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We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the
linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas.
Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the
comparison with experimental data and former approaches, the spectrum of density fluctuations and address the
regime of finite Knudsen numbers and finite frequencies hydrodynamics.
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I. INTRODUCTION

The Boltzmann equation �BE� lies at the basis of classical
and quantum kinetic theory of gases. It provides a detailed
picture of the time evolution of a dilute gas toward a thermal
equilibrium state, which constitutes the essence of the H
theorem. This celebrated result gave rise, historically, to the
first clear insurgence of irreversibility into deterministic
equations of motion. The attempt to generalize the BE to
dense gases led, successively and in the special case of a
fluid of hard spheres, to the development of the Enskog
theory �1�, featuring the transfer of momentum and energy
between two particles at collision—called collisional
transfer—as well as the presence of multiple-particle colli-
sions �2�.

Meanwhile, the nonlinear integrodifferential nature of the
BE prevented, so far, an exact solution for the case of dilute
gases. Perturbative methods and kinetic toy models have
been devised such to get partial answers. The Chapman-
Enskog �CE� expansion was, in particular, the first important
success in this direction �1�, as it allowed to consistently
derive hydrodynamics laws from their microscopic counter-
part and to obtain rigorous expressions for transport coeffi-
cients. The CE method is based upon a perturbative expan-
sion of the distribution function in terms of the Knudsen
number �, defined as the ratio between the mean-free path
and a macroscopic hydrodynamic length. This is supposed to
be a “smallness” parameter, in that the series converges only
for �→0. By increasing the order of the expansion one
should not expect to capture larger extents of the “true” so-
lution of the BE, since, as it was pointed out by Bobylev �3�,
one has to face divergencies of the acoustic modes in the
dispersion relation, which are inherently related to the pro-
cedure of truncation.

In order to tackle this unphysical feature of post-Navier-
Stokes hydrodynamics, some regularization methods were
borrowed from functional analysis in order to restore the H
theorem �4�. The route to be followed in this contribution
attempts a nonperturbative approach to solve the BE. It is
based on the notion of Invariant Manifold �5�. Through this
method, one assumes a priori a separation of the hydrody-
namic time scale and the kinetic time scale and postulates the

existence of a stable invariant manifold �IM� in the space of
distribution functions, which is parameterized with the val-
ues of the hydrodynamic fields: particle number, velocity,
and temperature. In this paper we address the study of the
spectrum of hydrodynamic excitations in a Maxwell gas, em-
ploying the latter nonperturbative approach, which will allow
to find exact transport coefficients at arbitrary length scales.

The paper is organized as follows: in Sec. II we review
the eigenvalue problem associated with the linearized Boltz-
mann equation and recall that hydrodynamic modes at finite
wave vector can be obtained as eigenvalues of a perturbed
linear operator. Next, in Sec. III, we motivate and derive �cf.
Sec. III A� the invariance equations �details collected in Ap-
pendix A� and consider the case of Maxwell molecules �Sec.
III B�, whose associated eigenvalue problem for the unper-
turbed operator is analytically solvable �Appendix B�. Postu-
lating the existence of an IM, we solve the eigenvalue prob-
lem for arbitrary wave vectors. As part of the results Sec. IV
we present hydrodynamic modes �Sec. IV A�, find general-
ized transport coefficients �Sec. IV B� which recover the
Green-Kubo formulas �Sec. IV C�. Finally, in Sec. IV D, we
determine the spectrum of density fluctuations, compare with
experiments, and formulate a hypothesis about the features
of finite wavelengths hydrodynamics. Conclusions are drawn
in Sec. V.

II. EIGENVALUE PROBLEMS FOR THE BOLTZMANN
EQUATION AND HYDRODYNAMICS

The dynamics of the fluctuations of hydrodynamic fields
�particle number, momentum, and temperature� as induced
by the properties of the underlying microscopic or kinetic
equation, is an important issue in statistical mechanics which
dates back to the seminal work by Onsager �6�. In this sec-
tion we focus on the BE and show in a general setting how it
features equilibration through some generalized frequencies
�inverse of characteristic collision times�. The way how these
generalized frequencies give rise and affect the decay rates
of some collective fluctuations �hydrodynamic modes� of the
macroscopic fields is still an issue which lacks a rigorous
foundation. The reason is that the hydrodynamic equations,
as derived from the BE, are not closed and hence, some
�semiphenomenological� approximations for higher order
moments need to be included. In particular, the celebrated
Navier-Stokes-Fourier �NSF� approximation was the first*mk@mat.ethz.ch; http://www.mat.ethz.ch
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historically relevant attempt in this direction. We start by
reviewing some results formerly obtained by Resibois �7�.
He shed some preliminary light upon the connection between
the generalized frequencies and the hydrodynamic modes by
solving, via perturbation theory, the eigenvalue problems as-
sociated independently to the BE and to the NSF equations
of hydrodynamics.

A. Boltzmann equation

The BE for the velocity distribution function f reads as

�t f = − v · �f + Q�f , f� , �1�

where Q denotes a nonlinear integral collision operator, and
v velocity. It is convenient to introduce the magnitude of the
thermal velocity, vT=�2kBT0 /m with mass m of a particle,
Boltzmann constant kB, the dimensionless peculiar velocity
c= �v−u0� /vT and the equilibrium values of macroscopic
fields: equilibrium particle number n0, equilibrium mean ve-
locity u0=0, and equilibrium temperature T0. The global
Maxwellian is defined as: fGM= �n0 /vT

3�f0�c� where f0�c�
=�−3/2e−c2

denotes a Gaussian in velocity space �c��c��. We
consider only small disturbances from the global equilib-
rium. After passing over to Fourier space, with a wave vector
denoted as k, we decompose the distribution function �see
also Table I� as

f�k,c,t� = fLM + �f , �2�

where fLM denotes the linearized local Maxwellian to be
made precise in Sec. III, and �f the deviation from local
equilibrium. An alternative notation is introduced via �f
= fGM��. Considering a comoving reference frame and lin-
earizing the collision operator around global equilibrium,
one obtains from Eq. �1�

1

vT
�t f = − ik · cf + L̂�f , L̂ =

1

vT
L , �3�

where we made use of the fact that L̂fLM=0. The linearized
Boltzmann collision operator, L, assumes the form

