
Experimental realization of directed percolation criticality in turbulent liquid crystals

Kazumasa A. Takeuchi,1,2,* Masafumi Kuroda,1 Hugues Chaté,2 and Masaki Sano1,†

1Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2Service de Physique de l’État Condensé, CEA-Saclay, 91191 Gif-sur-Yvette, France

�Received 24 July 2009; published 16 November 2009�

This is a comprehensive report on the phase transition between two turbulent states of electroconvection in
nematic liquid crystals, which was recently found by the authors to be in the directed percolation �DP�
universality class �K. A. Takeuchi et al., Phys. Rev. Lett. 99, 234503 �2007��. We further investigate both static
and dynamic critical behaviors of this phase transition, measuring a total of 12 critical exponents, 5 scaling
functions, and 8 scaling relations, all in full agreement with those characterizing the DP class in 2+1 dimen-
sions. Developing an experimental technique to create a seed of topological-defect turbulence by pulse laser,
we confirm in particular the rapidity symmetry, which is a basic but nontrivial consequence of the field-
theoretic approach to DP. This provides a clear experimental realization of this outstanding truly out-of-
equilibrium universality class, dominating most phase transitions into an absorbing state.
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I. INTRODUCTION

Absorbing states, i.e., states which systems may fall into
but never escape from, and phase transitions into them are
expected to be ubiquitous in nature. For instance, spreading
or contamination processes such as fires or epidemics exhibit
such transitions when the propagation rate changes: initially
active �infected� regions eventually disappear forever at low
rates, i.e., the absorbing state is reached, while they can be
sustained �pandemic regime� for fast-enough propagation.
Examples abound far beyond hundreds of numerical models,
describing, e.g., catalytic reactions, granular flows, and cal-
cium dynamics in living cells, to name but a few, have been
shown to exhibit such absorbing phase transitions �1,2�. Such
phase transitions also naturally arise from general problems
such as synchronization �3,4�, self-organized criticality �5�,
spatiotemporal intermittency �STI� �6�, and depinning �7,8�.
The vast majority of these transitions share the same critical
behavior, that of the “directed percolation” �DP� class �1,2�,
as long as they are continuous.

Deep theoretical issues underpin this situation. Whereas
universality is well understood for systems in thermody-
namic equilibrium, this is still not the case for systems driven
out of equilibrium, where even the relevant ingredients de-
termining the class are not well understood. In this context,
absorbing phase transitions are central because of their genu-
ine nonequilibrium character since absorbing states directly
imply violation of the detailed balance. Janssen and Grass-
berger �9,10� conjectured that the DP universality class con-
tains all continuous transitions into a single effective absorb-
ing state in the absence of any extra symmetry or
conservation law. The DP class thus appears as the simplest
and most common case as testified by overwhelming numeri-
cal evidence.

However, the situation has been quite different in experi-
ments. Over the last 20 years and more, a number of experi-

ments have been performed in situations where DP-class
transitions would be theoretically expected, but they have
always yielded mixed and/or partial results with limited ac-
curacy �7,11–22� �Table I�. This lack of fully convincing ex-
perimental realizations, in contrast with the wealth of nu-
merical results, has been found surprising and a matter of
concern in the literature �1,28�.

Recently, though, studying a STI regime occurring in tur-
bulent liquid crystals, we found a transition whose complete
set of static critical exponents matches those of the DP class
�29�. The goal of the present paper is to provide a compre-
hensive report on this transition including not only a more
complete description of experiments designed to investigate
the static critical behavior but also new experiments giving
access to dynamic critical behavior.

The paper is organized as follows. We first illustrate the
coarse-grained dynamics of the turbulent regime of electro-
convection studied and our basic experimental setup �Sec.
II�, with further details on image analysis given in the Ap-
pendix. To characterize the critical behavior, we perform
three series of experiments: �a� steady-state experiment un-
der constant applied voltages �Sec. III�, �b� critical-quench
experiment starting from fully active initial conditions �Sec.
IV�, and �c� critical-spreading experiment starting from a
single active seed, prepared with an experimental technique
using pulse laser, developed in this work �Sec. V�. In Sec.
VI, our results are summarized and we discuss why clear
DP-class critical behavior is observed rather easily in our
system, contrary to many other experiments performed in the
past in this context.

II. EXPERIMENTAL SETUP

We work on the electrohydrodynamic convection of nem-
atic liquid crystals, which occurs when a thin layer of liquid
crystal is subjected to an external voltage strong enough to
trigger the Carr-Helfrich instability �30,31�. This is a priori a
suitable system to study critical behavior, thanks to its pos-
sibly large aspect ratio, fast response time, and easy control-
lability. We focus on the transition between two turbulent

