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A method of numerical calculation of the fourth virial coefficients of the mixture of additive hard spheres is
proposed. The results are compared with an exact analytical formula for the fourth partial virial coefficient B4

�1�

�i.e., three spheres of diameters �1 and one sphere of diameter �2� and a semiempirical expression for B4
�2� �i.e.,

two spheres of each kind�. It is shown that the first formula is nonanalytic and the implication to the equations
of state for hard-sphere mixtures is discussed.
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I. INTRODUCTION

A common starting point for the equation of state of the
hard-sphere �HS� fluid is the known virial series. The virial
expansion in powers of density for the fluid is

z = 1 + �
n=2

�

Bn�n−1, �1�

where z= pV / �NkBT�, kB is the Boltzmann constant, Bn are
the virial coefficients and � is the number density, �=N /V.
The virial coefficients are defined by exact formulas �free
from any approximation� in terms of integrals whose inte-
grands depend on intermolecular potential energy �1,2�.

In principle, the virial coefficients can be calculated for
any order. Unfortunately, calculation of high-order coeffi-
cients becomes increasingly difficult because both the num-
ber of integrals and their dimensionality rapidly increase. For
the pure HS system only the second, third, and fourth virial
coefficients are known analytically. It holds �3,4�

B2 =
2�

3
, B3 =

5�2

18
,

B4 = ��

6
�32707� + 438�2 − 4131 arccos�1/3�

70�
, �2�

where we take the sphere diameter, �, as a unit of length.
The higher virial coefficients up to B10 were obtained by a
numerical integration �5–16�.

The virial coefficients for a hard-sphere mixture are com-
position dependent. For a binary mixture it holds

Bn�s� = �
i=0

2 �n

i
�Bn

�i��s�x1
n−ix2

i �3�

where x1 and x2 are the molar fractions of particles 1 and 2,
respectively. Throughout the paper we take the first diameter
of the spheres, �1, as a unit of length. Then the partial virial
coefficients, Bn

�i��s�, depend on the diameter ratio s=�2 /�1.
Up to now only the second and third virial coefficients have
been known exactly �17,18�

B2
�0��s� =

2�

3
, B2

�1��s� =
2�

3
�1 + s

2
�3

, B2
�2��s� =

2�

3
s3,

�4�

and

B3
�0��s� =

5�2

18
, �5a�

B3
�1��s� =

�2

108
�1 + 6s + 15s2 + 8s3� , �5b�

B3
�2��s� =

�2s3

108
�8 + 15s + 6s2 + s3� , �5c�

B3
�3��s� =

5�2

18
s6. �5d�

For B4�s�, only B4
�0��s� and B4

�4��s� corresponding to the pure
HS are known analytically. An analytical expression for B4

�1�

was found at small diameter ratio, s�2 /�3−1�0.1547 �19�,

B4
�1��s� = ��

6
�3	−

9

56
s9 −

81

56
s8 −

162

35
s7 −

27

5
s6 +

27

40
s5

+
27

8
s4 +

21

4
s3 + 9s2 +

9

4
s +

1

4

 �6�

and due to symmetry condition

B4
�i��s� = s9B4

�n−i��1/s� , �7�

we can also obtain B4
�3��s� for s��3 / �2−�3��6.464. An

exact expression for other diameter ratios and the whole s
range of B4

�2��s� is unknown and only numerical values are
available �20,21�. The numerical values are also known for
the higher virial coefficients up to B7�s� �14,20,22�.

The aim of this work is to propose a numerical method for
the calculation of B4�s� for a HS mixture. We also find an
exact analytical expression for B4

�1��s� and B4
�3��s� and a very

accurate semiempirical expression for B4
�2��s�. On the basis of

these findings we can explain why different empirical equa-
tions of state based on extended scaled particle theory have
had only moderate success.
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II. NUMERICAL CALCULATIONS

A. Basic formulas

The fourth partial virial coefficient of a HS mixture is
given by the sum of all cluster integrals corresponding to
labeled irreducible f-bond diagrams with four colored points
�23�.

