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We study the critical behavior of the Ising model in annealed scale-free �SF� networks of finite system size
with forced upper cutoff in degree. By mapping the model onto the weighted fully connected Ising model, we
derive analytic results for the finite-size scaling �FSS� near the phase transition, characterized by the cutoff-
dependent two-parameter scaling with four distinct scaling regimes, in highly heterogeneous networks. These
results are essentially the same as those found for the nonequilibrium contact process in annealed SF networks,
except for an additional complication due to the trivial critical point shift in finite systems. The discrepancy of
the FSS theories between annealed and quenched SF networks still remains in the equilibrium Ising model, like
some other nonequilibrium models. All of our analytic results are confirmed reasonably well by numerical
simulations.
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I. INTRODUCTION

Many aspects of our real world have been understood in
the context of complex networks �1,2� and simple physical
models of critical phenomena on networks. Contrary to regu-
lar lattices in the Euclidean space, complex networks are
characterized by a highly heterogeneous structure as mani-
fested in broad degree distributions. Recent studies on equi-
librium or nonequilibrium systems have revealed that the
heterogeneity is one of essential ingredients determining the
universal feature of phase transitions and critical phenomena
�3�.

The concept of the phase transition is well defined only in
the thermodynamic limit where the system size is taken to
infinity. So it is important to understand how finite-size ef-
fects come into play near the transition. Such a task for
physical models on regular lattices has been successfully ac-
complished by the standard finite-size scaling �FSS� theory
�4�, based on the ansatz that a single characteristic length
scale �correlation length� � competes with the system’s linear
size L. Then, any physical observable depends only on a
dimensionless variable �=L /� in the scaling limit. Near a
second-order continuous transition, the correlation length di-
verges as �����−� with the reduced coupling constant � and
the finite-size effects become prominent.

The FSS theory for complex networks can be formulated
in a similar way: Since the Euclidean distance is undefined in
complex networks, one may take the volume scaling variable
as �v=N /�v with the system size N �the total number of
nodes� and the correlated volume �v. The correlated volume
diverges �v����−�̄ near the transition ��̄=�d in d dimensional
lattices�. For example, the magnetization of the Ising model
scales as

m��,N� = N−�/�̄���N1/�̄� , �1�

where the scaling function ��x��O�1� for small x and x� for
large x with the order parameter exponent �.

The FSS theory with a single characteristic size has been
tested numerically in many systems �see Ref. �3� and refer-
ences therein�. In particular, the exact values for the FSS
exponent �̄ are conjectured �5� by estimating the correlated
volume �droplet� size for the nonequilibrium contact process
�CP� and the equilibrium Ising model in random uncorrelated
networks with static links, which are denoted as quenched
networks.

However, considering a highly heterogeneous scale-free
�SF� network, one should take into account not only a broad
degree distribution of P�k��k−� but also the upper cutoff kc
in degree, which scales as kc�N1/�. Without any constraint,
kc is bounded naturally with �nat=�−1. In general, one may
impose a forced cutoff with ���nat. In the thermodynamic
limit, both N and kc diverge simultaneously and � sets a
route to the limit. Therefore, one can suspect that the FSS
theory may depend on the routes or equivalently on the value
of �, especially for networks with a broader distribution for
small �.

For the quenched SF networks, it has been suggested that
the FSS does not vary with � for a weak forced cutoff ��
	��, which was confirmed numerically in various types of
SF networks �5,6�. However, in the annealed networks where
links are not fixed but fluctuate randomly in time, it was
rigorously shown that the CP model exhibits an anomalous
FSS for any forced cutoff with 2	�	3 where a heteroge-
neity ���-dependent critical scaling appears �7–10�. More-
over, the anomalous FSS is characterized by a cutoff
���-dependent and two-parameter scaling with four distinct
scaling regimes �10�, in contrast to the cutoff-independent
and single-parameter scaling with three scaling regimes in
the standard FSS theory.

The anomalous FSS of the CP in the annealed SF net-
works gives rise to a natural question: What is the main
ingredient causing the anomaly? Some possible guesses may
be a nonequilibrium feature of the CP, absorbing nature �van-
ishing activity� at criticality, or heterogeneity of networks
�8,9�. In this paper, we answer to this question by studying

PHYSICAL REVIEW E 80, 051127 �2009�

1539-3755/2009/80�5�/051127�10� ©2009 The American Physical Society051127-1

http://dx.doi.org/10.1103/PhysRevE.80.051127


the Ising model, a prototype equilibrium phase transition
model, in annealed SF networks. We find the same type of
the anomalous FSS scaling �cutoff-dependent and two-
parameter scaling with four distinct scaling regimes� for any
forced cutoff with 3	�	5 where the �-dependent critical
scaling appears in the thermodynamic limit for the Ising ver-
sion. In addition, the trivial shift of the critical point in finite
systems adds one more complication on the critical FSS,
though it does not cause any fundamental change. In sum-
mary, our results may draw a general conclusion that the
anomalous FSS scaling should appear in any critical system
in the annealed SF networks for any forced cutoff ��
��nat� with the degree exponent � such that a �-dependent
new singularity arises in the physical quantities as N→
.

This paper is organized as follows. We define the Ising
model on an annealed network in Sec. II and show that it is
equivalent to the Ising model on the weighted fully con-
nected network. In Sec. III, the FSS theory is developed in
various networks including SF networks, which is numeri-
cally tested in Sec. IV. In Sec. V, some effects of the sam-
pling disorder are discussed. We conclude this paper with
summary and discussion in Sec. VI.