*kazumasa@daisy.phys.s.u-tokyo.ac.jp
†sano@phys.s.u-tokyo.ac.jp

PHYSICAL REVIEW E 80, 051116 �2009�

Selected for a Viewpoint in Physics

1539-3755/2009/80�5�/051116�12� ©2009 The American Physical Society051116-1

http://dx.doi.org/10.1103/PhysRevE.80.051116
http://link.aps.org/viewpoint-for/10.1103/PhysRevE.80.051116


regimes, called dynamic scattering modes 1 and 2 �DSM1
and DSM2�, observed successively upon increasing the root-
mean-square amplitude of the voltage V at relatively low
frequencies �31,32�. The difference between DSM1 and
DSM2 lies in their density of topological defects in the di-
rector field �Fig. 1�a��. In the DSM2 state, a large quantity of
these defects, called disclinations, are present �34�. They
elongate and split constantly under the shear due to the fluc-
tuating turbulent flow around. In DSM1, on the other hand,
disclinations are present but kept smaller than the critical
size and disappear immediately. Their density thus remains
very low. The many disclinations in DSM2 lead to the loss of
macroscopic nematic anisotropy and to a lower light trans-
mittance than in DSM1.

Our basic experimental setup is shown in Fig. 2. The
sample cell is made of two parallel glass plates spaced by a
polyester film of thickness d=12 �m. Both inner surfaces
are covered with transparent electrodes of size 14
�14 mm2, coated with polyvinyl alcohol, and then rubbed
in order that molecules are planarly aligned in the x direc-
tion, defined thereby. The cell is filled with
N-�4-methoxybenzylidene�-4-butylaniline �MBBA� �purity
�99.5%, Tokyo Chemical Industry� doped with 0.01 wt %
of tetra-n-butylammonium bromide. The temperature of the
cell is kept constant carefully by a handmade thermocontrol-

ler, composed of heating wires and Peltier elements con-
trolled by a proportional-integral-derivative feedback loop
with a lock-in amplifier �Fig. 2�b��. Windows of the thermo-
controller are made of sapphire in order to improve the spa-
tial homogeneity of the temperature. Throughout each series
of experiments, the cell temperature is maintained at 26.0 °C
with fluctuations typically of a few mK, unless otherwise
stipulated, measured by three thermistors placed at different
positions close to the cell.

We observe the electroconvection through the transmitted
light from a handmade stabilized light source made of light-
emitting diodes, recorded by a charge-coupled device cam-
era. The observed region is a central rectangle of size 1217
�911 �m2 �inset of Fig. 2�. Since there is a minimum linear
size of DSM2 domains, d /�2 �32�, we can roughly estimate
the number of effective degrees of freedom at 1650�1650
�2.7�106 for the convection area and 143�107�1.5
�104 for the observation area. Note that the meaningful fig-
ure is that of the total system size, which is at least four
orders of magnitude larger than in earlier experimental stud-
ies �Table I�. In the following, we vary V and fix the fre-
quency at 250 Hz at roughly one third of the cutoff fre-
quency 820�70 Hz which separates the conducting and the
dielectric regimes of electroconvection �30,31�.

Disclinations being topological defects, the spontaneous
nucleation of DSM2 in a DSM1 domain is in principle for-

TABLE I. Summary of critical exponents measured in earlier experiments. Number in parentheses is the
range of error given by the corresponding authors.

�1+1�D system Sizea � �� �� �� �� Refs.

Annular Rayleigh-Bénard 22 0.5 1.9�1� 1.9 �11�
Annular Rayleigh-Bénard 35 0.5 0.5 1.7�1� 2.0�1� �12�
Linear Rayleigh-Bénard 25.7 0.30�5� 0.50�5� 0.50�5� 1.6�2� 2.0�2� �12�
Interface roughening �� /�� =0.63�4� �7�
Viscous fingering 60 0.45�5� 0.64�2� 0.61�2� �13�
Vortices of fluid 15 0.5 1.7 �14�
Taylor-Deen 90 1.30�26� 0.64, 0.53 0.73 1.67�14� 1.74�16� �15�
Taylor-Couette 70 1 0.4 1.4–2.5 �16�
Granular flow �� −��=1 �18,23�
Torsional Couette 0.30�1� 0.53�5� �19�
Ferrofluidic spikes 108 0.30�5� 1.1�2� 0.62�14� 1.70�5� 2.1�1� �20�
Lateral heat convection in annulus 114 0.27�3� 0.30�4� 0.75�3� �21�

DPb 0.276 1.097 1.734 1.748c 1.841c �24�
�� /�� =0.633, �� −��=0.637

�2+1�D system Size � �� �� �� �� Refs.