B4
�1��s� = 3B4

�1a��s� + 3B4
�1b��s� + 3B4

�1c��s� + B4
�1d��s� ,

�8a�

B4
�2��s� = 2B4

�2a��s� + B4
�2b��s� + 4B4

�2c��s� + B4
�2d��s� + B4

�2e��s�

+ B4
�2f��s� , �8b�

B4
�3��s� = 3B4

�3a��s� + 3B4
�3b��s� + 3B4

�3c��s� + B4
�3d��s� ,

�8c�

where B4
�ij��s� are contributions to the partial virial coeffi-

cients by topologically different groups of coefficients �see
Fig. 1�.For example, the coefficient B4

�2f��s� is

B4
�2f��s� = −

1

8
� � � f12f13f23f14f24f34dr2dr3dr4, �9�

where function f ij is the Mayer function, which is either −1 if
the particles overlap or 0 if they do not, the open circles
correspond to hard spheres with diameters �1=1 and the
filled circles to hard spheres with �2=s.

All contributions in Eq. �8� can be calculated analytically
using the three-dimensional �3D� Fourier transform and con-
volution �see Appendix�. The only exceptions are the last
contributions to each partial virial coefficient corresponding
to the two-irreducible diagram. They can be calculated by
some numerical integration. In previous papers a Monte
Carlo �MC� integration technique was used �23�. In this
method, a chain of four overlapping spheres is randomly
created and the value of a two-irreducible diagram is ob-
tained from the probability that remaining three f bonds are
also satisfied. The uncertainty of the results decreases with

the square root of the number of generated chains. Enor-
mously long calculations would by necessary to reach very
precise results.

B. Method

To simplify calculations of two-irreducible contributions
we can rewrite Eq. �9� to separate the integration over a
position of the fourth particle. Equation �9� then becomes

B4
�2f��s� = −

1

8
� � f12f13f23 � 	� f14f24f34dr4
dr2dr3.

�10�

The integrand of the integral in the brackets is not zero, if the
fourth sphere overlaps with the others. It means that the cen-
ter of the fourth sphere �with diameter s� must lie in the
overlap of the excluded regions of the three other spheres.
The term “excluded region of a hard body” is used as an
abbreviation of the more exact but much longer term “the
region in which the center of the additional sphere cannot be
located without overlapping the body and the additional
sphere.” Then Eq. �10� becomes

B4
�2f��s� =

1

8
� � f12f13f23Vexc

�3� �r2,r3�dr2dr3, �11�

where Vexc
�3� �r2 ,r3� is the volume of intersection of the ex-

cluded regions of spheres 1, 2, and 3. If spheres 1 and 2 have
diameter 1 and spheres 3 and 4 diameter s�1, the integra-
tion may be simplified using the polar and bispherical coor-
dinate systems giving

B4
�2f��s� = �2�

0

�1+s�/2 �
0

�1+s�/2 �
�a−b�

a+b

f�c�

�V�3��a,b,c�abcdcdbda , �12�

where a, b, and c are the distances between centers of
spheres 2–3, 1–3, and 1–2, respectively. Three different cases
may occur as seen in Fig. 2. In Fig. 2�a�, the excluded region
of the third sphere is fully contained in the excluded regions
of both spheres 1 and 2. The intersection of the excluded
regions is then identical to the excluded region of the third
particle and

Vexc
�3� �a,b,c� =

4�

3
s3. �13�

In Fig. 2�b�, the excluded region of the third sphere is fully
contained in the excluded region of the first sphere only. The

FIG. 1. The diagrams representing the topologically different
groups of contributions to the partial virial coefficients. Open and
filled circles represent components 1 �with diameters �1=1� and 2
�with diameters of �2=s�, respectively.