L�f =� � d�dc1���,g�gfGM�c1�����k,c� + ���k,c1�

− ���k,c�� − ���k,c1��� . �4�

Here, ��� ,g� is the scattering cross section, g��v−v1�, and
v, v1 are the velocities of the two particles entering the bi-
nary collision. In the remainder of this section, we will focus

our attention upon the operator 	� L̂− ik ·c, whose spectral
properties determine the time evolution of the distribution
function. This is readily seen by considering the Laplace
time transform of Eq. �3�—to be further discussed in Sec.
IV D—and by inspection of the inverse transform, which
reads as

f�k,c,t� =
1

2�i
	 ezt

�z − 	�
dzf�k,c,0� , �5�

where the closed path encircles all the poles of the integrand
function. Through the spectral theorem, we regard these
poles as coinciding with the spectrum of the operator 	. The
investigation of the spectral properties of such an operator is,
in fact, a longstanding issue in kinetic theory �8�. In order to
study the eigenvalue problem associated with 	, we intro-
duce the Fourier time transform of the distribution function
f�k ,c ,
�=
−�

� e−
t f�k ,c , t�dt, where 
 defines a complex-
valued quantity. Then, Eq. �3� reduces to

	f = 
f , �6�

which constitutes the starting point of our analysis.
In the present paper, distribution functions f = fGM� will

be regarded as vectors in a Hilbert space, whose scalar prod-
uct is defined by

�f1�f2� �
1

n0
� �fGM�−1f1�c�f2�c�d3v . �7�

The spectrum of 	 is analytic in k=0 and it can be shown to
contain a D+2-fold degeneracy at the origin, corresponding
to local conserved quantities. In order to solve the eigenvalue
problem associated with Eq. �6�, it is worth first to attempt
the analysis of the eigenvalue problem in the long-
wavelength limit k→0,

L̂�
�c� = �
�
�c� , �8�

where 
�
� and 
�
� denote sets of eigenfunctions and cor-

responding eigenvalues, respectively. The operator L̂ is
found to be symmetric and negative semidefinite with re-
spect to scalar product �7�; hence, eigenfunctions 
�
� are
orthogonal and form a complete set. In particular, a subset of
them, which spans a �D+2�–dimensional subspace of the
Hilbert space can be found corresponding to the degenerate
zero eigenvalue. These are the collision invariants fGMX0,
with X0 denoting a set of lower order Sonine �or associated
Laguerre� polynomials �see also Eq. �A2��,

TABLE I. Notation used in this manuscript. Terms have been
grouped and abbreviated as depicted in this table. fGM and fLM

denote global and local Maxwellian, respectively, and �f and �f
their “distance” from f . The third row informs about the closure
discussed in this manuscript, while x is a set of lower order mo-
ments of f .

f = fLM + �f

= fGM + fGM�0 + fGM��

= fGM + fGMX0 · x + fGM�X · x

= fGM + fGM�X · x

= fGM + �f
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X0 = �1,2c,�c2 −
3

2
�� . �9�

A perturbative approach is followed in order to extract the
corresponding eigenvalues from the full spectrum of 	.
These eigenvalues, denoted hereafter by 
hydro, approach
zero in the long-wavelength limit �see �9,10� for a detailed
discussion�. The yet unknown eigenfunctions and eigenval-
ues are expanded in powers of the wave vector k,

��
� = ��

�0�� + k��


�1�� + k2��

�2�� + ¯ ,



 = 


�0� + k



�1� + k2


�2� + ¯ , �10�

where ��

�0�� denotes a linear combination of the eigenfunc-

tions of the unperturbed system. The result of this standard
procedure is a polynomial expression for the set 


� of
hydrodynamic modes, up to second order,


1 = ic0k − k2��1
�0���cx − c0�

1

L̂
�cx − c0���1

�0�� ,


2 = − ic0k − k2��2
�0���cx + c0�

1

L̂
�cx + c0���2

�0�� ,


3 = − k2��3
�0��cx

1

L̂
cx��3

�0�� ,


4 = − k2��4
�0��cx

1

L̂
cx��4

�0�� ,


5 = − k2��5
�0��cx

1

L̂
cx��5

�0�� , �11�

where c0= �5kBT0 /3m�1/2 is the speed of sound of an ideal
gas.

B. Linear hydrodynamics

The hydrodynamic fields n, u, and T are fluctuating in
time. We denote by �nk ,uk ,Tk� the Fourier transforms of the
fluctuations of the hydrodynamics fields, for instance: nk

=
−�
� dt
−�

+�dre−
t−ik·r�n�r , t�, where �n�r , t� is the fluctuation
of the local particle number density at time t and point r. The
equations of hydrodynamics considered in �7� are the linear-
ized NSF equations, which represent balance equations for
particle number density, momentum and kinetic energy en-
dowed with specific constitutive equations for the stress ten-
sor and heat flux,


nk�
� = − in0k · uk�
� , �12a�


uk�
� = − i
k

n0
� �P

�n
�

T

nk�
� − i
k

n0
� �P

�T
�

n

Tk�
� −
�

n0
k2uk�
�

−
k

n0
�� +

�

3
�k · uk�
� , �12b�


Tk�
� = − i
1

n0

T0

Cv
k · uk�
� −

�

Cvn0
k2Tk�
� , �12c�

where � and � are, respectively, the bulk and shear viscosity,
Cv is the specific heat at constant volume and � is the ther-
mal conductivity. Solving Eq. �12� amounts to determine the
eigenvalues of a 5�5 non Hermitian matrix, which represent
the decay rates of the collective excitations. The intuition
enlightened in the paper �7� was to put into correspondence
the macroscopic eigenvalues with their microscopic counter-
part, obtained from Eq. �8� by application of perturbation
theory. This identification allowed to find an approximate
expression for transport coefficients only in terms of the one-
body distribution function which turned out to be equivalent
to reduced expressions determined by many-body autocorre-
lation functions. These coefficients properly recover the
Chapman-Enskog expressions from classical kinetic theory.
Within the above construction it is found that the decay rates
of hydrodynamic modes in the NSF approximation are qua-
dratic in the wave vector Re�
��−k2 and unbounded. The
use of a suitable projector, on the other hand, to be outlined
in the next section, allows us to find proper asymptotics and
paves the way to solve the eigenvalue �Eq. �6�� as well as to
determine exact transport coefficients.