II. ISING MODEL ON ANNEALED NETWORKS

An annealed network GN is defined as an ensemble of all
networks consisting of N nodes which are assigned to a
given degree sequence �k1 , . . . ,kN�. An instance g�GN is
constructed by assigning ki stubs to each node i�1, . . . ,N�
and then completing edges by pairing the stubs randomly as
in the uncorrelated configuration model �11,12�.

A network configuration g is conveniently represented by
an adjacency matrix A�g� whose element Aij takes either 1 or
0 if there is an edge between nodes i and j or not, respec-
tively. In the ensemble GN, the connecting probability pij to
find an edge between two nodes i and j is given by �3,13�

pij =
kikj

Nz1
+ O	 1

N2
 , �2�

with the mean degree z1��iki /N. This expansion is valid
when

kikj

Nz1
�1 for all i and j.

The ferromagnetic Ising model on the annealed network
GN is defined by the Hamiltonian

H��s�,g� = − J�
i	j

Aij�g�sisj − �
i

hisi, �3�

where J�0 is a ferromagnetic coupling constant, si
� �−1,1� is an Ising spin variable at node i, and hi is a local
field at node i. In comparison to the model on a quenched
network, a network configuration g is also fluctuating within
GN as well as the Ising spins. Thermodynamic properties of
the model is obtained from the partition function

Z = �
g�GN

�
�si�

exp
K�
i	j

Aij�g�sisj + �
i

h̃isi� , �4�

where K=�J and h̃i=�hi with the inverse temperature �
=1 /kBT.

In terms of the connection probability in Eq. �2�, one can
easily perform the partial summation over g to obtain that

Z = �
�si�

�
i	j

��1 − pij� + pije
Ksisj��

i

eh̃isi. �5�

Utilizing the identity eKs=cosh K+s sinh K for s= �1, we
find that

Z = Z0�
�si�

exp	�
i	j

Qijsisj + �
i

h̃isi
 , �6�

where Z0 is an overall constant factor �not depending on
�si��,

Z0 = �
i	j

	1 − pij + pij cosh K

cosh Qij

 ,

and

tanh Qij =
pij sinh K

1 − pij + pij cosh K
. �7�

As Qij is nonzero for any pair of �i , j�, the expression in Eq.
�6� corresponds to the partition function of the Ising model
on the fully connected network with the heterogeneous cou-
pling constants Qij.

As pij =kikj / �Nz1��1 for large N �14�, one can approxi-

mate Qij � K̃kikj / �Nz1� with K̃=sinh K. Hence, in this paper,
we focus on studying the Ising model on the fully connected
network with the Hamiltonian Hf as

�Hf = − K̃�
i	j

kikj

Nz1
sisj − �

i

h̃isi. �8�

This Hamiltonian was studied as a MF or annealed approxi-
mation for the Ising model on quenched networks in the
thermodynamic limit �3,15,16�.

For convenience, we rewrite Hf in a completed square
form as

�Hf = −
K̃

2Nz1

	�

i

kisi
2
− �

i

ki
2� − �

i

h̃isi �9�

and define the magnetic order parameter as

M̃ � �
i

kisi, �10�

with the order parameter density m̃�M̃ / �Nz1�, which is first
suggested in �17� and recently for both equilibrium and non-
equilibrium models in �18�.

Now we derive the free energy as a function of M̃, which
allows us to calculate thermodynamic properties not only in

the thermodynamic limit by minimizing it with respect to M̃
but also for finite size N, at least up to the leading order.
After dropping the additive constant term in Eq. �9�, the
partition function, up to a constant, can be written as
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Z = �
�si�

exp
 K̃

2Nz1
	�

i

kisi
2
+ �

i

h̃isi�
=� dM̃�

�si�
eK̃M̃2/�2Nz1�+�ih̃isi
	M̃ − �

i

kisi

=� dM̃�

−i


i
 du

2�i
exp�− F̃�M̃,u�� , �11�

where

F̃�M̃,u� � −
K̃

2Nz1
M̃2 + uM̃ − N ln�2 cosh�uki + h̃i�� ,

where � �i�
1
N�i� �i denotes the average over nodes. In ob-

taining Eq. �11�, we used the integral representation of the

delta function 
�M̃�=� dv
2�eivM̃ and the analytic continuation

v= iu.
The integration over u can be evaluated using the steepest

descent method, which yields that the free-energy function

F�M̃� defined by Z��dM̃ exp�−F�M̃�� is given as

F�M̃� � F̃�M̃,u0� +
1

2
ln�2��F̃��� + ¯ , �12�

where F̃�=−Nki
2 sech2�u0ki+ h̃i� is the partial second deriva-

tive of F̃�M̃ ,u� with respect to u at u0. The condition that the

first derivative F̃� �u=u0
=0 determines u0=u0�M̃ , �h̃i�� by

M̃ = Nki tanh�u0ki + h̃i� �13�

or equivalently, u0=u0�m̃ , �h̃i�� by

m̃ =
1

z1
ki tanh�u0ki + h̃i� . �14�

We remark that the second and high-order terms on the right
hand side of Eq. �12� can be neglected because they increase
with system size N only logarithmically, in contrast to the
first bulk term. Moreover, the finite-size corrections near the
transition are stronger than the contributions from these
terms.