(b)(a) (c)

FIG. 2. Three different configurations of excluded regions of
hard spheres. The light shadow areas correspond to the excluded
regions of spheres and the dark shadow area to their intersection.
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volume Vexc
�3� is then equal to the volume of intersection of

excluded regions of the second and third spheres,

Vexc
�3� �a,b,c� =

�

12a
	a2 + �1 + 3s�a −

3

4
�1 − s�2


�	a −
1

2
�1 + 3s�
2

. �14�

The same relation holds if the excluded volume of the third
sphere is contained in the excluded region of the second
sphere with a substituted by b, i.e., the distance between
centers of the spheres 1 and 3. In Fig. 2�c�, the volume Vexc

�3�

is given by the intersection of all three excluded regions. The
expression for the triple intersection can be found in �24�
with a small correction pointed out in �25�.

The integration of Eq. �12� was carried out analytically in
regions where Eqs. �13� and �14� are valid, and numerically
for the triple intersection. We used a code which combines
the separation of the integration ranges into regions where
the integrand is a smooth function, Simpson’s quadrature
rule and extension of the Romberg extrapolation procedure.
The calculation of a single value on a regular PC takes only
several minutes.

For the remaining two-irreducible diagrams we used a
similar procedure. The complete partial virial coefficients
were obtained using Eq. �8�. The final results are listed in
Table I. The estimated relative uncertainty is less then 10−10.

Our results are compared with the best literature data �21�
in Fig. 3. The relative differences between both data sets are
smaller than the uncertainty of the literature data with the
exception of two points for B4

�2� where the differences are
two times greater. The estimated uncertainty of our data is of

course roughly million times smaller. Validity of our data has
been confirmed by comparison with the analytical formulas
presented in the next section.

III. ANALYTICAL FORMULAS

A. Partial virial coefficients B4
[1](s) and B4

[2](s)

The dimensionless chemical potential of the infinitely di-
luted hard sphere is obtained from Eqs. �1� and �3� using a
standard thermodynamic route giving

TABLE I. The partial virial coefficients for different diameter ratios.

s B4
�1��s� B4

�2��s� B4
�3��s�

0.05 5.5363065926�10−2 4.2899720643�10−5 1.7748605793�10−8

0.10 8.1906578467�10−2 4.0408838130�10−4 1.1970915337�10−6

0.15 1.1618867322�10−1 1.5866001798�10−3 1.4353978244�10−5

0.20 1.5893702101�10−1 4.3324295186�10−3 8.4807580777�10−5

0.25 2.1091252409�10−1 9.6676440221�10−3 3.3984081090�10−4

0.30 2.7289168283�10−1 1.8951505010�10−2 1.0649087420�10−3

0.35 3.4565959608�10−1 3.3929371019�10−2 2.8153238544�10−3

0.40 4.3000682538�10−1 5.6789237081�10−2 6.5707917903�10−3

0.45 5.2672765878�10−1 9.0221808911�10−2 1.3940836203�10−2

0.50 6.3661904860�10−1 1.3748404068�10−1 2.7429837490�10−2

0.55 7.6047991830�10−1 2.0246608476�10−1 5.0771118596�10−2

0.60 8.9911068887�10−1 2.8976161505�10−1 8.9340242203�10−2

0.65 1.0533129434 4.0474149532�10−1 1.5065843807�10−1

0.70 1.2238891830 5.5363077020�10−1 2.4499785734�10−1

0.75 1.4116426444 7.4358896209�10−1 3.8610115252�10−1

0.80 1.6173771622 9.8279366024�10−1 5.9202870779�10−1

0.85 1.8418970610 1.2805273917 8.8614769544�10−1

0.90 2.0860070726 1.6472677654 1.2982780073

0.95 2.3505122685 2.0947808824 1.8660110114
B

s

s

FIG. 3. The relative difference of the literature data and the new
values of the partial virial coefficients for different diameter ratios.
White circles, full circles and diamonds correspond to B4

�1��s�,
B4

�2��s� and B4
�3��s�, respectively.
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1
��s� = �

n=2

�
n

n − 1
Bn

�1��s��n−1, �15�

where 
1
��s� is the residual chemical potential of an infinitely

diluted hard sphere of diameter s in the system of spheres od
diameter 1 and 	=1 / �kBT�.