III. INVARIANT MANIFOLD TECHNIQUE

The notion of invariant manifold is a generalization of
normal solution in the Hilbert and Chapman-Enskog method.
Given a dynamical system

df

dt
= J�f� , �13�

where J�f� can be considered as a vector field which induces
the motion in the space of distribution functions, denoted as
U. Given bounded and smooth functions x�r , t� we define the
locally finite-dimensional manifold ��U as the set of func-
tions f�x�r , t� ,c�. Hence, within the spirit of the invariant
manifold technique, we will only consider sets of distribution
functions whose dependence upon the space variable r is
parameterized through some “moments” x�r , t�. As it will be
discussed in Sec. IV D, once we identify such coarse-grained
fields x�r , t� with the hydrodynamic fields, postulating their
existence implies invoking the hypothesis of local thermody-
namic equilibrium. Hence, the extent of our predictions is
inherently restricted to length scales wherein the concept of a
field as ensemble average over a statistically significant num-
ber of particles is still meaningful. Let us denote by Tw the
tangent space to the manifold � at the point w of the phase
space, and let us introduce a projection operator P �to be
defined in Eq. �18�� which, when acting on J�f�, describes
the motion of the vector field along the manifold. The dy-
namics is, hence, splitted into a fast motion on the affine
subspace w+ker�P�: �where ker�P� denotes the null space of
the projection operator P� and a slow motion, which occurs
along the tangent space Tw �5�. The set of eigenvalues 
hydro
is determined as follows:

�1� we seek for an invariant manifold ��U such that the
following invariance equation �IE� is fulfilled;
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�1 − P�	�f = 0 �14�

where �f � f − fGM �see also Table I�;
�2� after determining the nonequilibrium distribution

function from Eq. �14�, we derive equations of linear hydro-
dynamics via integration of the kinetic equation �3�. By con-
struction, the decay rates of the macroscopic excitations then
coincide with 
hydro.

A. Derivation of the invariance equation

Let x= �ñ , ũ , T̃� denote the set of dimensionless hydrody-
namic fluctuations: ñ��n−n0� /n0= �particle number

perturbation�, ũ�u /vT= �velocity perturbation� and T̃��T
−T0� /T0 �temperature perturbation�. By linearizing around
the global equilibrium, we write the local Maxwellian con-
tribution to f in �2� as fLM= fGM�1+�0� where �0 takes a
simple form, �0=X0 ·x �linear quasi equilibrium manifold�;
X0�c� was defined in Eq. �9�. It is conveniently considered as
four-dimensional vector using the four-dimensional version

x= �ñ ,u� , T̃ ,u��, and is then given by Eq. �A2�. The four-
dimensional version is obtained by splitting the mean veloc-
ity ũ uniquely as ũ=u�e� +u�e�, where the unit vector e� is
parallel to k, and e� orthonormal to e�, i.e., e� lies in the
plane perpendicular to k. Due to isotropy, u� alone then fully
represents the twice degenerated �shear� dynamics. The re-
mainder of this subsection is valid for both four- and five-
dimensional versions.

It further proves convenient to introduce a vector of ve-
locity polynomials, ��c�, which is similar to X0 and defined
by Eq. �A3�, such that �fGM�� � fGMX�

0�=���. Hence, the fields
x are obtained as ���c�� fLM=x, where averages are defined as

���c�� f �
1

n0
� ��c�f�c�d3v = �fGM��c��f� . �15�

We introduce yet unknown fields �X�c ,k� which character-
ize the part �f of the distribution function. As long as devia-
tions from the local Maxwellian stay small, we seek for a
nonequilibrium manifold which is also linear in the hydro-
dynamic fields x themselves. Therefore, we set:

�� = �X · x . �16�

The “eigen”-closure �16�, which formally and very generally
addresses the fact that we wish to not include other than
hydrodynamic variables, implies a closure between moments
of the distribution function, to be worked out in detail below.
By using the above form �Eq. �16�� for �f = fGM��, with

L̂�f = fGML��X� ·x, and the canonical abbreviation �X
�X0�c�+�X�c ,k�, Eq. �6� reads as


fGM�X · x = 	�f = − ik · cfGM�X · x + fGML̂�X · x .

�17�

The microscopic projected dynamics is obtained from Eq.
�14� by introducing the thermodynamic projection operator
�5�, defined by its action on the vector field J�f�,

PJ�f� � Dx�f ·� ��c�J�f�d3v , �18�

where Dx�f ���f /�x. The quantity inside the integral in Eq.
�18� represents the time evolution equations for the moments
x, when J�f�=	�f . These are readily obtained by integration
of weighted Eq. �6� as


���c�� f = − ik · ���c�c� f + ���c��L̂�f . �19�

As shown in Table I, Dx�f = fGM�X holds, whereas Eq. �19�
is linear in x and can be written as 
x=M ·x. Hence, Eq.
�18�, with J�f�=	�f , attains the form

P	�f = fGM�X · M · x . �20�

In the derivation of Eq. �20�, one needs to take into account
that ���c���f =0 �as the fields x are defined through the local
Maxwellian part of the distribution function only� and that
���c��L̂�f =0. The dependence of the matrix elements of M
upon moments of �f is explicitly given in Tab. II. Combining
Eqs. �17� and �20�, and requiring that the result holds for any
x �invariance condition�, we obtain a closed, singular integral
equation �invariance equation� for complex-valued �X,

�X · M = − ik · c�X + L̂�X . �21�

where �X�X0+�X. Notice that �X vanishes for k=0,
which implies that the invariant manifold �k→0 in that limit
is given by the set of local Maxwellians fLM. Implicit Eq.
�21� for �X �or �X, as X0 is known� is identical with eigen-
closure �16�, and is our main and practically useful result.
The Bhatnagar-Gross-Krook �BGK� collision model treated

in �11� is recovered for L̂��X�=−�X.

B. Solving the invariance equation

Invariance Eq. �21� as well as some symmetry relations
for the components �X� of the nonequilibrium distribution
function �worked out in Appendix A for the interested
reader� are exact. Solutions to this equation can be obtained
in simple cases. Considering the BGK kinetic equation, for
instance, the IE could recently be solved numerically and the
spectrum of hydrodynamic modes at arbitrary wavelength
has been successfully determined �11�. In the present case,
our strategy to solve Eq. �21� is to confine ourselves with a
special kind of interaction potential �Maxwell molecules�
and is based on the results obtained by Chang-Uhlenbeck
�9�. They provided an analytical solution to the eigenvalue
problem associated with the collision operator for Maxwell
molecules operator �i.e.,: gas molecules interacting via a po-
tential V�r−4, see also �12��. Their analysis showed that due

to the isotropy of the operator L̂ �i.e., it commutes with ro-
tation operators in velocity space�, it admits the following set
of eigenfunctions �r,l�c�,

�r,l =�r ! �l + 1
2���

�l + r + 1
2�!

clPl�z�Sl+1/2
�r� �c2� , �22�

where Pl and Sl+ 1
2

denote, respectively, Legendre and Sonine

polynomials, c��c� and z�c ·e� /c �see also Appendix A�.
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These eigenfunctions are orthonormal with respect to scalar
product �7�, with corresponding eigenvalues,