Liquid columns 169 0.56�5� �22�
DSM1-DSM2 �present paper�d 2.7�106 0.59�4� 0.75�6� 1.29�11� 1.08�18� 1.60�5�

DPb 0.583�3� 0.733�3� 1.295�6� 1.204�2�c 1.5495�10�c �25,26�
aNumber of effective degrees of freedom indicated by the corresponding authors.
bSome exponents are obtained using scaling relations. Errors are then estimated by the law of propagation of
error.
cSee also the remark �27�.
dOnly some of the measured exponents are shown �see Table II for the complete list�.
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bidden. It is indeed an essentially unobservable rare event
except along the edges of the electrode and for very high
voltages far from the range investigated in the present paper.
Therefore, the fully DSM1 state serves as an absorbing state.
On the other hand, DSM2 domains introduced externally or
present initially in the system can remain sustained in the
bulk for large enough voltages but eventually disappear for
voltages lower than a certain threshold Vc. Closely above Vc,
a regime of STI is observed, with DSM2 patches moving
around on a DSM1 background �Fig. 1�b� and movie S1 in
Ref. �33��. The basic dynamics of the observed STI is illus-
trated in Fig. 1�d�: active DSM2 patches evolve in space time
essentially by contamination of neighboring inactive �ab-
sorbing� DSM1 regions and by relaxation into the DSM1
state. This suggests an absorbing phase transition induced by
change in rates of both elementary processes �6�, which are
functions of the applied voltage here. The order parameter �
is then simply the ratio of the surface occupied by active
DSM2 regions to the whole area.

Prior to any analysis, we must distinguish DSM2 domains
from DSM1. This binary reduction can be easily performed

by our eyes, so we automated it, based on the facts that
DSM2 domains have lower transmittance, longer time corre-
lations, and a minimum area of d2 /2 �32� �see Appendix for
details�. A typical result is shown in Fig. 1�c� and in movie
S2 in Ref. �33�. Figure 1�e� displays spatiotemporal diagrams
obtained this way, showing how DSM2 patches evolve in the
steady state. This supports the qualitative dynamics illus-
trated in Fig. 1�d� and indeed looks like the directed perco-
lation of, say, water in a porous medium under gravitational
field.

III. STEADY-STATE EXPERIMENT

We first observe STI in the steady state under constant
voltage V in the range of 34.858 V	V	39.998 V. The
voltage for the onset of steady roll convection �Williams do-
main� is V�=8.95 V. Spatiotemporal distributions of DSM2
patches are recorded over the period 1000 s
T
8000 s,
which is longer than 103 correlation times defined from the
fluctuations of the order parameter ��t�.
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FIG. 1. �Color online� Spatiotemporal intermittency between DSM1 and DSM2. �a� Sketch of a DSM2 domain with many entangled
disclinations, i.e., loops of singularities in orientations of liquid crystal. Blue dashed curves in the closeup indicate contour lines of equal
alignment. �b� Snapshot taken at 35.153 V. Active �DSM2� patches appear darker than the absorbing DSM1 background. See also movie S1
in Ref. �33�. �c� Binarized image of �b�. See also movie S2 in Ref. �33�. �d� Sketch of the dynamics: DSM2 domains �gray� stochastically
contaminate �c� neighboring DSM1 regions �white� and/or relax �r� into the DSM1 state but do not nucleate spontaneously within DSM1
regions �DSM1 is absorbing�. �e� Spatiotemporal binarized diagrams showing DSM2 regions for three voltages near the critical point. The
diagrams are shown in the range of 1206�899 �m2 �the whole observation area� in space and 6.6 s in time.
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emitting diode, CCD: charge-coupled device camera, PC: computer, PID: proportional-integral derivative. See text for details.
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Figure 3 shows the time-averaged order parameter �̄, i.e.,
the average fraction of DSM2. It shows that the transition is
continuous and that �̄ scales algebraically near the critical
point. Fitting those data in the algebraic regime �all the
points except for the four highest voltages in Fig. 3� with the
usual scaling form �35�

�̄ � �V2 − Vc
2��, �1�

the critical voltage Vc and the critical exponent � are found
to be

Vc = 34.856�4� V, � = 0.59�4� , �2�

where the numbers in parentheses indicate the range of errors
in the last digits �36�. Our estimate �=0.59�4� is in good
agreement with the value for �2+1�-dimensional DP, �DP

=0.583�3� �25,26�.
We then measure the distributions of the sizes l and dura-

tions � of inactive �DSM1� regions or intervals between two
neighboring active �DSM2� patches. Histograms are made
separately for each spatial direction, lx and ly, to take account
of the anisotropy of DSM1 �37,38�. Care is also taken to
compensate missing intervals due to the finite observation
window: since an interval of size l may not be captured
within a frame of size L, i.e., either edge of the interval may
not be in the frame, with probability l /L, the unbiased dis-
tributions N1�l� are estimated from the observed ones by
N1�l�=Nobs�l� / �1− l /L� �39�.

The results are shown in Fig. 4. We find that the DSM1
distributions decay algebraically within the observed length
and time scale for voltages very close to criticality, while for
higher voltages they start to decay exponentially from certain
characteristic length or time scales, as expected for continu-
ous absorbing phase transitions �2�. The observed power-law
decays are fitted as N1�l�� l−�� and N1�����−�� with

�x = 1.08�18�, �y = 1.19�12�, �� = 1.60�5� , �3�

where �x and �y indicate the exponent �� measured in the x
and y directions, respectively. These exponents are directly
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connected to the fractal dimensions df of the DSM2 clusters
measured in the corresponding direction as �=df+1. The
critical exponents �� and �� for DP can be estimated using
scaling relations with the order parameter exponent � and the
correlation length and time exponents �� and ��, namely �2�,

�� = 2 − �/��, �� = 2 − �/�� . �4�

They give ��
DP=1.204�2� and ��

DP=1.5495�10� for �2+1� di-
mensions �26�. Although the existence of slight discrepancies
of order 10−2 in Eq. �4� is suggested from numerical studies
�40,41�, our estimates in Eq. �3� agree with values expected
for the DP class at any rate.

