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Langevin equation with a multiplicative stochastic force is considered. That force is uncorrelated, it has the
Lévy distribution and the power-law intensity. The Fokker-Planck equations, which correspond both to the Itô
and Stratonovich interpretation, are presented. They are solved for the case without drift and for the harmonic
oscillator potential. The variance is evaluated; it is always infinite for the Itô case whereas for the Stratonovich
one it can be finite and rise with time slower that linearly, which indicates subdiffusion. Analytical results are
compared with numerical simulations.
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I. INTRODUCTION

The Langevin formalism was introduced to describe mo-
tion of a particle which was subjected both to a Newtonian
deterministic force and to the irregular influence of a bath of
small molecules �the Brownian motion�. That random force
is uncorrelated and usually it is taken in the Gaussian form.
Importance and wide applicability of the Gaussian distribu-
tion in the statistical physics follows from its stability: it
constitutes an attractor in the functional space. According to
the central limit theorem, a superposition of distributions
with a finite variance leads to the Gaussian and its second
moment is proportional to the time. However, many phenom-
ena cannot be described in this way. Variance may depend on
time stronger or weaker than linearly; as a consequence, the
diffusion is anomalous �1�. Moreover, one can frequently en-
counter in nature systems far from thermal equilibrium, for
which moments, in particular the variance, are divergent
�2–6�. From that point of view, the Lévy process, which is
stable but may be characterized by divergent moments, is an
important generalization of the Gaussian process.

Divergent moments of the stochastic driving force can be
attributed to nonhomogeneous structure of the environment,
e.g., fractal or multifractal, which produces long-range cor-
relations. Lévy statistics can emerge from the temporal na-
ture of the underlying process due to a subordination to the
ordinary Brownian motion, which is highly inhomogeneous
�7�. The medium nonhomogeneity can enter the Langevin
equation via the deterministic force. It is even possible to
model random effects in this way �the quenched disorder
�1,8��. However, there are also processes for which the fluc-
tuations of the stochastic force directly depend on the state of
the system. The autocatalytic chemical reaction, in which the
production of a molecule is enhanced by the presence of the
molecules of the same type, can serve as an example �9�. As
a result, the fluctuating term in the Langevin equation is
multiplied by some function of the macroscopic variables
�the multiplicative noise�. Some physical problems require
taking into account both additive and multiplicative noise
�10,11�.

In this paper, we consider the Langevin equation with the
multiplicative noise,

ẋ = F�x� + G�x���t� , �1�

in which F�x� is the deterministic force and the uncorrelated
stochastic force ��t� possesses the Lévy distribution. The

case G�x�=const has been extensively studied. It has been
demonstrated �12� that both the force-free system and that
driven by the linear force are described by the Lévy distri-
bution and then the variance is divergent. The strongly non-
linear force, however, is able to confine Lévy flights and
make the variance finite �13,14�. Also problems with more
complicated forms of F�x� were considered in context of Eq.
�1� with the Lévy noise. They involve the barrier penetration
�15� and escape from the potential well �16�, as well as the
transport in a Lévy ratchet �17�. The general case, with mul-
tiplicative noise, can be regarded as a result of the adiabatic
elimination of fast variables for nonlinear processes with ad-
ditive fluctuations. Equation �1� can also be directly applied
to model specific phenomena with fluctuations which are
characterized by long tails in the distribution and a variable,
in particular power-law, intensity. It is the case, for example,
in the field of finance, where Eq. �1� could be a natural gen-
eralization of the Black-Scholes equation �18,19�.

In the general case of variable G�x� we encounter the
well-known problem of interpretation of the noise term in
Eq. �1� and then of the Stieltjes integral �0

t G�x����d����
which, in this form, is meaningless �20,21�. We must decide
whether G�x���� is calculated before the noise acts, or after
that. The former case corresponds to the Itô interpretation
�22�

�
0

t

G�x����d���� = �
i=1

n

G�x�ti−1�����ti� − ��ti−1�� , �2�

where the interval �0, t� has been divided in n subintervals
�n→��. The above integral does not obey standard rules of
the calculus, in particular the chain rule. Those rules are
satisfied by the stochastic calculus introduced by Stratonov-
ich. The stochastic integral �23� in this interpretation in-
cludes the process value both at the beginning and at the end
of each subinterval,

�
0

t

G�x����d���� = �
i=1

n

G� x�ti−1� + x�ti�
2

	���ti� − ��ti−1�� .

�3�

From the mathematical and technical point of view, the Itó
interpretation is easier to apply e.g., in the perturbation
theory �20�. It is a suitable choice if the noise consists of
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clearly separated pulses, e.g., for a continuous description of
integer processes. If, on the other hand, a system has some
finite correlations and the white noise is only an approxima-
tion, the Stratonovich interpretation is more appropriate. It is
the case if the noise has an external source, i.e., the noise
source is not influenced by the system itself and it is pos-
sible, in principle, to turn off the noise �24�. Possibility of
applying standard rules of the calculus is an important tech-
nical advantage of the Stratonovich interpretation. It makes
possible to solve the Langevin equation exactly for some
nonlinear models with the multiplicative Gaussian white
noise �25�. Physical predictions which follow from the
Langevin equation with the noise in both interpretations can
be qualitatively different. It is the case, for example, for the
Ginzburg-Landau model with external multiplicative fluctua-
tions, which describes noise-induced phase transitions
caused by short-term instabilities of the disordered phase.
The system exhibits that transition if one interprets the noise
in the Stratonovich sense, but not if one uses the Itô inter-
pretation �26�. We demonstrate in this paper that predictions
of both formalisms are different also for the Lévy diffusion
process.