�r,l = 2�� sin���F���Tr,l���d�, r,l � 0,1. . . �23�

where the explicit expressions for the functions F��� and
Trl��� are required to numerically solve Eq. �21� and hence
delegated to Appendix A, where we also summarize a num-
ber of implementation details toward solving the invariance
equation. Whereas the construction outlined in Sec. II de-
duces the eigenvalues of perturbed system �8�, which vanish

in the k→0 limit, just from the knowledge of ker�L̂� �i.e., the
“ground states” of the unperturbed system�, here we attempt
a different route. We introduce, first, a decomposition of the
microscopic particle velocity, where its components can be
expressed through the absolute value of velocity, c, and the
cosine of the angle between velocity and wave vector, al-
ready denoted as z. Next, we expand our functions �X�0� ,�X�
in terms of the orthonormal basis �r,l=�r,l�c ,z� up to some
finite order N,

X�
�0��c,z� = �

r,l

N

a�
�0��r,l��r,l�c,z� , �24a�

�X��k,c,z� = �
r,l

N

a�
�r,l��k��r,l�c,z� . �24b�

The equilibrium coefficients a�
�0� are known, and can be de-

termined, by taking advantage of the orthogonality of the
eigenfunctions, as

a�0��r,l� = �3/2� e−c2
�r,l�c,z�X�0��c,z�d3c . �25�

Inserting Eq. �24� into IE �21�, we obtain the following non-
linear set of algebraic equations for the unknown coefficients
a�

�r,l��k�:

b�
�r�,l��M�� = − ik · �

r,l

N

b�
�r,l���r,l,r�,l�� + �

r,l

N

a�
�r,l�L�r,l,r�,l��,

�26�

where ∀�,r,lb�
�r,l��a�

�0��r,l�+a�
�r,l�, and where we identify

L�r,l,r�,l�� = �fGM�r�,l��L̂�fGM�r,l� , �27a�

��r,l,r�,l�� = �fGM�r,l�c�fGM�r�,l�� . �27b�

For any order N of expansion, the solutions of Eq. �26� char-
acterize an invariant manifold in the phase space. The matrix
elements L�r,l,r�,l�� can be easily evaluated in few kinetic
models, as for the BGK collision operator, hard spheres and
Maxwell molecules. In particular, the latter case is recovered
by setting

L�r,l,r�,l��
Maxw = �r,l�r,r��l,l�. �28�

Furthermore, the simplest case is BGK where all nonvanish-
ing eigenvalues attain the constant value: �BGK=−1.

IV. RESULTS

The calculation of the coefficients a�r,l� via reformulated
invariance Eq. �26� is easily achieved. All implementation
details, in particular the switch to spherical coordinates, and
symmetry features, have been worked out and summarized in
Appendix A. In order to make this contribution self con-
tained, also the eigenvalues for the Maxwell gas, entering the
calculations, are given in Appendix B.

Through the obtained expansion coefficients, the invariant
manifold ��U is fully characterized: that is, the distribution
function is determined and the corresponding matrix M of
linear hydrodynamics as well as moments A−Z, are made
accessible. Solving the invariance equation, and thus obtain-
ing the distribution function �via a�r,l�� �cf. Fig. 1� required
minor computational effort. Results for both the distribution
function and its moments will be further discussed below.

Generalized transport coefficients such as viscosity and
diffusion coefficients, can be expressed in terms of the mo-
ments �components A−Z of M�, which further enter the defi-
nition of the stress tensor and heat flux. In the regime of
large Knudsen numbers the coefficients a�r,l� may be used to,
e.g., directly calculate phoretic accelerations onto moving
and rotating convex particles �13�, while in the opposite limit
of small k we recover classical hydrodynamic equations.

A. Hydrodynamic modes

With M at hand, the hydrodynamic modes are obtained
from Eq. �20�. The damping rates of the fluctuations �given
by the real part of the hydrodynamic modes� are obtained by
truncating the series �Eq. �24�� at the fourth order and repre-
sented in Fig. 2. The picture does not qualitatively change
upon further increase of the order N. The first important find-
ing is that, for any finite order of expansion, the modes ex-
tend smoothly over all the wave vector domain and, for large
k, they attain an asymptotic value. This reflects the fact that,
below a certain length scale �more specifically, for lengths
less than the mean-free path�, we reach the free-streaming
limit; i.e., the regime in which the collisions cease to occur
and particles move along straight lines. Hence, when reduc-
ing further the length scale, we may not expect an increase of
the damping rate without the “thermalizing” effect of colli-
sions. These physical arguments were already supported by
the study of the BGK kinetic Eq. �11�, wherein the hydrody-
namic modes, in the limit of small wavelengths, reach all the
same value equivalent to the constant eigenvalue of the BGK
collision operator. A further indication of the role played by

the spectrum of L̂ for large k is provided by the observation
that, when taking into account all the set of the eigenvalues

of L̂ which are unbounded below, also the hydrodynamic
modes grow unboundedly.

B. Transport coefficients

Generalized transport coefficients are obtained by the
nontrivial eigenvalues of −k2 Re�M�: �2=−A �elongation
viscosity�, �3=− 2

3Y �thermal diffusivity� and �4=−D �shear
viscosity�. The abbreviation of moments A−Z, defined in
Tab. II, is chosen to agree with notation used earlier �11� and
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in textbooks such as �5�. Expressions for stress and heat flux
are given in Appendix A. In the limit k→0, we recover the
hydrodynamic limit. This limit had been worked out in detail
in �14,15�. In that limit, our generalized transport coefficients
A−Z become the classical transport coefficients. As can be
seen from Fig. 3 �below�, and also by inspecting the invari-
ance equation �in the limit of small k�, all moments A−Z
approach constant values in the limit of small k. These con-
stants are compatible with those obtained earlier for the case
of Navier-Stokes equations and the Burnett correction. The
stress tensor and heat flux are given in terms of these mo-
ments in Table II. For example, the parallel component of the
stress tensor related to density fluctuations, �1

� , cf. Eq. �A6�,
is given by −k2B so that it approaches −k2 for small k, as it
results from the Burnett approximation.