It is convenient to use the free-energy density function

f�m̃��F�M̃� /N, which is

f�m̃� � −
z1K̃

2
m̃2 + z1u0m̃ − ln�2 cosh�u0ki + h̃i�� . �15�

Then, the ensemble-averaged value �m̃� can be calculated, in
the thermodynamic limit, as

�m̃� =
1

Z̃
� dm̃m̃e−Nf�m̃� � m̃0, �16�

where Z̃=Z / �Nz1�=�dm̃e−Nf�m̃� and m̃0 is the minimum point
of f�m̃�. Here, the higher-order finite-size corrections are
again at most logarithmic.

The spin magnetization mi at node i can be obtained by
differentiating the partition function in Eq. �11� by the local

field h̃i, which result in

mi = �si� = �tanh�uki + h̃i�� � tanh�ũ0ki + h̃i� , �17�

with ũ0�u0�m̃0 , �h̃i��.

III. FSS THEORY IN ANNEALED NETWORKS

We are now ready to investigate the bulk critical scaling
and also the FSS of the Ising model on annealed networks.
First, we consider the simplest case of exponential degree
distributions such as the Poisson distribution of the random
network. Then, we proceed to discuss for the SF degree dis-
tributions with P�k��k−� with an upper cutoff kc�N1/�.

A. Exponential networks

Consider exponentially bounded degree distributions such
that the degree moments zn�ki

n are bounded for all n. The
Poisson distribution for the random network and the Kro-
necker 
-function distribution �P�k�=
k,z� for the random
z-regular network fall into this category.

Taking the uniform magnetic field h̃i= h̃ and expanding

Eq. �14� for small u0 and h̃, we get

m̃ = h̃ +
z2

z1
u0 −

z4

3z1
u0

3 + O�u0
5, h̃2, h̃u0

2� . �18�

Then, the free energy density is given by

f�m̃� = − ln 2 − ah̃m̃ −
a

2
�m̃2 +

b

12
m̃4 + ¯ , �19�

where

a = z1
2/z2, b = z1

4z4/z2
4, �20�

and the reduced inverse temperature �= �K̃−Kc� / K̃c with the
critical point

K̃c = z1/z2. �21�

Note that a=b=1 and Kc=1 /z for the random z-regular net-
works.

At h̃=0, the order parameter scales for ��0 as

�m̃� � �3a/b��, �22�

with the order parameter exponent �=1 /2. It is straightfor-

ward to derive the zero-field susceptibility �̃���m̃� /�h̃ �h̃=0
��2��−� for ��0 and �̃��1−2 /���−��−� for �	0 with �
=1. The average magnetization m�mi is related to �m̃�
through Eq. �17�, which yields m�a�m̃�.

With the free energy function given in Eq. �19�, one can
develop the FSS theory analytically. The full scaling func-
tions for �m̃� and �̃ are derived in the Appendix. We only
summarize the results below. The FSS form for the order
parameter is given by
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�m̃��,N�� = N−�/�̄�̃��N1/�̄;a,b� , �23�

where �=1 /2, the FSS exponent �̄=2, and the scaling func-

tion �̃ is given by Eq. �A3�. The function arguments a and b
will be omitted from now on unless it causes confusion.

The critical FSS at �=0 is

�m̃�c � AeN
−1/4, �24�

where Ae= �̃�0�= �12 /b�1/4�� 1
2 � /�� 1

4 �. We remark that � may

not be exactly zero at the bulk critical point K̃c



=limN→
 K̃c, but may have a finite-size correction vanishing
exponentially with N. This additional correction does not
change the leading power-law term in the FSS. For �	0,

�m̃� � �2/��a��− �N�−1/2, �25�

since �̃�x���−2x / ��a� for x→−
. The scaling form in Eq.
�22� is reproduced from Eq. �23�, using the limiting behavior

of �̃�x���3ax /b for x→
. The crossover between the three
scaling regimes occurs at

�cross
− � − �2/��aAe

2��N−1/2, �26�

and

�cross
+ � �bAe

2/�3a��N−1/2. �27�

The scaling behavior of the order parameter �m̃� is repre-
sented schematically in Fig. 1.

The FSS form for the zero-field susceptibility is given by
�̃=N�/�̄�̃��N1/�̄ ;a ,b� with �=1. The scaling function
�̃�x ;a ,b� is defined in Eq. �A5�.

B. Scale-free networks

Consider the SF degree distribution P�k��k−� for k0�k
�kc and 0 otherwise with the upper cutoff kc�N1/� and the
lower cutoff k0=O�1�. We are interested in the cutoff expo-
nent ���nat=�−1 as considered in �7–10� where the cutoff-
dependent FSS in the CP on annealed SF networks. In gen-

eral, the expansion of Eq. �14� for small u0 and h̃ is singular
as zn diverges in the N→
 limit for n��−1. So one should
treat the nonanalyticity carefully. Furthermore, there is a
power-law finite-size correction in the critical inverse tem-

perature K̃c, which plays an intricate role in the critical FSS.
For all ��3, the average magnetization is again m�a�m̃�
and the magnetic susceptibility is identical to that in the ex-
ponential networks.

1. Finite-size behavior of zn

As a degree k is an integer, the standard precise expres-
sion for the degree distribution is

P�k� = ck−� �
j=k0

kc


k,j , �28�

where the normalization factor c is given by c−1=� j=k0

kc j−�

with kc=dN1/�. Then, the degree moments zn are given by

zn = c�
j=k0

kc

j−�+n. �29�

For large kc �large N�, we have finite-size corrections for
the normalization factor as

c−1 � c

−1 − kc

−��−1�/�� − 1� , �30�

with c

−1=��� ,k0� where the Hurwitz zeta function is defined

as ��s , l��� j=0

 �j+ l�−s �19�.