Moreover, the DSM1 distributions allow estimating cor-
relation length and time scales, �� and ��, respectively, from
their exponential tails shown in Figs. 4�d�–4�f�. Fitting dis-
tributions with an empirical form �11,20�

N1�l�,N1��� � �Al−� + B�e−l/�, �5�

with powers �� and �� fixed at the estimates in Eq. �3�, we
obtain the results shown in Fig. 5. Both �� and �� show
algebraic divergence,

�� � �V2 − Vc
2�−��, �� � �V2 − Vc

2�−�� , �6�

near criticality as expected, except for the first two points in
Fig. 5�c�, which deviate from the power law presumably due
to finite length of movies �120 s� used to count the distribu-

tions. Fitting Eq. �6� to the data in scaling regions �the first
five points for �x ,�y and all the points except the first two for
���, we obtain

�x = 0.75�6�, �y = 0.78�9�, �� = 1.29�11� . �7�

They are in good agreement with the DP values ��
DP

=0.733�3� and ��
DP=1.295�6� �25,26�. In addition, the facts

that no significant anisotropy is found between �x and �y and
that they can be even shorter than the cell depth d=12 �m
�Figs. 5�a� and 5�b�� suggest that distributions of DSM2
patches are practically not influenced by the anisotropy of
DSM1 �37,38� and by the existence of coherent roll structure
of width roughly d behind DSM1 �38�.

On the other hand, distributions of sizes of active �DSM2�
patches do not show any long-range correlations even close
to criticality �Figs. 6�a� and 6�b��. It implies that the local
recession of DSM2 into DSM1 sketched in Fig. 1�d� is in-
deed always present. The effective relaxation rate can be
directly estimated just as an inverse of the characteristic time
�0 from the exponential tail of the temporal DSM2 distribu-
tion, shown in Fig. 6�c�. The characteristic time �0 increases
linearly with V except for high voltages, where it is not sim-
ply determined from the dynamics of individual patches be-
cause of the saturation of the DSM2 fraction �Fig. 3�. In
particular, it exhibits no sign of criticality. All these observa-
tions are consistent with, e.g., the dynamics of the so-called
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contact process �42� �depicted in Fig. 1�d��, a prototypical
model showing a DP-class transition �1,2�, indicating that
such process indeed governs the coarse-grained dynamics of
our STI regime in liquid crystal turbulence.

Similarly, the spatial distributions of DSM2 sizes yield
characteristic length scales lx0 and ly0 �Fig. 6�c��. Although
they appear to be also dominated by the relaxation process,
as suggested from an effectively constant ratio l0 /�0 �inset of
Fig. 6�c��, they clearly show anisotropy �Fig. 6�c��, as op-
posed to the correlation lengths �x and �y estimated from
DSM1-size distributions �Figs. 5�a� and 5�b��. This implies
that the contamination process of DSM2 is indeed driven by
the anisotropic fluctuating shear flow of surrounding DSM1.
The larger effective contamination rate in x is in line with the
fact that the turbulent structure of DSM1 remains mainly in
the x-z plane �37� but at odds with the global elliptic shape of
growing DSM2 nuclei, longer in y, observed for higher volt-
ages �32,43�. Both would be explained if we assume that
turbulent flow behind is faster and more correlated in the y
direction, but further studies are necessary on this point.

IV. CRITICAL-QUENCH EXPERIMENT

A typical experiment performed usually on numerical
models showing absorbing phase transitions is the critical
decay of active patches from fully active initial conditions
�1,2�. In such critical-quench experiments, correlation length,
and time grow in time, and, as long as they remain much
smaller than the system size, scaling estimates are free from
finite-size effects.

Experiments are performed as follows: we first apply
60 V��Vc� to the cell and wait until it is entirely invaded by
DSM2 domains. We then suddenly decrease the applied volt-
age to a value in the range of 34.86 V	V	35.16 V, i.e.,
near Vc, and observe the time decay of activity for 900 s. We
repeat this ten times for each V and average the results over
this ensemble.

We first measure the decay of the order parameter ��t�
after the quench �Fig. 7�a��. As expected, ��t� decays expo-
nentially with a certain characteristic time for lower voltages,
converges to a finite value for higher voltages, and in be-
tween at V=35.04 V, it decays algebraically over the whole
observation time. A simple scaling ansatz implies the follow-
ing functional form for ��t� in this case:

��t� � t−�F��t1/���, � = �/�� , �8�

where 	�V2−Vc
2� /Vc

2 is the deviation from criticality and
F��x� is a universal scaling function. From the slopes of the
algebraic regimes for the three V values closest to the thresh-
old, we estimate

Vc = 35.04�1� V, � = 0.48�5� . �9�

Note that Vc measured here is slightly higher than in the
steady-state experiments. In fact, the roll convection onset
V�=8.96 V was also higher. We believe this is because of
possible slight shift in the controlled temperature and also of
the aging of our sample, a well known property of MBBA,
during the days which separated the two sets of experiments.
On the other hand, no measurable shift of Vc was detected

during a given set of experiments. We also confirmed that Vc
here is consistent with a threshold roughly estimated from
steady state just before the critical-quench experiments. Our
estimate of the critical exponent � is again in good agree-
ment with the DP value �DP=0.4505�10� �26�.