C. Relationship with Green-Kubo expressions

After some algebra it is possible to cast the expression for
the higher order moments in terms of time-correlation func-

tions, in order to show the connection with the Green-Kubo
expressions �16�. To this aim, we first write the nonequilib-
rium distribution function at time � as

�f�k,c,�� = e	��f�k,c,0� . �29�

Then, due to Eq. �24�, by integrating both sides of Eq. �21�,
we find

M�� = �
r,l

N

�a�
�0��r,l� + a�;R

�r,l���fGM���	e	��fGM�r,l� + �
r,l

N

a�;I
�r,l�

��fGM���	e	��fGM�r,l� , �30�

where a�;R
�r,l� and a�;I

�r,l� are, respectively, real and imaginary-
valued coefficients. The equality �fGM���	e	��fGM�r,l�
=−ik�fGM���c�e	��fGM�r,l� holds because lower order mo-
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ments of the collision operator identically vanish. Next, us-
ing the operator identity,

	e	� = − 	��
�

�

e	tdt�	 , �31�

we find for the real part of the M matrix in Eq. �30�, evalu-
ated with �=0,

Re�M��� = − �
r,l

N

a�;I
�r,l��

0

�

dt��̇��0��̇r,l�t�� fGM, �32�

where �̇r,l=	�r,l. Eq. �32� extends the Green-Kubo rela-
tions for transport coefficients to arbitrary wave vector.
These relations hold in the hydrodynamic regime, when the
system, as a result of many collisions, has reached local equi-
librium. The opposite regime �k�1� is represented by a
simple gas of noninteracting point particles. Importantly, as it
is evident from Fig. 3, and as already noticed in �17,18�, the
transport coefficients vanish in the limit of small wave-
lengths. This is due to the fact that the real and imaginary-
valued coefficients solving Eq. �26�, a�;R

�r,l� and a�;I
�r,l�, respec-

tively, vanish in that limit. This vanishing character of
transport coefficients �and, hence, of the heat flux and the
stress tensor as is evident from Table II� for large k, corre-
sponds to Eulerian �inviscid� hydrodynamics. We are led,
then, to similar conclusions to those traced when we dis-
cussed, in Sec. III, the k→0 limit of invariance Eq. �14�: in
the free-streaming regime, the local equilibrium manifold
�local Maxwellian� becomes an invariant manifold. Let us
recall that the Maxwellian distribution constitutes the zero
point of the collision integral, in the sense that, in local equi-
librium, the net flux of molecules entering and leaving an
infinitesimal volume in space, due to the scattering pro-
cesses, is zero. What we observe here is that, at a sufficiently
short length scale, the distribution function reduces to a

Maxwellian, since the contribution from the scattering event,
again, vanishes: but now this is because collisions ceased to
occur.

D. Finite wavelengths hydrodynamics and comparison
with experiments

The existence of short wavelengths collective modes in
real fluids is a long-standing issue �see in particular the ex-
cellent reference �21��. Ford and Foch �10� illustrated, on the
basis of a model kinetic equation approximating the linear-
ized BE, that the sound modes could be extended to length
scales comparable with the mean-free path in the gas. Our
analysis showed, on the other hand, that hydrodynamic
modes and the generalized transport coefficients extend
smoothly over all the k domain �there is no occurrence of any
critical point as in the case of a Grad kinetic system, studied
in �14,15��. Hence our approach, here and in �11�, tends to
predict that the notion of invariant manifold holds also for
very short length scales. This would be in agreement with the
celebrated papers by Alder et al. �17,22� on dense fluids,
showing that hydrodynamic laws remain valid down to times
comparable with the time between collisions, tcoll, and that
the k-dependent zero-frequency transport coefficients decay
until they vanish at short length scales. It would be signifi-
cant, therefore, to investigate the features of our model at
finite frequencies and wavelengths and verify whether the
procedure of truncation we introduced in Eq. �24� introduces
a length scale below which our coarse-grained description
breaks down. In Fig. 4 a comparison is shown about inverse
phase velocity and damping for acoustic waves between our
results, former approaches �19,23� and experimental data
performed by Meyer and Sessler �20�. As it is seen, our re-
sults are very close to the predictions of the regularized 13
�Reg13� moments method �19� and closer to experimental
data than Reg13 concerning the phase spectrum. Our theory

TABLE II. Symmetry adapted components of �nonequilibrium�
stress tensor � and heat flux q, both introduced in Eq. �A6�. Row 2:
microscopic expression of these components �averaging with the
global Maxwellian�. Short-hand notation used: �� =c�

2− c2

3 and ��

= �c2− 5
2 �c�. Row 3: expression of the components in terms of �as we

show, real valued� functions A−Z �see text�. Row 4: parity with
respect to z—symmetric � � � or antisymmetric � � �—of the part of
the corresponding �X entering the averaging in row 2, and whether
this part is imaginary or real valued �see Fig. 1�. Row 3 is an
immediate consequence of row 4.
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q1
� q2

� q3
� q4

����X1� ����X2� ����X3� ��c2− 5
2 �c��Y4�

ikX −k2Z ikY −k2U

Imag, � Real, � Imag, � Real, �
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FIG. 4. �Color online� �a� Damping spectrum, i.e., the negative
imaginary part of k divided by frequency 
 vs the negative loga-
rithm of 
. Results obtained in this work �by solving Eq. �21�, and
subsequently Eq. �20� for w�k� with complex valued k and real
valued 
� are compared with previous approaches including
Navier-Stokes �NS�, regularized 13 moment �Reg13� �19�, Grad 13
moment �Grad13�, and experimental data presented in �20�. �b�
Phase spectrum, i.e, real part of k times velocity of sound c0 and
divided by 
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is capable in predicting a phase speed which remains finite
also at high frequencies, a feature which is not possessed by
any hydrodynamics derived from the CE expansion.

A further clue about the features of our predictions in the
regime of finite frequencies and wave vectors can be
achieved by a closer inspection upon the spectrum of density
fluctuations. To this aim, we introduce the Laplace transform
of the hydrodynamic fields xk�z�=
0

�e−ztxk�t�dt and write the
equation of linear hydrodynamics as

xk�z� = �zI − M�−1xk�t = 0� . �33�

By inverting the Laplace transform one obtains

xk�t� =
1

2�i
	 ezt

�zI − M�
dzxk�t = 0� . �34�

In order to proceed further and to calculate the intermediate
scattering functions Cx,x�k , t�= �xk�t�x−k�0��, we need to de-
fine the averages which are employed in the calculation of
correlation functions. These are, in fact, no longer ensemble
averages, as in Eq. �15�, but, due to Eq. �34�, are averages
over initial conditions, weighted by the probability density of
thermodynamic fluctuation theory �24,25�. Finally, the power
spectrum of Cx,x is given by its Fourier transform,

Sx,x�k,
� = �
−�

�

Cx,x�k,t�e−i
tdt . �35�

It is worth focusing upon a quantity which is experimentally
accessible: the spectrum of density fluctuations, Sñ,ñ, which
is related to the scattering cross section. The calculation of
Sñ,ñ proceeds along the lines indicated above. It just suffices
to notice how the solution for ñk�z� involves terms propor-

tional to the initial values of ñk , ũk , T̃k, but, following stan-
dard recipes �24�, only the term proportional to ñk�t=0�
needs to be retained in the calculation. By considering just
the lower order terms in k, one obtains