The same chemical potential is related to the average
probability of creating a cavity of diameter s in the NVT
ensemble, P�s� �26�,

	
1
��s� = − ln�P�s�� . �16�

At limit s=0 this probability is related to the ratio of the
intrinsic volume of molecules and the volume of the system
giving

P�0� = 1 −
�

6
� . �17�

Using the Taylor series in density we get from Eqs. �15�–�17�

Bn
�1��0� =

1

n
��

6
�n−1

. �18�

Differentiation of Eq. �16� with respect to s gives �26–28�

d	
1
��s�

ds
=

�

2
�1 + s�2�g2

��s� , �19�

where g2
��s� is the contact distribution function of the pair of

molecules with diameters 1 and s at infinite dilution.
For small densities the zeroth order approximation

g2
��s� = 1 �20�

together with Eqs. �15�–�17� give the exact expression for
B2

�1��s�.
Some time ago, we showed �26� that g2

��s� is related to the
thermodynamic properties by

ln�g2
��s�� = 	
1

��s� + 	
1�1� − 	
2
��1,s� , �21�

where 
1�1� is the chemical potential of the pure HS system
and 
2

��1,s� is the chemical potential at infinite dilution of a
hard dumbbell formed by a pair of spheres with diameter 1
and s at contact. The second and third term of the right hand
side of Eq. �21� can be joined giving

ln�g2
��s�� = 	
1�1� − 	w2

��s� , �22�

where w2
��s� is the work needed to form a cavity of diameter

s at contact with a HS of diameter 1. It can be expressed as

	w2
��s� =

�

4
��

0

s

�1 + x�2�
cos ��

1

�1 + cos ��

� g3
��x,��d cos �dx , �23�

where g3
��x ,�� is the distribution function of the HS at con-

tact with the hard dumbbell formed by two touching HS of
diameters 1 and x, � is the angle between the joins of centers
of spheres as shown in Fig. 4. The lower limit of the second
integral

cos �� =
1 − 2x − x2

�1 + x�2 �24�

corresponds to the configuration, in which all three spheres
are at contact. Equation �23� can be simplified using substi-
tution �2= �1+x�2�1+cos ��

	w2
��s� = 2���

0

s 1

�1 + x�2�
1

1+x

�3g3
��x,��d�dx , �25�

where � is the distance between both hard spheres of diam-
eter 1.

From g3
��x ,��=1 we get the first-order approximation. It

gives

g2
��s� = 1 +

�

6

1 + 4s

1 + s
� + . . . , �26�

where the coefficient of � has a geometrical meaning as the
volume of the intersection of excluded regions of both
spheres. The first order approximation with Eqs. �15�–�17�
gives the exact expression for both B2

�1��s� and B3
�1��s�.

The second order approximation can be obtained in a
similar way. The distribution function g3

��x ,�� is approxi-
mated by

g3
��x,�� = 1 + �Vexc

� �x,��� , �27�

where �Vexc
� �x ,�� is the intersection of the excluded regions

of a dumbbell �formed by touching spheres of diameters 1
and x� and a sphere at contact with the smaller sphere as
shown in Fig. 5.