Similarly, we have, up to the leading order in kc,

zn ��zn

 − c


kc
−��−�n+1��

� − �n + 1�
for n 	 � − 1

c
 ln kc for n = � − 1

c


kc
�n+1�−�

�n + 1� − �
for n � � − 1,� �31�

with zn

=c
���−n ,k0�=���−n ,k0� /��� ,k0�.

The critical parameter K̃c=z1 /z2 also has a finite-size cor-
rection as

K̃c � K̃c

�1 + eN−�� , �32�

with

K̃c

 = z1


/z2

 = ��� − 1,k0�/��� − 2,k0� ,

e = d−��−3�/��� − 3���� − 2,k0�� , �33�

and

� = �� − 3�/� . �34�

2. ��5

For ��5, zn is finite up to n=4. Hence, the expansion of
m̃ and f�m̃� are the same as those in the exponential networks
up to the order of u0

3 and up to the order of m̃4, respectively,
as in Eqs. �18� and �19�. Therefore, their critical behaviors
are identical to those in the exponential networks, in terms of
the parameters a, b, �, and N.

However, unlike the exponential networks, �= �K̃
− K̃c� / K̃c has a power-law finite-size correction due to the

N-dependence of K̃c. From Eq. �32�, one finds that

� � �b − � f�N� = �b − eN−�, �35�

where �b��K̃− K̃c

� / K̃c


 is a deviation from the bulk critical
temperature and �= ��−3� /�. Therefore, the FSS form is
given in terms of �b as

ε

∼ε
~N

N
−1/2

−

1/2

ε−

−1/4

∼( ε )

0 ε+
crosscross

<m>~

FIG. 1. Schematic plot of �m̃� versus � in the exponential
networks.
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�m̃��b,N�� = N−�/�̄�̃���b − � f�N1/�̄� , �36�

with �=1 /2 and �̄=2, which shows a simple horizontal shift
of the order parameter curve in Fig. 1 to the right �see Fig.
2�.

The order parameter follows the same scaling law of Eq.
�24� at the N-dependent pseudo critical temperature at �=0
or �b=� f. On the other hand, at the bulk critical temperature

at �b=0, the order parameter is given by �m̃�b,c=N−�/�̄�̃�
−eN−�+1/�̄�.

For ��1 /2��nat��	2��−3��, the correction � f is not
big enough to shift �b,cross

− ��cross
− +� f with �cross

− in Eq. �26� to
cross the bulk critical point �b=0 �Fig. 2�a��. Therefore, there
is no characteristic change in the critical scaling by this shift,
except the appearance of a higher-order correction to scaling
like O�N−��−1/2��.

For �	1 /2 ���2��−3��, �b,cross
− becomes positive and

both crossovers take place in the side of �b�0 �Fig. 2�b��.
The bulk critical point is now in the region left to �b,cross

− ,

where the scaling function behaves as �̃�x���2 / ��a��
−x�−1/2. At �=1 /2��=2��−3��, the scaling variable is finite
�x=−� fN

1/�̄=−e�.
Therefore, we have the critical FSS at �b=0 as

�m̃�b,c = �AeN
−1/4 �� � 1/2�

ÃeN
−1/4 �� = 1/2�

BeN
−�1−��/2 �� 	 1/2� ,

� �37�

where Ãe= �̃�−e� and Be= �2 / ��ae��1/2 with e in Eq. �33�.

3. 3	�	5

For 3	�	5, z1 and z2 are finite, but z4 diverges as z4
�kc

5−��N�5−��/� as well as b=z4�z1 /z2�4. In the thermody-

namic limit or for u0kc+ h̃�1 in finite size networks, Eq.
�14� has the singular expansion as

m̃ = h̃ +
z2

z1
u0 −

q

z1
u0

�−2 + O�h̃2� , �38�

with a constant q�c�dxx1−��x−tanh x��0. For u0kc+ h̃�1
in finite networks, the series expansion becomes regular as

m̃ = h̃ +
z2

z1
u0 −

z4

3z1
u0

3 + O�u0
5, h̃2� . �39�

Then, the free-energy density in finite networks is given
by

f�m̃� = − ln 2 − ah̃m̃ −
a

2
�m̃2 + Q�m̃� , �40�

where

Q�m̃� = �
b

12
m̃4 for m̃ � �z2/z1�kc

1 + h̃

p
z1

�−1

z2
�−1m̃�−1 for m̃ � �z2/z1�kc

1 + h̃ ,� �41�

with a constant p�c�dxx−��x2 /2−ln cosh x��0. Note that
b= �z1 /z2�4z4�b0N�5−��/� with

b0 = c
�z1

/z2


�4d5−�/�5 − �� . �42�

In the thermodynamic limit, kc becomes infinite and the
free energy density expansion is singular for all m̃�0. At

h̃=0, the order parameter scales for ��0 as

�m̃� � C��, �43�

with

� = 1/�� − 3� , �44�

and

C = �z2

/z1


��z2

/�p�� − 1���1/��−3�. �45�

It is straightforward to calculate the FSS at �=0 by per-
forming the integral in Eq. �16� using Eqs. �40� and �41�. For
���nat, the integral in the region of m̃� �z2 /z1�kc

−1 domi-
nates and we find

�m̃�c � AsN
−�1+�5−��/��/4 � �bN�−1/4, �46�

with

As = �12/b0�1/4��1/2�/��1/4� . �47�

At �=�nat, the integrals in both regions contribute, but the
critical FSS does not change except its amplitude.