Furthermore, the scaling form of Eq. �8� implies that the
time series ��t� for different voltages collapse on a single
curve F��x� when ��t�t� is plotted as a function of t

��. Our
data do collapse reasonably well �Fig. 7�b��, where the upper
and lower branches correspond to V�Vc and V
Vc, respec-
tively. It is compared and found in good agreement with the
universal scaling function F��x� of the DP class �dashed
curve in Fig. 7�b��, calculated numerically from the
�2+1�-dimensional contact process. It shows that the decay
of DSM2 patches is governed by this DP universal function
except for the very early stage where it is influenced by
microscopic features of the liquid crystal as expected.

We also measure the autocorrelation function C�t , t0� de-
fined as

C�t,t0� = ���r,t���r,t0�� − ���r,t0�����r,t�� , �10�

where �¯ � denotes average in space and over ensembles.
During the critical decaying process, C�t , t0� is not a function
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of t− t0 �inset of Fig. 8� but scaled rather by t / t0, a feature
sometimes referred to as “aging” in the literature �44�. Our
data can be collapsed �Fig. 8� using the expected scaling
form

C�t,t0� � t0
−bFC�t/t0�, FC�x� � x−�C/z�x → �� , �11�

with

b = 0.9�1�, �C/z = 2.5�3� . �12�

Both are in agreement with DP values bDP=0.901�2� and
�C

DP /zDP=2.583�14�, estimated from the scaling relations
�45�

b = 2�/��, �C/z = 1 + �� + ds���/�� , �13�

where ds=2 is the spatial dimension.
The dynamic aspect of critical behavior can also be char-

acterized using first-passage quantities �46�. One of these is
the local persistence probability Pl�t�, defined as the prob-
ability that the local state at a given point in space has not
changed until time t, which typically shows a power-law
decay Pl�t�� t−�l. The nontrivial local persistence exponent
�l is known to be in general independent of usual critical
exponents such as � ,�� ,�� and far less is known about its
universality mainly due to the fact that persistence is a quan-
tity involving an infinite-point correlation function.

In the context of DP, local persistence is measured from
the probability that initially inactive “sites” do not become
active up to time t. �The persistence of activity is always
dominated by the local relaxation into the inactive state and
shows only exponential decay similar to Fig. 6.� Initial con-
ditions are typically set to be random in numerical studies
�47–50�, which is, however, impossible in this experiment at
present. We therefore consider, as “initial condition” for the
local persistence configurations chosen at some moment t0
during the critical quench and measure the persistence prob-
ability Pl�t− t0�.

Since the scaling regime for the order parameter decay
observed in Fig. 7 starts only after times of typically 1–2 s,
we further limit ourselves to t0 values larger than this micro-

scopic nonuniversal time. Typical results are shown for t0
=2.14 s in Fig. 9. The local persistence probability Pl�t� is
found to converge to a finite constant for V
Vc and to decay
exponentially for V�Vc, as expected from numerical studies
of absorbing phase transitions �47–51�. At criticality, Pl�t�
decays algebraically �again beyond some time of the order of
t0� with

�l = 1.55�7� . �14�

The value of �l for �2+1�-dimensional DP is still a matter of
debate, with different estimates in past numerical studies:
�l

DP=1.50�1� �48�, �l
DP�1.6 �50�, and very recently �l

DP

=1.611�7�, found with an improved algorithm �51�. Our
value, which is rather robust with respect to changing the
initial conditions and the initial time �Fig. 9�, is in agreement
with all numerical estimates to our accuracy.

V. CRITICAL-SPREADING EXPERIMENT

In order to complete the characterization of the dynamic
critical behavior of the DSM1-DSM2 transition, we per-
formed critical-spreading experiments, which start from a
single seed of active DSM2 region. This allows us to mea-
sure other critical exponents, such as the one governing the
scaling of the probability Ps��� that a cluster starting from a
single active seed survives forever: Ps������, known to
serve as another order parameter characterizing absorbing
phase transitions �1,2�.

The two exponents � and �� are known to be equal to
each other for the DP class, thanks to an extra symmetry
linked to time-reversal, the so-called rapidity symmetry
�1,2�. This symmetry also implies that �=�, where � is de-
fined from the time decay of the survival probability at
threshold, Ps�t�� t−�.

We stress, however, that the rapidity symmetry and the
resulting scaling relations do not hold generically in absorb-
ing phase transitions. Although a value of �� consistent with
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DP was suggested from the critical scaling of hysteresis
loops in the DSM1-DSM2 transition �52�, it remains impor-
tant to assess all spreading exponents as accurately and in-
dependently as possible in order to complete our character-
ization of DP-class critical behavior and check directly the
rapidity symmetry.