ñk�t� = �2

5
e−�k2t +

3

10
e−�k2t cos�c0kt��ñk�0� . �36�

The first term in Eq. �36� represents a fluctuation which de-
cays according to a purely diffusive process, with a lifetime
proportional to DT, whereas the second term represents a
fluctuation propagating through the fluid at the �dimension-
less� speed of sound c0=�5 /3 and decaying with a lifetime
given by �. The coefficient DT generalizes the standard ther-
mal conductivity, while � generalizes the combined effect of
both thermal conductivity and longitudinal kinetic viscosity.
In the limit of small k, and following standard text books
�26�, their expression is given by

DT =
2

5
�X − Y� , �37a�

� = − �1

2
A +

1

5
X +

2

15
Y� , �37b�

where the moments A, X, and Y we had already defined and
related to material properties �see also Table II�. Unlike stan-
dard treatments of hydrodynamic fluctuations, the general-

ized transport coefficient X enters the expression of the co-
efficients DT and �, even though its contribution, as it is
evident from Fig. 3 is fairly small. The �approximate� inter-
mediate correlation function is then obtained by averaging

Cñ,ñ�k,t� = �k,0 + �ñk�0�ñ−k�0���2

5
e−DTk2�t�

+
3

10
e−�k2�t� cos�c0kt�� , �38�

and the dynamical structure factor, hence, attains the follow-
ing form:

Sñ,ñ�k,
� = ��
��k,0 + �ñk�0�ñ−k�0���2

5

2DTk2


2 + �DTk2�2

+
3

10

2�k2

�
 � c0k�2 + ��k2�2� . �39�

Representative plots of S�k ,
� are shown in Figs. 5�a� and
5�b�. For small k �hydrodynamic limit�, the spectrum we ob-
tain recovers the usual results of neutron �or light� scattering
experiments and consists of three Lorentzian peaks. The one
centered in 
=0 is the Rayleigh peak, which corresponds to
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FIG. 5. �Color online� �a� Dynamic structure factor Sñ,ñ�k ,
� vs

 for a small k=0.4 and �b� large k=100. 
s=c0k denotes the hy-
drodnamics predicted sound mode of the spectrum, and the widths
are related to the moments A−Z �see Fig. 3�. For small k, these are
given by DT= 2

5 �X−Y� and �=−� 1
2A+ 1

5X+ 2
15Y�, where A is the gen-

eralized longitudinal kinetic viscosity, Y the generalized thermal
diffusion coefficient and X is a cross-coupling transport coefficient,
relating heat flux to density gradients. �c� Width DTk2 of the Ray-
leigh peak vs k �double logarithmic�. At small k, DTk2�k2 as all
moments A−Z, except X, reach a finite value in this limit. The
inflection point at k=k��N��1 �shown to be increasing with the
order of expansion N� denotes the onset of departure from the ideal
Maxwellian behavior, where the width of the peak starts to behave
sublinearly in k, and is used to quantify the range of validity for
results obtained at finite order.
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the diffusive thermal mode. The two side peaks centered in

�c0k are the Brillouin peaks, and represent the two propa-
gating sound waves. By increasing the wave vector, the
structure of Eq. �39� is unchanged except that the generalized
coefficients DT and � need to be replaced by more compli-
cate expressions, not given here. The net effect observed is
that the Brioullin peaks move outward and tend to become
not measurable , whereas the central Rayleigh peak de-
creases and broadens. Density fluctuations are, therefore,
driven only by a diffusive thermal mode for large enough k.
A deeper look about the behavior of the width at half maxi-
mum of the central Rayleigh peak with increasing wave vec-
tors allows us to bridge the gap between the hydrodynamic
continuumlike description and the free particle limit. The
hydrodynamic regime is featured by a width increasing with
the square wave vector, �k2. On the contrary, in the free
particle limit, the calculation of the dynamical structure fac-
tor Sñ,ñ�k ,
� reduces to the Fourier transform of the self part
of the van Hove function Gs�r , t� �24�, which, upon writing
c=r / t, is given by the Maxwellian distribution: Gs�r , t�
=�−3/2vT

−3t−3 exp�−r2 / t2�. Hence, the width of the peak is
expected to grow up linearly in k, for large k. Our results, see
Fig. 5�c�, predict a width which is truly quadratic for small
enough k, reaches the regime of linear behavior and termi-
nate, for some large k, with a sublinear dependence on k. The
onset of the terminal regime at k=k��N� marks the range of
validity which can be accessed at a given finite order of
expansion, N. Increasing N thus does not alter the overall
picture we obtained at a moderate order of expansion, and
more generally, results obtained with N+1 will not change
those obtained with N below k��N� �cf. Fig. 5�c��.

V. CONCLUSIONS

The main result of our paper is the characterization of the
nonequilibrium distribution function, through the method of
invariant manifolds, and the calculation of its moments �the
functions A−Z, cf. Table II, have been related to material
properties in Sec. IV B, to the scattering function in Eq. �37�,
and to expansion coefficients in Eq. �A7��, which constitute
the building blocks of the generalized hydrodynamic equa-
tions. As we had previously shown in �14�, the latter equa-
tions are stable and hyperbolic for arbitrary wave vectors.
Moreover, we have proposed and applied a route to solve the
eigenvalue problem associated with BE �6�, by calculating
the hydrodynamic modes, which we may regard either as
decay rates of hydrodynamic fluctuations or as generalized
eigenfrequencies of BE �3�. The generalized transport coef-
ficients have been numerically determined and settled into
expressions recovering the Green-Kubo formulas. Finally,
also by comparing with available experimental data and pre-
vious approaches, we discussed the range of validity of our
approach, which turned out to be capable of extending the
hydrodynamic scenario to length scales below the mean-free
path. This offers perspectives toward a deeper comprehen-
sion of the transition between a “mesoscopic” particlelike
description of matter and the “continuum” macroscopic one.
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APPENDIX A: IMPLEMENTATION DETAILS

In order to calculate the averages occurring in Sec. III,
like ���c�� f, we switch to spherical coordinates. For each �at
present arbitrary� wave vector k=ke�, we choose the coordi-
nate system in such a way that its �vertical� z-direction aligns
with e� and that its x direction aligns with e�. The velocity
vector we had been decomposed earlier as ũ=u�e� +u�e�.
We can then express c, over which we are going to perform
all integrals, in terms of its norm c, a vertical variable z and
plane vector e� �azimuthal angle e� ·e�=cos �; the plane
contains e�� for the present purpose as

c/c = �1 − z2e� + ze� , �A1�

as shown in Fig. 6.
The local Maxwellian, linearized around global equilib-

rium, takes the form: fLM / fGM=1+�0=1+X0 ·x, where the
four-dimensional X0, and the related vector �, employing

four-dimensional x= �ñ ,u� , T̃ ,u��, are given by

X0�c� = �1,2c�,�c2 −
3

2
�,2c�� , �A2�

��c� = �1,c�,
2

3
�c2 −

3

2
�,c�� . �A3�

Here, we introduced, for later use, the abbreviations

c� � c · e�, c� � c · e�, c� � c · e� =
c�

e� · e�

, �A4�

such that ik ·c= ikc�. We can then rewrite Eq. �A1� as c
=c�e�+c�e� with c� =cz and c�=c�1−z2. The latter two com-
ponents, contrasted by c� �and e��, do not depend on the