For �	0, we have �m̃���2 / ��a��−��−1/2N−1/2. So, the
crossover occurs at �cross

− �−�2 / ��aAs
2��N−1/�̄− with �̄−

=2 / �1− �5−�� /��.
At small positive values of �, we have a nonzero solution

for m̃ in the region of m̃� �z2 /z1�kc
−1 as

�m̃� � �3a/b0N−�5−��/�2���1/2 � ��/b�1/2, �48�

where �� f1N−��−3�/� with f1=c
d−��−3� / �3z2

�5−���. For

larger �, we have the bulk solution, Eq. �43�, for m̃ in the
region of m̃� �z2 /z1�kc

−1, where �� f2N−��−3�/� with f2= p��
−1�d−��−3� /z2


.

∼( ε )N−
−1/2

~N
−1/4

∼ε1/2

ε− εff b

(a)

∼( ε )− N
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FIG. 2. Schematic plot of �m̃� versus �b in the annealed SF
networks with ��5 and �a� �nat��	2��−3� and �b� ��2��
−3�. Note that the bulk critical point �b=0 is outside of the critical
region in �b�.
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Hence, there are two crossovers in the side of ��0. The
first crossover occurs at

�cross
+,1 � �b0As

2/�3a��N−1/�̄+,1,

with �̄+,1=2 / �1− �5−�� /��, which is the same as �̄−. Then
second crossover occurs at

�cross
+,2 � �b0C2/�3a��−��−3�/�5−��N−1/�̄+,2,

with �̄+,2=� / ��−3�. Note that 1 / �̄+,2 coincides incidentally
with � in Eq. �35�. For convenience, we denote �cross

+,1 by �c,
�cross

+,2 by ��, �̄+,1= �̄− by �̄c, and �̄+,2 by �̄�. They are summa-
rized as

�̄c = 2/�1 − �5 − ��/�� , �49�

�̄� = �/�� − 3� . �50�

The order parameter is plotted against � in Fig. 3�a�,
where we have one more distinct scaling regime compared to
the case for ��5. In �bulk� regime I ������, the bulk scal-
ing is valid where the system is free from any finite size
effect. In �intermediate� regime II ��c	�	���, the system
behaves as in a SF network with infinite N but with finite kc.
In �critical� regime III ����	�c�, the system feels both finite
N and finite kc. Finally, the ordinary scaling in the disordered
phase appears in �disordered� regime IV, where only finite N
matters.

Summing up the results, we need two different scaling

functions, �̃c and �̃�, describing the critical region and the
crossover region to the bulk regime, respectively, for the
forced cutoff ����nat�. First, near ��0, we have

�m̃��,N�� = N−�̃/�̄c�̃c��N1/�̄c� , �51�

with �̃= ��+5−�� / �2��−5+���. The scaling function

�̃c�0��As �Eq. �47��, �̃c�x���2 / ��a��−x�−1/2 for x→−
,

and �̃c�x���3a /b0x1/2 �Eq. �42�� for x→
. Due to the
crossover to the bulk regime, this scaling function is valid
only up to x�N�1−��−1�/��/2, which diverges with N.

Second, near ����, we have

�m̃��,N�� = N−�/�̄��̃���N1/�̄�� , �52�

with �=1 / ��−3�. The scaling function �̃��x��Cx� �Eq.

�45�� for x→
 and �̃��x���3a /b0x1/2 for small x, but larger
than �N−�1−��−1�/��/2, which vanishes as N→
. At �=�nat,
the intermediate regime II vanishes as �c��� so that the two
scaling functions merge into a single scaling function with

�̃=�=1 / ��−3� and �̄c= �̄�= ��−1� / ��−3�.
Now, in terms of the bulk parameter �b, we need to re-

place � by �b−� f in all scaling equations. It implies the
simple horizontal shift of the order parameter curve of Fig. 3
to the right by the amount of � f =eN−� with �= ��−3� /�
�Fig. 3�b��. For any ���nat, we find that �b,cross=�cross

− +� f
becomes always positive. Therefore, the critical FSS at �b

=0 is �m̃�b,c=N−�̃/�̄c�̃c�−� fN
1/�̄c�, which results in

�m̃�b,c � BeN
−�1−��−3�/��/2, �53�

with Be= �2 / ��ae��1/2. At �=�nat, the critical scaling does
not change except for its amplitude as �m̃�b,c�N−1/��−1�.

C. Comparison to quenched networks

In quenched networks, it is difficult to derive analytically
the FSS for any model due to the presence of quenched dis-
order. Even in the case that quenched disorder fluctuations
are negligible, quenched links generate the finite correlations
in neighboring nodes, which are responsible for the critical
point shift �mass shift� by a finite amount. This mass renor-
malization process should involve the finite-size correction
which determines the FSS of the �pseudo-� critical point and
the FSS of the order parameter follows.

Recently, Hong et al. �5� conjectured the FSS exponent
based on the droplet-excitation �hyperscaling� argument and
phenomenological theory. They also numerically confirmed
that the FSS exponent for the Ising model is �̄=2 for
quenched exponential networks as well as for the quenched
SF networks with ��5. For 3	�	5, �̄= ��−1� / ��−3�, re-
gardless of the cutoff exponent � if it is not too strong ��
	��.