Two different situations may occur. In Fig. 5�a�, the cavity
B is small and its excluded region is fully contained in the
union of the excluded regions of both spheres A and C. The
volume of the intersection of the excluded regions is given
by

�Vexc
� �x,�� = �Vexc

�1� �B� + �Vexc
�2� �A,C� − �Vexc

�2� �A,B� ,

�28�

where �Vexc
�1� �B� is the excluded volume of cavity B and

�Vexc
�2� �I ,J� is the volume of the intersection of excluded re-

gions of spheres I and J. In Fig. 5�b�, the excluded region of
B is not fully contained in the union of intersections and

FIG. 4. The configuration of three hard spheres at contact.
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�Vexc
� �x,�� = �Vexc

�2� �A,C� + �Vexc
�2� �B,C� − �Vexc

�3� �A,B,C� ,

�29�

where �Vexc
�3� �A ,B ,C� is the volume of the intersection of

excluded regions of spheres A, B and C. We remark that the
difference between Eqs. �28� and �29� equals the portion of
the excluded volume of B which is not contained in the in-
tersection of the excluded regions of A and C. The volumes

of the pair intersections are obtained as a difference of vol-
umes of the spheres and the dumbbell, and the volume of the
triple intersection is given by formulas in �24,25�.

For small values of s, s�2 /�3−1, the situation illustrated
in Fig. 5�a� occurs in all configurations giving

�Vexc
� �x,�� = �	 �3

12
− � +

�x2 + 2��x + 2�2

6�1 + x� 
 �30�

and the integrations in Eq. �25� yield

	w2
��s� =

�s2�

6

s2 + 4s + 6

1 + s
+

�2s2�2

2520
�1 + s�2�1050 + 1120s

+ 980s2 + 1288s3 + 1008s4 + 360s5 + 45s6� . �31�

Combining it with Eqs. �15�–�17� reproduces the exact ex-
pression for B4

�1��s� given by Eq. �6�.
For s�2 /�3−1, the calculation of w2

��s� is substantially
more complicated and it was obtained by a very careful us-
age of the computer algebraic system Maple �29�. The inte-
grals in Eq. �25� cannot be obtained by the automatic inte-
gration routine built in but needs a lot of human intervention.
The final results are given by Eq. �6� plus the additional term

�B4
�1��s� = �2	1

8
s�s + 2�P1 −

79

1120
s�s + 2�P2 −

1

960
s2�3s3 + 15s2 + 25s + 15�P3 −

17

2240
s�s2 + 3s + 3�P4

−
1

2240
�17s3 + 51s2 + 51s − 144�P5 −

1

6720
s�5s8 + 45s7 + 144s6 + 168s5 + 279s2 + 261s − 630�P6 −

3

35
s�s + 2�P7

−
11

280
s�s + 2�P8 −

1

960
s�3s4 + 15s3 + 25s2 + 15s − 90�P9 +

1

13440
s2�5s7 + 45s6 + 144s5 + 168s4 + 279s + 261�P10

+
�

13440
�10s9 + 90s8 + 288s7 + 336s6 − 21s5 − 105s4 + 383s3 + 729s2 + 624s − 432�

+
Q

80640
�30s6 + 180s5 + 279s4 − 84s3 − 210s2 + 228s + 745�
 , �32�

where

P1 = arctan�Q

2
� ,

P2 = arctan�Q� ,

P3 = arctan� Q

1 + s
� ,

P4 = arctan�− 1 + 3s

Q
� ,

P5 = arctan�7 + 3s

Q
� ,

P6 = arctan�1 + s

Q
� ,

P7 = arctan�1 + 3s2 + 6s

Q
� ,

P8 = arctan�− 1 + 2s + s2

Q
� ,

P9 = arctan	− 1 + 2s + s2

�1 + s�Q 
 ,

(b)(a)

FIG. 5. Two types of the intersection of excluded regions of
hard spheres. The light shadow areas correspond to the excluded
regions of hard dumbbell and sphere and the dark shadow area to
their intersection. Hard spheres A and C have diameters 1 and the
cavity B has diameter x�1
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P10 =
arctan	Q�1 + s��− 1 + 2s + s2�
s4 + 4s3 + 6s2 + 4s − 1


 − � s � 21/4

− �/2 s = 21/4

arctan	Q�1 + s��− 1 + 2s + s2�
s4 + 4s3 + 6s2 + 4s − 1


 s � 21/4� ,

Q = �3s2 + 6s − 1.