FIG. 6. �Color online� Schematic drawing introducing an ortho-
normal frame e�, e�, and e��e� which is defined by the wave
vector k �e� and the heat flux q �not shown�, which lies in the e�

−e� plane. Shown is the velocity vector c �A1� relative to this
frame �characterized by length c, coordinate z, and angle �� and its
various components. The integration over d3c=c2dcdzd� is done in
spherical coordinates with respect to the local orthonormal basis.
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azimuthal angle. We further introduced yet unknown fields
�X�c ,k� which characterize the nonequilibrium part of the
distribution function, ��=�f / fGM. By analogy with the
structure of the local Maxwellian, those are linear in terms of
the hydrodynamic fields x themselves,

�� = �X · x = �X1ñ + �X2u� + �X3T̃ + �X4u�. �A5�

The functions �X1,2,3, which are associated to the longitudi-
nal fields, inherit the full rotational symmetry of the
corresponding Maxwellian components, �X1,2,3
=�X1,2,3�c ,z�, whereas �X4 factorizes as �X4�c ,z ,��
=2�Y4�c ,z��m=1

� ym cos m�. In this context it is an important
technical aspect of our derivation to work with a suitable
orthogonal set of basis functions �irreducible tensors, cf.
�30�, for models beyond the Maxwell gas� to represent �f
uniquely. The matrix M in Eq. �20� contains the nonhydro-
dynamic fields, the heat flux q��c�c2− 5

2 �� f and the stress
tensor ���cc

�
� f, where s

�
denotes the symmetric traceless

part of a tensor s �14,15,27,28�, s
�
= 1

2 �s+sT�− 1
3 tr�s�I. Using

Eq. �16� and the above mentioned angular dependence of the
�X functions �the only term in �X4 playing a role in our
calculations is the first-order term cos �, with y1=1, see
�31��, constraints, such as the required decoupling between
longitudinal and transversal dynamics of the hydrodynamic
fields, are automatically dealt with correctly when perform-
ing integrals over �. More explicitly �31�, the stress tensor
and heat flux uniquely decompose as follows:

� = �� 3

2
e�e�

�
+ ��2e�e�

�
, �A6a�

q = q�e� + q�e�, �A6b�

with the moments �� = ��1
� ,�2

� ,�3
� � · �ñ ,u� , T̃� and ��=�4u�,

and similarly for q �see row 2 of Table II�. The prefactors
arise from the identities e�e�

�
:e�e�

�
= 2

3 and e�e�

�
:e�e�

�
= 1

2 . We
note in passing that, while the stress tensor has, in general,
three different eigenvalues, in the present symmetry adapted
coordinate system it exhibits a vanishing first normal stress
difference. Since the integral kernels of all moments in Eq.
�A6� do not depend on the azimuthal angle, these are actually
two-dimensional integrals over c� �0,�� and z� �−1,1�,
each weighted by a component of 2�c2fGM�X. Stress tensor
and heat flux can yet be written in an alternative form which
is defined by row 3 of Table II. As we will prove below, due
to fundamental symmetry considerations, the hereby intro-
duced generalized transport coefficients A−Z are real valued.
They can be expressed in terms of the moments of the dis-
tribution function, i.e., expansion coefficients a�r,l�, as fol-
lows:

A = −
ia2

�0,2�

�3k
, B = −

a1
�0,2�

�3k2
,

C = −
a3

�0,2�

�3k2
, X = −

i�5a1
�1,1�

2k
,

Y = −
i�5a3

�1,1�

2k
, Z = −

�5a2
�1,1�

2k2 ,

D = −
i

k
�
r,l

N

a4
�r,l��fGMc�c��fGM�r,l� ,

U = −
1

k2�
r,l

N

a4
�r,l�� fGM�c2 −

5

2
�c��fGM�r,l� . �A7�

We proceed by using these functions A−Z to split M into
parts as M=Re�M�− i Im�M�,

M = k2�
0 0 0 0

0 A 0 0

2

3
X 0

2

3
Y 0

0 0 0 D
� − ik�

0 1 0 0

B̃ 0 C̃ 0

0 Z̃ 0 0

0 0 0 0
� ,

�A8�

with abbreviations B̃� 1
2 −k2B, C̃� 1

2 −k2C, and Z̃� 2
3 �1

−k2Z�. The checkerboard structure of matrix M �A8� is par-
ticularly useful for studying properties of the hydrodynamic
Eq. �20�, such as hyperbolicity and stability �see �14� and
below�, once the functions A−Z are explicitly evaluated. We
remind the reader that we use orthogonal basis functions �ir-
reducible moments, cf. Table II� to solve Eq. �21�. In order to
show how the above functions enter the definition of the M
matrix, we first notice that its elements are—a priori—
complex valued. We wish, then, to make use of the fact that
all integrals over z vanish for odd integrands. To this end we
introduce abbreviations � � � � for a real-valued quantity
which is even �odd� with respect to the transformation z→
−z. One notices X0= �� , � , � , ��, and we recall that A−Z
are integrals over either even or odd functions in z, times a
component of �X �see Table II�.

Let us prove the consistency of the specified symmetry of
M and the invariance condition: Start by assuming A−Z to
be real-valued functions. Then M��= � if �+� is even, and
M��= i� otherwise. This implies �X1= � +i� , �X2= � +i� ,
�X3= � +i� , and �X4= � +i� , i.e., different symmetry prop-
erties for real and imaginary parts. With these “symmetry”
expressions for X0, �X, and M at hand, and by noticing that

symmetry properties for �X take over to L̂��X� because the
 r,l are �i� symmetric �antisymmetric� in z for even �odd� l

and �ii� eigenfunctions of L̂, we can insert into the right-hand

side of the equation, L̂��X�= �X0+�X� · �M+ i � I�, which is
identical with invariance Eq. �21�. There are only two cases
to consider, because M has a checkerboard structure, i.e.,
only two types of columns: Columns �=1 and �=3: �X�

= � +i� because M1–3,4=0; Columns �� 
2,4�: �X�= �

+i� if M�,1–3=0 �which is the case for column 4� and �+i
� if M�,4=0 �which is the case for column 2�. These obser-
vations complete the proof.
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APPENDIX B: EXACT SOLUTION TO THE EIGENVALUE
PROBLEM FOR A MAXWELL-MOLECULES