A. Technique for nucleating DSM2

In contrast to numerical simulations, it is not easy, in ex-
periments, to prepare an initial, single, localized seed of
DSM2 in an otherwise homogeneous DSM1 system. We de-
veloped an experimental technique for nucleating a DSM2
patch artificially using a pulse laser.

The experimental setup for the critical-spreading experi-
ments is schematically shown in Fig. 10. We emit 4–6 ns
pulses of Nd:YAG laser �MiniLase II 20 Hz, New Wave
Research�, focused by an objective lens �times ten, numerical
aperture of 0.30, UPlanFLN, Olympus�, into the cell. Using
its third harmonic at 355 nm, around which MBBA has a
broad absorption band �53,54�, and reducing its energy to
roughly 0.3 nJ�2�109 eV at the cell, we can indeed
nucleate DSM2 from the absorbing DSM1 state �inset of Fig.
11� without any observable damage to the sample. Figure 11
shows the probability of the DSM2 nucleation induced by
emitting five successive laser pulses at 20 Hz. The nucleation
probability increases with voltage and is significantly higher
for laser polarized along the mean director field. This con-
firms that nucleation is indeed brought about by the laser
absorption of MBBA since its absorbance is higher along the
long axis of the molecule �53,54�. Moreover, the electronic
structure of MBBA reveals that the ultraviolet absorption
band stems from the C-N and C-C bonds between the aniline
and benzyliden rings and is strongly coupled with twist
angles there �54�. We therefore speculate that absorption of
ultraviolet laser pulses might lead to a sudden conformation
change in the molecular structure, creating a topological de-
fect and thus triggering a DSM2 nucleation.

B. Results

We perform the critical-spreading experiments with the
technique above. For each measurement we emit ten succes-
sive pulses polarized along the molecules �in the x direction�,
with which DSM2 is always nucleated for voltages of inter-
est. In order to make reliable statistics for the survival prob-
ability, it is necessary to repeat experiments at least hundreds
of times for each voltage. This led us to improve further the
temperature control of the cell, both in short and long time
scales. This is achieved by placing the thermocontroller in a
thermally insulated chamber �Fig. 10�, made of plastic foam
stage, wall, and ceiling, whose temperature inside is kept
constant by circulating constant-temperature water. The cell
temperature is finally stabilized at 25.0 °C with fluctuations
at most 2 mK over 2 weeks. This allows us to repeat the
experiment 563–567 times for each voltage in the range of
36.25 V	V	36.65 V. The roll convection onset and the
critical voltage roughly measured in steady state were V�

=8.55 V and Vc�36.5 V, respectively.
We measure not only the survival probability Ps�t� but

also the volume V�t� and the mean square radius R2�t� of
DSM2 clusters, averaged over all the repetitions, even if the
cluster dies before time t. The following relations are then
expected from the scaling ansatz �1,2�:

Ps�t� � t−�Fs�t1/���, � = ��/�� , �15�

V�t� � t�Fv�t1/���, � = �ds�� − � − ���/�� , �16�

R2�t� � t�Fr�t1/���, � = 2/z = 2��/�� , �17�

where Fs�x� ,Fv�x� ,Fr�x� are universal scaling functions.
The experimental results are shown in Fig. 12. Except for

R2�t� where all the data are almost overlapping, which is also
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typically the case in simulations of DP-class models, the data
show opposite curvatures below and above a certain voltage.
Seeking for the curve with the longest algebraic regime in
V�t�, which is statistically most reliable, we locate the critical
voltage Vc at

Vc = 36.45�2� V. �18�

We then measure the three critical exponents � ,� ,� from the
algebraic regime for three voltages around Vc, yielding

� = 0.46�5�, � = 0.22�5�, � = 1.15�9� . �19�

All of them are in good agreement with the DP exponents,
�DP=0.4505�10�, �DP=0.2295�10�, and �DP=1.1325�10�
�26�. This confirms the scaling relations expressing the rapid-
ity symmetry. It is further confirmed by plotting the ratio of
the survival probability Ps�t� to the DSM2 fraction ��t� in the
critical-quench experiments �inset of Fig. 12�a��, which
shows that the two order parameters become asymptotically
proportional to each other

Ps�t� � m2��t� �20�

with the coefficient m2�3.2.
We also tested data collapse �Figs. 12�d�–12�f��, which

provides reasonable results given the limited statistical accu-
racy of the data. The obtained scaling functions coincide

satisfactorily with those of the �2+1�-dimensional contact
process �dashed curves in Figs. 12�d�–12�f��. As in the data
collapse of ��t� �Fig. 7�b��, the collapsed data show typical
time scales above which the corresponding quantities are
governed by the DP scaling functions.