For exponential networks, we find the same FSS for an-
nealed and quenched networks. The annealed SF networks
with ��5 exhibit essentially the same FSS as the quenched
SF networks, but the additional finite-size correction on the
critical point generates a different FSS on the order param-
eter at the bulk critical point for ��2��−3�. For �nat��
	2��−3�, this additional correction is irrelevant.

The annealed SF networks with 3	�	5 exhibit the
anomalous FSS characterized by the combination of two dif-
ferent single-parameter scaling functions �or two-parameter
scaling� with the anomalous intermediate regime for any �
��nat, which is generically distinct from the quenched SF
networks. However, at �=�nat, the intermediate regime dis-
appears and the FSS can be described by the ordinary single-
parameter scaling function with the same exponent �̄= ��
−1� / ��−3� as in the quenched SF networks.

IV. NUMERICAL RESULTS

We performed extensive Monte Carlo �MC� simulations
in the annealed SF networks at various values of � and � to

∼( ε )N−

ε

− N

0 ε

εc ε
IV II I

*

∼ελ−3
1

IV III II I

c− *ε+ε ε+ε

∼ελ−3
1

1
2

1
4

5−λ

f f

ω

N

N
5−λ
2ω

5−λ
2
1

1
2∼ ε

εf

∼( ε ) 2
1

−

−

−

−

4
1 5−λ

ω(1+ )

(1+ )

2ω∼ ε
~N

−

~N
−

cε−

ε+εc f b

III

0

<m>~

~

(a)

(b) <m>

FIG. 3. Schematic plots of �m̃� versus �a� � and �m̃� versus �b� �b

in the annealed SF networks with 3	�	5 and ���nat.
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confirm the analytic results in Sec. III B. Especially we focus
our attention on the cutoff dependent FSS behavior. In prac-
tice, we consider the Ising model on the fully connected
network with the heterogeneous coupling constants given by

the Hamiltonian in Eq. �8� at all h̃i=0 and set J=kB=1.
Using the standard Metropolis single spin update rule, we

run MC simulations up to 2�103–104 MC steps for system
sizes up to N=32 768�103. The MC data are averaged over
100 independent samples of initial spin configurations as
well as the thermal �temporal� average after discarding the
data up to 103 MC steps for the equilibration.

First, we need to choose a degree sequence �ki�
= �k1 , . . . ,kN� in accordance with a given degree distribution
P�k�=ck−� for k0�k�kc as in Eq. �28�, with k0=O�1� and
kc=int�dN1/��, where int�x� denotes the integer part of x. Let
Nk be the number of nodes with degree k. Such a degree
sequence can be generated deterministically �10� by applying
the rule

�
k�=k

kc

Nk� = int
N �
k�=k

kc

P�k��� �54�

to Nk for all k in the descending order from k=kc.
The maximum degree kc� thus obtained may be different

form the target value kc. In fact, kc� can be estimated from the

condition N�k=kc�
dN1/�

P�k�=1, which yields kc�=dN1/��1
+O�N−1+�nat/��� for ���nat. Therefore, Eq. �54� indeed
yields the degree cutoff scaling with the prescribed values of
d and � only with a higher-order correction. However, when
�=�nat, we find that kc�=d�N1/� with

d� = d�1 + �� − 1�d�−1���,k0��−1/��−1�. �55�

When one compares numerical data with the analytic results,
the modified value d� should be used for �=�nat=�−1. In
this section, we use the degree sequences generated deter-
ministically from Eq. �54� for various N, �, d, and � with
fixed k0=3.

Monte Carlo simulation data for �=6 are presented in
Fig. 4. We first test whether the magnetizations �m̃�c at the
pseudo critical temperature with �=0 and �m̃�b,c at the bulk
critical temperature with �b=0 scale as in Eqs. �24� and �37�,
respectively. In order to cover the three cases of Eq. �37�, we
choose �=5, 6, and 7, which correspond to �=3 /5, 1/2, and
3/7, respectively. These numerical data in Fig. 4�a� are in
good agreement with the analytic results.

Our analytic theory predicts the full shape of the scaling
function as well as the scaling exponents. We examine valid-
ity of the FSS form in Eq. �A2� in Fig. 4�b�. We present the
scaling plot of �m̃�� ,N�� against ���N1/�̄ using the Monte
Carlo data with �=6 and �=6. These data match perfectly
well with the analytic curve for the scaling function

�̃����N1/2� in Eq. �A3�.
We proceed to the case with �=4, where the FSS behav-

ior is more complicated. We first examine the FSS of �m̃�c at
�=0 and �m̃�b,c at �b=0. They are predicted to follow the
power law given in Eqs. �46� and �53�, respectively, when
���nat. When �=�nat, the scaling is given by the same
power law but with modified amplitudes. Figure 5�a� pre-

sents the plots of �m̃�c and �m̃�b,c against N at �=3, 3.5, 4,
and 4.5, which agree well with the theoretical curves.