It means that B4
�1��s� is not an analytic function at

s0=2 /�3−1. For s�s0 the additional term, �B4
�1�, is zero,

and for s slightly greater than s0 it can be expanded to

�B4
�1� =

�2�4 3�s11/2

216
�7776

385
�3 −

2916

5005
�s

+
4481163

100100
�3�s2 + ¯� , �33�

where �s=s−s0. It implies that B4
�1��s� has a discontinuity in

the sixth derivative at s0.
Equation �32� was derived for s�1 only but a similar

analysis for s�1 has shown that the same formula is also
valid in this range.

To verify the final results given by Eqs. �6� and �32� sev-
eral tests were performed. The limiting behavior at small
values of s and the asymptotic expansion at big values of s
discussed in details in �30� is fully reproduced. For s=1 the
formulas simplify to the pure HS formula given by Eq. �2�.
As the derivative of the residual excess free energy of mixing
with respect to s must be zero when s=1, the derivative of
the partial virial coefficients must satisfy condition �31�

	dBn
�m��s�
ds



s=1

=
3�n − 1�m

n
Bn. �34�

This condition is also exactly fulfilled.
The values of B4

�1��s� for s�1 and B4
�3��s� obtained at the

same range from the symmetry condition Eq. �7� were com-
pared with the results of the numerical method described in
the previous section in Fig. 6. It is seen that the results co-
incide with relative deviations to better than 1�10−10.

B. Partial virial coefficients B4
[2](s)

We do not have an analytical formula for the partial virial
coefficients B4

�2��s�. On the other hand, there are a lot of
conditions enabling to find a precise empirical expression in
the whole range s� �0,��.

All terms of B4
�2��s� in Eq. �8b� but the last one, corre-

sponding to the two-irreducible diagram, are known analyti-
cally. At small diameter ratio, s, the contribution due to the
two-irreducible diagram, B4

�2f��s�, is nearly the same as the
negative value of the contribution B4

�2e��s�. The correspond-
ing diagrams differ in a single f bond connecting two spheres
with diameters 1. The conditional probability that both big
spheres overlap, provided that all other pairs of spheres over-
lap, is nearly one. The comparison of the values of numerical
calculation of B4

�2f��s� and the analytical formula for B4
�2e��s�

from Appendix shows that both contributions have the same

first three terms in the Maclaurin series and differ only in
sign

B4
�2f��s� � − B4

�2e��s� = − ��

6
s�3�1 +

15

4
s +

51

10
s2 + ¯� .

�35�

At s=1 we have two other conditions. The partial virial co-
efficients B4

�2��s� must reduce to the fourth virial coefficient
of pure HS

B4
�2��1� = B4 �36�

and the consistency condition Eq. �34� gives

	dB4
�2��s�
ds



s=1

=
9

2
B4. �37�

For s�1 the symmetry condition given by Eq. �7� applies. It
reduces to the relation

B4
�2��s� = s9B4

�2��1/s� , �38�

which together with Eq. �35� gives the asymptotic behavior
for big s.

To fulfill all conditions, the following semiempirical for-
mula for B4

�2��s� was proposed

B4
�2��s� =

�3s3

288
�1 + s��4 + 11s + 4s2� + B4

�2f��s� �39�

and

B4
�2f��s� = −

�3s9/2

216
	�2� 2

x3 +
15

4x
+

9

5
x� + Qx3
 , �40�

where x=�2 / �s+1 /s� and Q was approximated by the ratio-
nal function

B
s

s

FIG. 6. The relative difference of the numerical values and ana-
lytical formulas of the partial virial coefficients for different diam-
eter ratios. The white circles, full circles and diamonds correspond
to B4

�1��s�, B4
�2��s�, and B4

�3��s�, respectively.
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Q =
p0 + p1x + p2x2 + p3x3 + p4x4

1 + q1x + q2x2 + q3x3 + q4x4 . �41�

The coefficients in Eq. �41� given in Table II were obtained
by fitting the numerical values of B4

�2f��s� with constraints
given by Eqs. �36� and �37�.

