the surface of a general spheroid �a�b�c� and thus for
�V1�. Further the image is given at a resolution which does
not allow us to use the continuum solution and discretization
errors have to be dealt with. We solved this by generating a
large lookup table containing all combinations of a ,b ,c with
a�b�c and a ,b ,c� �1.5;20�, �a=�b=�c=0.1. We inte-
grated numerical over the V� at an angle resolution of �

18 by
generating discrete spheroids and taking the averages. The
table can then be searched to find the closest one-particle
solution to a given set of intrinsic volumes of a grain.
N-particle solutions can be found equally well by changing
the weights in Eq. �3� appropriately.

3. Derivation of a Boolean model based
on morphological opening

An alternative method of deriving a Boolean model with
an imaged based approach was published by Thovert et al.
�48�. It is based on a morphological opening of the structure
with a ball B� of radius � as the structuring element. An
opening can be written as a combination of a Minkowski
addition or dilation of the domain A �solid phase in this
case�, in Thovert’s notation �48�

A � B� = �r�A,s�B�
�r + s� , �A9�

and a Minkowski subtraction or erosion of the domain A

A � B� = �Ac
� B��c, �A10�

giving the opening AB�
as

AB�
= A� = �Ac

� B�� � B�. �A11�

The procedure for a ball as structuring element is efficiently
implemented using a Euclidean distance transformation �the

square of the Euclidean distance map�. We implemented the
fast algorithm of Saito �57�, which is very fast. By iterating
the opening with successively larger radii �by thresholding
and recalculating the distance map in every iteration� one can
define for each point in A the radius rc of the largest ball
contained in A that covers r. In the language of �48�

rc�r� = sup��:r � A�� , �A12�

A� = �r � A:rc�r� � �� . �A13�

The use of the Euclidean distance transform means that the
radii of the smallest sphere touching the boundary at a given
point in the structure is found rather than the largest in-
scribed sphere. To stay consistent, the discrete spheres used
in the Boolean model are therefore defined as all voxels
within a distance r of the center of the voxel, not including
the boundary.

The probability density g�r�dr of points with radii r
rc

r+dr can then be used to generate a Boolean sphere
model. For this paper the radii distribution was resolved with
a resolution of �r�0.1 voxel, which for a maximal radius of
49.6 voxels gives about 400 different radii. The morphologi-
cal openings were carried out on the full 4803 Fontainebleau
data sets and the resulting radii distributions are shown in
Fig. 15.

Alternatively one may use the distribution function G
of the covering radius G�r�dr=�0

rg�s�ds, which is shown in
Fig. 16.
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