COLLISION OPERATOR

Given the linearized Boltzmann collision operator,

L�f =� � d�dc1���,g�gfGM�c1�����k,c� + ���k,c1�

− ���k,c�� − ���k,c1��� �B1�

where g= �v−v1� is the absolute value of the relative velocity
and ��� ,g� the differential collision cross section. For so-
called Maxwell molecules the collision probability per unit
time is independent of the relative velocity,

g���,g� =�2K�M + m�
Mm

F��� , �B2�

where m, M are the masses of the colliding particles and
F���, with �� �0,��, is given in parametric form through
the parameter �� �0,��,

���� = � − 2�cos�2��K�sin �� , �B3�

F��� =
�23/2 sin � sin�2���−1�cos 2�

cos2���K�sin �� − cos�2��E�sin ��
, �B4�

with the elliptic integrals K�x�=
0
�/2�1−x2 sin2 y�−1/2dy, and

E�x�=
0
�/2�1−x2 sin2 y�1/2dy. Since the collision operator is

spherically symmetric in the velocity space, the dependence
of the eigenfunctions upon the direction of c is expected to
be spherically harmonic. Indeed, the eigenvalue problem ad-
mits the following solutions:

L� r,l�c,z�� = �r,l r,l�c,z� , �B5�

 r,l�c,z� =�r ! �l + 1
2���

�l + r + 1
2�!

clPl�z�Sl+1/2
�r� �c2� , �B6�

where Sl+1/2
�r� �x� are Sonine polynomials, and Pl�z� are Leg-

endre polynomials which act on the azimuthal component of
the peculiar velocity c. The Legendre and Sonine polynomi-
als are each orthogonal sets,

�
−1

1

Pl�z�Pn�z�dz =
2

2l + 1
�ln,

2��
0

�

c2e−c2
c2lSl+1/2

�r� �c2�Sl+1/2
�p� �c2�dc =

��l + 1
2 + r�!

r!
�rp.

Accordingly, the  r,l are normalized to unity with the weight
factor f0�c�=�−3/2 exp�−c2� �as defined in Sec. II A�,

�rr��ll� = 2�−1/2�
−1

1 �
0

�

c2e−c2
 r,l�c,z� r�,l��c,z�dcdz

� �−3/2� e−c2
 r,l�c� r�,l��c�d3c . �B7�

The corresponding eigenvalues for Maxwell molecules are
given by

�r,l = 2�� sin���F���Trl���d� , �B8�

Trl��� � cos2r+l��

2
�Pl�cos

�

2
� + sin2r+l��

2
�Pl�sin

�

2
�

− �1 + �r0�l0� , �B9�

with F��� from Eq. �B4� with Eq. �B3�. The collision opera-
tor is negative semidefinite, that is, all eigenvalues are nega-
tive except �0,0, �0,1, and �1,0 which are zero and correspond
to the collision invariants. As it was shown in �9�, there is
no lower bound for the set of eigenvalues. Chang and Uhlen-
beck’s investigation �9� of the dispersion of sound
in a Maxwell-molecules gas was based upon writing the
deviation from the global equilibrium as: ��0+���
=�
r,l�=0

� ar,l�r,l�c� so that the eigenvalue equation reduces to
an algebraic equation for the coefficients ar,l,


ar,l = − ik · �

r�,l��=0

�

�r,l,r�,l�ar�,l� + �r,lar,l, �B10�

�r,l,r�,l� � �fGM�r,l�c�fGM�r�,l�� . �B11�

The hydrodynamic modes for the Maxwell-molecules gas are
found by setting to zero the determinant of the above system
of linear equations. Within this approach, from the knowl-
edge of the spectrum of L̂, it is possible to solve eigenvalue
problem �3� for an arbitrary number of modes, just by tuning
the number of eigenfunctions taken into account in the an-
satz for the nonequilibrium distribution function. The pecu-
liarity of the Maxwell-molecules gas lies in the fact that at
any stage of approximation the modes recover and extend
those corresponding to lower order approximations. This
method produces results which are found to be in agreement
with the CE expansion.
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� ��k
n��n�k

n�c� with ��k
n�=
f�c��k

nd3c

and base functions �k
n�c�= lk

nLk
n+1/2�c2� �nc

�
, where Lk

n are the
associated Laguerre �kth order� polynomials �29�, �nc denotes

the n-fold tensor product, and a
�

denotes the irreducible part of
a tensor a. For the explicit construction of nth rank irreducible
tensors �nc

�
see page 160 of �28�. The normalization coeffi-

cients evaluate as lk
n= ���k ! �1+2n� ! ! / �2�k+n+1 /2� !n!��1/2.

The base function �k
n�c� is thus a �2k+n�th order polynomial

in c. The lowest-order base functions read �0
0=1, �0

1=�2c,

�1
0=�2 /3�3 /2−c2�, �1

1= �2 /�5��5 /2−c2�c, and �0
2=�2cc

�
.

Density, velocity, temperature, heat flux, and stress tensor are

related to the moments as follows: ñ= ��0
0�, ũ= ��0

1� /�2, T̃
= ��1

0��3 /2, q= ��1
1�, and �= ��0

2� /�2. The distribution func-
tion is then split into �orthogonal� parts as f�c�= fLM�c�
+�fGrad�c�+�f rest�c� with fLM�c�� f0�c����0

0��0
0+ ��0

1��0
1

+ ��1
0��1

0� and �fGrad�c�� f0�c����1
1��1

1+ ��0
2��0

2�, while the
sum in �f rest�c�=�k,n��k

n��n�k
n�c� extends over the remaining

�k ,n�–pairs. Density, velocity, and temperature are therefore
determined by fLM alone, and �f automatically obeys con-
strains such as orthogonality requirement 
�f�c��1

0d3c=0 and
also 
�f�c���c�d3c=0, as mentioned in the text part. These
conditions become redundant ones calculations are performed
using the particular basis �k

n. For Maxwell molecules, the de-
pendence on the polar angle � can be included by replacing
Pl�z� by eim�Pl

m�z� involving the associated Legendre polyno-
mials �29�, and the eigenvalues are independent of m. Then,
these base function reduce to the eigenfunctions �r,l�c ,z� �Eq.
�B6�� of the Maxwell gas.

�31� The integrals listed in Table II obey the following decoupling
rules,

� �c�
2 −

1

3
c2��Xnd3c � 1 − �n,4,

� c�c��Xnd3c � �n,4,

� c��c2 −
5

2
��Xnd3c � 1 − �n,4,

� c��c2 −
5

2
��Xnd3c � �n,4.
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