The agreement of expression Eq. �39� with the numerical
results is shown in Fig. 5. The relative error of the
semiemirical formula is less then 1.5�10−9. Although it is
about ten times greater than the differences for B4

�1��s� and
B4

�3��s�, the precision is more than sufficient for nearly all
applications. We remark that the most precise existing semi-
empirical formula due to Wheatley �31� has errors about mil-
lion times greater.

IV. CONCLUSIONS

It previous sections, we calculated precisely the fourth
virial coefficients of the additive hard-sphere mixture and
found exact analytical formula for the partial virial coeffi-
cients B4

�1��s� and B4
�3��s� and very precise semiempirical for-

mula for B4
�2��s�. The results obtained show that the fourth

virial coefficient is not analytic at the diameter ratio s
=2 /�3−1. Using a similar argument we can prove that a
similar nonanalycity must occur also for higher virial coeffi-
cients. Nearly all modern equations of state of the HS mix-
ture are based on the modification of the scaled particle
theory �32� �see �30� for a review� and they are analytical for
all diameter ratios. Consequently, any attempt to improve
substantially the equation of state must exhibit the same
point of nonanalycity as the virial coefficients.

ACKNOWLEDGMENTS

The financial support of the Ministry of Education, Youth,
and Sports of the Czech Republic under Project No.
6046137307 is gratefully acknowledged. We thank Dr. P.
Voňka for stimulating discussions regarding the semiempir-
ical formula for B4

�2f��s�.

APPENDIX: THE CONTRIBUTIONS TO THE PARTIAL
VIRIAL COEFFICIENTS

We used computer algebraic system Maple �29� to evalu-
ate all but two-irreducible diagrams for s�1

B4
�1a� = −

�3

90720
�5s3 + 15s2 − 147s + 263��1 + s�6,

�A1�

B4
�1b� =

�3

90720
�1575s3 + 3078s2 + 1431s + 263� , �A2�

B4
�1c� =

�3

181440
�10s9 + 90s8 + 36s7 − 588s6 − 504s5 + 2520s4

+ 6300s3 + 3780s2 + 945s + 105� , �A3�

B4
�2a� = −

�3

22680
�25s6 + 54s5 − 297s4 + 84s3

+ 1575s2 + 630s + 105�s3, �A4�

B4
�2b� = −

17�3

90720
�1 + s�9, �A5�

B4
�2c� =

�3

181440
�100s6 + 216s5 − 1188s4 + 756s3

+ 7875s2 + 4095s + 840�s3, �A6�

B4
�2d� =

�3

90720
�420s6 + 1575s5 + 2142s4

+ 1428s3 + 612s2 + 153s + 17� , �A7�

B4
�2e� =

�3

90720
�17s6 + 153s5 + 612s4 + 1428s3

+ 2142s2 + 1575s + 420�s3, �A8�

B4
�3a� = −

�3

90720
�263s3 − 147s2 + 15s + 5��1 + s�6,

�A9�

B4
�3b� =

�3

90720
�263s3 + 1431s2 + 3078s + 1575�s6,

�A10�

B4
�3c� =

�3

181440
�105s9 + 945s8 + 3780s7 + 6300s6 + 2520s5

− 504s4 − 588s3 + 36s2 + 90s + 10� . �A11�

TABLE II. The coefficients in Eq. �41�.

i pi qi

0 −0.948874987216968

1 5.20484573601241 −5.44950508637550

2 −6.62156460132033 7.74189993743446

3 −3.77999451107081 −1.40796939169607

4 0.441614216058416 8.63794384590824
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