VI. SUMMARY AND DISCUSSION

We have performed three series of experiments, namely,
steady-state experiments, critical-quench experiments, and
critical-spreading experiments, to characterize the critical be-
havior of the DSM1-DSM2 transition in liquid crystal turbu-
lence. Table II summarizes the main results. We have mea-
sured in total 12 critical exponents with reasonable accuracy
typically over a few orders of magnitude of power-law re-
gimes. All of the measured exponent values agree within a
few percent with those defining the DP universality class
�36�. Given that most of them are theoretically linked
through scaling relations, we can equivalently say that we
have experimentally confirmed those scaling relations, 8 in
total, that connect the measured exponents �Table III�.
Among them, we have confirmed in particular the rapidity
symmetry �=�, providing also the asymptotic amplitude of
the ratio between the two order parameters, m2�3.2. More-
over, we have also tested the expected scaling forms of Eqs.
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�8�, �11�, and �15�–�17� through data collapse and found
them in good agreement with numerically obtained DP uni-
versal scaling functions. Reproducibility of the results was
also checked for three independent critical exponents
� ,�� ,��, using two other samples with different cell sizes
and cutoff frequencies. Based on all these results, we con-
clude that the DSM1-DSM2 transition constitutes an unam-
biguous experimental realization of an absorbing phase tran-
sition in the DP universality class.

We now return to our initial remark concerning the sur-
prising scarcity of experimental realizations of DP-class tran-
sitions �Table I�.

One central difficulty lies in the necessity to avoid, as
much as possible, quenched disorder, which is known to be
relevant. It is theoretically known that such disorder does
affect DP criticality and even destroys it for strong disorder
�55�. Recent theoretical and numerical studies show that

even weak disorder changes the asymptotic critical behavior
�56–58�, but the characteristic length or time scale separating
DP and disordered, so-called “activated” critical behavior,
grows fast with decreasing strength of disorder �56,57�. It is
therefore important to work with systems made of macro-
scopic units, where quenched disorder is expected to be neg-
ligible. We consider that the quenched disorder in our sys-
tem, which may take the form of inhomogeneities in the
electrodes or impurities in the sample, is also sufficiently
weak.

Still, our DSM1-DSM2 transition seems to be the only
fully convincing one. Three factors explain, in our view, why
our experiments provided such clear DP scaling laws.

�a� Large system size and fast response. As already men-
tioned, one great advantage to work with electroconvection
is that very large aspect ratios can easily be realized. The
number of effective degrees of freedom of our cell is 2.7
�106, which is orders of magnitude larger than any earlier
experiment �Table I�. This considerably suppresses finite-size
effects and allows us to observe scaling on several orders of
magnitude. Similarly, the typical microscopic time scales of
liquid crystals are very short �of the order of 10 ms�, provid-
ing accurate statistics in reasonable laboratory time.

�b� Almost perfectly absorbing state. The condition for
being an absorbing state, i.e., that the system can never es-
cape once it entered, appears to be somewhat too strict from
the experimental point of view. Indeed, spontaneous nucle-
ation of the active state seems to have been present at least in
some of the past experiments �1,20�, which blurs the critical
behavior beyond some finite scales.

On the other hand, our active state, DSM2, consists of
topological defects, whose spontaneous formation is in prin-
ciple forbidden. Of course this may occur in practice, as
suggested from the observation of vanishing hysteresis at the
DSM1-DSM2 transition �52�, but the nucleation rate remains
so low that we cannot directly observe it, constituting an
almost perfectly absorbing state.

�c� Fluctuating absorbing state. In most earlier experi-
ments and numerical studies, the absorbing state has been
essentially fluctuation-free or laminar. This is indeed a natu-
ral choice suggested from the minimal theory of DP and
causes of course no problem in numerical studies. In experi-
ments, however, such absorbing states may typically cause
long-range effects through the rigidity of their laminar pat-
tern and/or the propagation of solitonlike objects, which may
further reduce the effective system size and even break DP
scaling �1,2�. In contrast, our absorbing state, DSM1, is itself
a fluctuating turbulent state. Long-range interactions are then
likely to be killed by the local turbulent fluctuations of
DSM1, which may have led to the observation of clean DP
critical behavior. It is noteworthy to remark that the Chaté-
Manneville coupled map lattice �59�, a deterministic numeri-
cal model for absorbing phase transitions with a nonchaotic
�laminar� absorbing state, exhibits non-DP critical behavior
probably due to solitonlike objects propagating through lami-
nar regions. Interestingly, an elementary modification to ren-
der its absorbing state itself chaotic does lead to DP scaling
�60�.

In conclusion, we have experimentally found that the
DSM1-DSM2 transition in the electroconvection of nematic

TABLE II. Summary of the measured critical exponents �see the
remark �36� for the range of errors shown in the list�.