When �=�nat, the FSS is governed with the single scaling
variable �N��−3�/��−1�. In Fig. 5�b�, we present the scaling plot
of �m̃�N1/��−1� against ���N��−3�/��−1� at �=4 and �=3. A good
data collapse supports that FSS form with the single scaling
variable. We note that the bulk scaling behavior �m̃����

with �=1 / ��−3� sets in only for N�106.
We also examine the FSS behavior at �=4���nat�. Here,

the FSS is governed with two scaling variables �N1/�̄c and
�N1/�̄�. Hence, one cannot expect a data collapse over the
whole regions in a scaling plot. We first test the scaling form
of Eq. �51�, which is valid in regimes II, III, and IV. The

scaling plot of �m̃�N�̃/�̄c against the scaling variable ���N1/�̄c is
presented in Fig. 5�c�. We observe a reasonably good data
collapse in regimes II, III, and IV except for small network
sizes. In the ��0 side, the numerical data align along a
straight line of slope 1/2, which reflects the scaling �m̃�
��1/2 in regime II. However, they begin to deviate from the
straight line systematically for N�4096�103 as the scaling
variable increases. This is due to the crossover to regime I.

Finally, we test the scaling form of Eq. �52�, which is
valid in regimes I and II. Figure 5�d� shows the scaling plot
of �m̃�N�/�̄� against the scaling variable ���N1/�̄�. As expected,
we do not have a data collapse for ��0. The data in regimes
I and II do not collapse well either. The order parameter
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FIG. 4. �Color online� Monte Carlo simulation data at �=6. �a�
The order parameters �m̃�c at �=0 and �m̃�b,c at �b=0 with different
values of �d ,��= �2.25,5�, �3,6�, and �3,7� are plotted with symbols.
They are compared with the analytic results of Eqs. �24� and �37�
which are drawn with lines. Numerical values of the coefficients are

Ae�0.815 860, Ãe�0.687 983, and Be�1.039 20. �b� Scaling plot
of �m̃�N�/�̄ versus ���N1/�̄ at �=6 with �=1 /2 and �̄=2. Data with

different values of N fall onto the scaling function �̃����N1/2� drawn
with the solid curve.
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scales as �m̃���1/2 in regime I and then �m̃���1/��−1�=�1 in
regime II. Comparing the numerical data with the straight
lines of slopes of 1/2 and 1, one finds the signature of the
crossover for N�4096�103. This suggests that the poor
data collapse may be due to a finite size effect. The system
does not reach the scaling regime I even at N=32 768
�103 yet.

V. SAMPLE-TO-SAMPLE FLUCTUATIONS

In the previous section, we tested the FSS theory for the
power-law degree distributions generated deterministically
from Eq. �54�. The other way is to draw probabilistically N
values of the degree independently in accordance with the
target distribution function P�k�. This is adopted in the con-
figuration model �11,12�. In the probabilistic method, the de-
gree sequence varies from sample to sample, hence an en-
semble average is necessary. One interesting issue is whether
physical quantities have the self-averaging property �20�
against the sample-to-sample fluctuations. For finite systems,
a sample with �ki�= �k1 , . . . ,kN� drawn probabilistically may

show the degree distribution P̃�k�=�i
k,ki
/N, which deviates

from the target distribution function P�k�. Then, it follows
that the degree moments zn=�iki

n /N show the sample-to-
sample fluctuations, purely from the sampling disorder.

Using the same techniques used in our previous publica-
tion for the CP model �10� �see Sec. V therein�, it is straight-

forward to show that the relative fluctuation Rn is given by

Rn �
�zn

2� − �zn�2

�zn�2 =
1

N
	 �2n�0

�n�0
2 − 1
 , �56�

where �¯ � denotes the sample �disorder� average and �n�0
��kk

nP�k�. For exponential networks, all �n�0 are finite, so
all degree moments zn are strongly self-averaging �Rn
�N−1� �20�.

In the SF networks with P�k� given in Eq. �28�,

�n�0 � �N�n−�+1�/� for n � � − 1

log N for n = � − 1

O�1� for n 	 � − 1,
� �57�

which leads to

Rn � �N−1+��−1�/� for n � � − 1

N−1+�2n−�+1�/� for �� − 1�/2 	 n 	 � − 1

N−1 for n 	 �� − 1�/2,
�

�58�

where there are log corrections at n=�−1 and ��−1� /2. By
definition, Rn is strongly self-averaging for n	 ��−1� /2 and
is weakly self-averaging for n� ��−1� /2 except that Rn is
not self-averaging only when �=�nat for n��−1. For ex-
ample, z4 is not self-averaging for �	5 with the natural
upper cutoff.
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FIG. 5. �Color online� Monte Carlo simulation data at �=4. The parameter values of d are 2.57 for �=3 and 1 for the other values of
�. �a� Numerical data for �m̃�c and �m̃�b,c represented with symbols are compared with the analytic results represented with straight lines. �b�
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The relevant quantities involving the degree moments are

K̃c=z1 /z2, a=z1
2 /z2, and b= �z1 /z2�4z4. It implies that the

critical point location and a are strongly self-averaging for
��5 and at least weakly self-averaging for ��3. However,
b is not self-averaging for 3	�	5 with �=�nat, which de-
termines the amplitude of the order parameter in various
scaling regimes �see Eqs. �46� and �48��. Therefore, we ex-
pect widely scattered data for the order parameter, depending
strongly on sampled degree sequences, for 3	�	5 with
�=�nat.

Numerical data are presented to verify the non-self-
averaging property of the order parameter at �=0, �m̃�c
��bN�−1/4 �see Eq. �46��, for the annealed SF networks for
�=4 with �=�nat=3. It should not be self-averaging because
it involves the parameter b. We have measured the order
parameter �m̃�c in many samples and constructed a histogram
of the quantity �m̃�c / ��m̃�c�, the order parameter normalized
with its mean values.