Exponent DSM1-DSM2 DPa

Density order parameter � 0.59�4� 0.583�3�
Correlation lengthb �� 0.75�6� 0.78�9� 0.733�3�
Correlation time �� 1.29�11� 1.295�6�
Inactive interval in spaceb �� 1.08�18� 1.19�12� 1.204�2�c

Inactive interval in time �� 1.60�5� 1.5495�10�c

Density decay � 0.48�5� 0.4505�10�
Local persistence �l 1.55�7� 1.611�7�d

Aging in autocorrelator b 0.9�1� 0.901�2�
�C /z 2.5�3� 2.583�14�

Survival probability � 0.46�5� 0.4505�10�
Cluster volume � 0.22�5� 0.2295�10�
Cluster mean square radius � 1.15�9� 1.1325�10�
aReferences �25,26�.
bFor �� and ��, exponents measured in x and y directions are
shown in this order.
cSee also the remark �27�.
dReference �51�.

TABLE III. Experimentally confirmed scaling relations.

Scaling relations LHS RHS DPa

��=2−� /��
b �in x� 1.08�18� 1.21�8� 1.204�2�

�in y� 1.19�12� 1.24�10� 1.204�2�
�� =2−� /��

b 1.60�5� 1.54�5� 1.5495�10�
�=� /�� 0.48�5� 0.46�5� 0.4505�10�
b=2� /�� 0.9�1� 0.91�10� 0.901�2�
�C /z=1+ ��+ds��� /�� 2.5�3� 2.62�17�c 2.583�14�
�=� /�� 0.46�5� 0.46�5� 0.4505�10�
�= �ds��−2�� /�� 0.22�5� 0.25�11�c 0.2295�10�
�=2 /z=2�� /�� 1.15�9� 1.16�14�c 1.1325�10�
aReferences �25,26�.
bSee also the remark �27�.
cThe value of �x is used for ��.
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liquid crystals, showing an absorbing transition into spa-
tiotemporal intermittency, clearly belongs to the DP univer-
sality class. Both static and dynamic critical behaviors have
been investigated with the help of the newly developed ex-
perimental technique to create a seed of DSM2, confirming a
total of 12 critical exponents, 5 scaling functions, 8 scaling
relations, and in particular the rapidity symmetry, in full
agreement with those characterizing the DP class in 2+1
dimensions. We hope that this clear and comprehensive ex-
perimental realization of a DP-class transition will trigger
further studies of absorbing phase transitions and of related
situations with genuinely nonequilibrium critical properties.
In this respect the recent works of Corté et al. �61� and of
Mangan et al. �62� are especially encouraging, concerning
experiments and realistic situations, respectively, for absorb-
ing transitions with a conserved field.
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APPENDIX: BINARIZING IMAGES

Every analysis presented in the paper is performed using
binarized images, where DSM2 domains are distinguished
from the absorbing DSM1 background. We give here a de-
tailed description of the binarizing algorithm we used.

The binarization is carried out in the following manner.
�a� We prepare three successive images taken at 15 frames/s
and remove the inhomogeneity of the incident light intensity.
�b� We then normalize the obtained intensity I of the three
images with respect to mean �IDSM1� and standard deviation
�IDSM1 of the DSM1 intensity at a given voltage, namely,
Inorm= �I− �IDSM1�� /�IDSM1. Note that we can separately mea-
sure the intensity of the fully DSM1 state even above the

threshold Vc since DSM1 always appears first when the volt-
age is applied. �c� Since DSM2 domains have lower trans-
mittance than DSM1, we extract the regions where the nor-
malized intensity is less than a certain threshold, Ith. Here we
chose Ith=1.5, determined so as to obtain a good agreement
with direct visual observations particularly in movies. �d�
Taking into consideration that DSM2 domains move much
slower than the local intensity fluctuations in DSM1 �recall
that DSM1 is itself a turbulent state� and that the minimum
DSM2 area is d2 /2 �32�, where d is the depth of the cell, we
take the logical intersection �“AND” operator� of the three
successive images and then remove clusters with area
smaller than d2 /2. Clusters are screened out in this way, and
their binarized images in the middle frame are used as final
images. In other words, the intersection is used only for com-
parison with the minimum area. �e� Finally, we cut off the
periphery of the image of width d /2�2 since this region is
biased in the step �d�. The size of the binarized images re-
duces to 1206�899 �m2, which roughly corresponds to
142�106 effective degrees of freedom. We confirmed that
the chosen threshold �Ith=1.5� works well all over the range
of voltages we investigate and that no DSM2 region is
falsely detected when binarizing images of the fully DSM1
phase. Typical results of the binarization are shown in Figs.
1�c� and 1�e� and movie S2 in Ref. �33�, where we can con-
firm that DSM2 domains are precisely detected.

For the critical-spreading experiments presented in Sec. V,
we have slightly modified the binarization algorithm in order
to detect DSM2 patches originating only from the prepared
seed and not to miss them. To this end, we have reduced the
intensity threshold Ith to 1.2 and, instead, binarized only
within a target region, defined from positions of DSM2
patches in previous images �position of the seed for the first
image� and assumed maximal displacement of DSM2, which
is chosen to be much larger than the actual displacement,
namely, d during successive two images taken at 15 frames/s
and extrapolated diffusively. We again confirmed that bina-
rized images from a single set of parameters closely follow
the actual evolution of DSM2 patches for all the voltages of
interest. A typical result is shown in the inset of Fig. 11.
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