Figure 6 presents, thus, the obtained histogram. The his-
togram does not sharpen at all, but collapses onto a single
curve as N increases. This proves the non-self-averaging
property.

VI. SUMMARY AND DISCUSSION

We have investigated the FSS of the Ising model on an-
nealed networks. The model is mapped to the Ising model on
a globally connected network with heterogeneous couplings,
which allows us to derive the free-energy density as a func-
tion of the magnetic order parameter m̃. Using the free en-
ergy density function, the scaling functions for m̃ and the
zero-field susceptibility �̃ are also derived.

For the networks with exponentially bounded degree dis-
tributions and power-law degree distributions with ��5, the
FSS forms are given in Eqs. �A2� and �A4�. The critical
exponents for the magnetization and the susceptibility are
given by �=1 /2 and �=1, respectively. The FSS exponent is
given by �̄=2, with which the scaling variable for the FSS is
given by �N1/�̄. The scaling behaviors in the critical regime
��N1/�̄=O�1��, in the supercritical regime ���N−1/�̄�, and in
the subcritical regime ���−N−1/�̄� are summarized in Figs. 1
and 2.

For power-law degree distributions with 3	�	5, the de-
gree cutoff kc�N1/� matters and there exist two distinct scal-
ing variables �N1/�̄c with �̄c=2 / �1− �5−�� /�� and �N1/�̄�

with �̄�=� / ��−3� when ���nat=�−1. At �=�nat, the two
scaling variables merge into a single one. The scaling behav-
iors in the supercritical regime I ���N−1/�̄��, the intermediate
regime II �N−1/�̄c ���N−1/�̄��, the critical regime III ��N1/�̄c

=O�1��, and the subcritical regime IV ���−N1/�̄c� are sum-
marized in Fig. 3. The crossover from regime I to II is origi-
nated from the finiteness of the degree cutoff kc, while the
critical FSS in regime III is from the finiteness of both kc and
N.

The CP on the annealed SF network studied in Refs.
�9,10� is also characterized with the two �-dependent FSS
exponents when 2	�	3 and ���nat. The similarity be-
tween the equilibrium Ising model and the nonequilibrium
CP suggests that the two-parameter scaling is a generic fea-
ture of critical phenomena in annealed scale-free networks.

Extensive studies during the last decade have revealed
that critical phenomena on quenched networks and annealed
networks are characterized with the same set of bulk critical
exponents such as the order parameter exponent and suscep-
tibility exponent. However, they display distinct FSS behav-
iors. Annealed networks are characterized with two FSS ex-
ponents, which depend on � and �. In comparison to
annealed networks, quenched networks have a quenched dis-
order in structure. Besides, dynamic degrees of freedom on
quenched networks have finite correlations. It is another big
challenge to understand how these two ingredients cause the
distinct FSS behaviors, some of which is under investigation
�21�.
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APPENDIX: SCALING FUNCTIONS

From the free energy density function in Eq. �19� for the
exponential networks and also the SF networks with ��5,

one can easily derive �m̃� for small h̃ as

�m̃� � 	 12

bN

1/4U�1/2,r� + a�N3/4h̃U�3/4,r�

U�1/4,r� + a�N3/4h̃U�1/2,r�
, �A1�

where a�= �12 /b�1/4a, r= �3a2 /b�1/2�N1/2, and

U�s,r� = �
0




dyys−1 exp�− y + r�y� .

With this, we find the order parameter scaling at h̃=0 as

�m̃��,N�� = N−�/�̄�̃��N1/�̄;a,b� , �A2�

where �=1 /2, �̄=2, and
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FIG. 6. �Color online� The histogram for �m̃�c / ��m̃�c�, the order
parameter at �=0 normalized with the ensemble average, where
network parameters are �=4.0, k0=3, d=1, and �=�nat=3. The
curves from different values of N collapse onto a single curve.
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�̃�x;a,b� = 	12

b

1/4U�1/2,r0x�

U�1/4,r0x�
, �A3�

with r0= �3a2 /b�1/2 and x=�N1/�̄.

The zero-field susceptibility �̃= ���m̃�� / ��h̃� �h̃=0 is

�̃��,N� = N�/�̄�̃��N1/�̄;a,b� , �A4�

where �=1 and

�̃�x;a,b� = a	12

b

1/2
U�3/4,r0x�

U�1/4,r0x�
−

U2�1/2,r0x�
U2�1/4,r0x�� .

�A5�

Using the properties of the function U�s ,r� such as

U�s,r�

� �
2��2s��− r�−2s �r → − 
�
��s� �r = 0�

2�1/2er2/4	 r

2

2s−1
1 +

4�s − 1��s − 2�
r2 � �r → 
� , �

�A6�

one can show �̃�x���3a /bx1/2 or �2 / ��a��−x�−1/2 for x
→ �
, and �̃�x���2x�−1 or �1−2 /���−x�−1 for x→ �
.
We remark that the usual magnetization and the magnetic
susceptibility become m�a�m̃� and ��a�̃.

For the SF networks with 3	�	5, the scaling function
�̃c�x� for the order parameter near ��0 in Eq. �51� behaves
in the same way as the above �̃�x� except for replacing � by
�̃, �̄ by �̄c, and b by b0. For example, r becomes r
= �3a2 /b0�1/2�N1/�̄c. The susceptibility scaling function also
changes in the same way.
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