The aim of this paper is to study the Langevin equation
�1� with the multiplicative noise, which is given by the Lévy
distribution and the algebraic G�x�. The Fokker-Planck equa-
tions �FPE� for both interpretations are presented in Sec. II.
In Sec. III, the equation without external potential is solved
and the case of the harmonic oscillator potential is discussed
in Sec. IV. Results are compared with numerical simulations
in Sec. V.

II. FOKKER-PLANCK EQUATIONS

In this section, we derive equations for the probability
density distribution, which correspond to Eq. �1� in both in-
terpretations. The noise ��t� is the symmetric Lévy stable
distribution, defined by the following expression:

p��x� = 
2/��
0

�

exp�− K�k��cos�kx�dk �4�

in terms of the order parameter ��0���2� and the gener-
alized diffusion constant K�0. If ��2, p� has long tails:
p���x�−�−1 for �x�→�. The general Lévy processes can be
defined by the Lévy-Khintchine formula which expresses the
characteristic function in terms of the Lévy measure 	�x�
�27�. In the symmetric and non-Gaussian case it reads

ln pI˜�k� = − t��
�x�
1

�1 − eikx�	�x�dx

+ �
�x��1

�1 − eikx + ikx�	�x�dx	 �5�

and 	�x�= �x�−�−1 corresponds to the stable process.
In the Itô interpretation, the probability density distribu-

tion is given by the fractional Fokker-Planck equation with
variable diffusion coefficient �15,28�

�

�t
pI�x,t� = −

�

�x
F�x�pI�x,t� + K� ��

� �x��
��G�x���pI�x,t�� ,

�6�

where the Riesz-Weyl fractional operator �29� is defined in
terms of the Fourier transform: ��

��x�� =F−1�−�k���. Equations
of the form �6� can describe also jumping processes. For
example, the fractional equation with the variable diffusion
coefficient follows from the master equation which models
the thermal activation of particles within the folded, hetero-
geneous polymers �30�; variability of the diffusion coeffi-
cient results there from the intrinsic potential of the mono-
mer. Moreover, Markovian versions of the continuous time
random walk �CTRW� produce equations of the form �6� in
the diffusion limit. In particular, the coupled CTRW model
with a variable jumping rate, which describes Lévy flights in
nonhomogeneous media, involves the fractional FPE �31� in
the form �6�. The diffusion term in Eq. �6� is, in this case, the
jumping rate. The drift term may also appear if we allow for
a nonvanishing mean of the Lévy distribution. The master
equation describes also systems which are characterized by
the internal noise. Those fluctuations emerge in systems of
discrete particles and they are an inherent part of the very
mechanism by which the state of the system evolves �24�. A
precise form of the deterministic equation does not exist
since it is impossible for systems with that noise to eliminate
the fluctuations. Consequently, the master equation describes
the evolution of the entire system as a stochastic process.

The Stratonovich interpretation of the stochastic integral,
Eq. �3�, means that rules of the calculus—the chain rule and
the ordinary variable transformation formula—can be ap-
plied. The stochastic variable can be determined by a sto-
chastic equation with the additive noise which results from
that with the multiplicative noise, obtained by a variable
transformation. The above property of the stochastic integral
can be proved on the assumption that the noise has a finite
variance �20,21�. If, in addition, trajectories are continuous
�Lindeberg’s condition�, rules of the ordinary calculus apply
to the Fisk-Stratonovich integral and one obtains a relation
between integrals defined by Eqs. �2� and �3�: they differ
only by a simple additive term �27�. As regards the Lévy
stable processes, they can be approximated by processes with
the finite variance by introducing a cutoff in the Lévy mea-
sure 	�x� in Eq. �5� �truncated Lévy flights�. Such an ap-
proximation is very accurate, also for a large value of the
argument �32�. In Sec. V, we will present numerical ex-
amples which confirm applicability of variable transforma-
tion rules of the ordinary calculus for the Lévy stable pro-
cesses.

Knowing the variable transformation rules, it is possible
to transform Eq. �1� to a new Langevin equation, which con-
tains the additive noise, instead of the multiplicative one
�33�. For that purpose we introduce a new variable y and
reduce Eq. �1� to the form

ẏ = F̂�y� + ��t� , �7�

where the transformation reads
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y�x� = �
0

x dx�

KG�x��
, F̂�y� = F�x�y��

dy

dx
. �8�

The corresponding FPE is of the form

�

�t
pS�y,t� = −

�

�y
F̂�y�pS�y,t� +

��

� �y��
pS�y,t� . �9�

After solving the above equation, the solution of the original
Eq. �1� follows from the probability conservation rule,

pS�x,t� = pS�y�x�,t�
dy

dx
. �10�

For the Gaussian case, �=2, Eq. �9� can be easily ex-
pressed in terms of the original variable x and a direct rela-
tion between pS�x , t� and pI�x , t� can be established. The dif-
ference between Fokker-Planck equations for both
interpretations resolves itself to the additional drift,
K2G�x�G��x�, called “spurious” or “noise-induced” drift.

In the following, we solve Eq. �1� for two cases: without
external potential and with the linear drift, on the assumption
of both interpretations of the stochastic equation. We assume
the diffusion coefficient in the algebraic form

G�x� = �x�−�/�. �11�

Results can be generalized to other forms of G�x� by apply-
ing the method from Ref. �34�.

III. FORCE-FREE CASE

We begin with the case of the Itô interpretation. Equation
�6� with F�x�=0 becomes the fractional diffusion equation
with the variable diffusion coefficient,

�pI�x,t�
�t

= K�
����x�−�pI�x,t��

� �x��
. �12�

The above equation results not only from the Langevin equa-
tion with the multiplicative noise. It constitutes the small
wave number limit �the diffusion or fluid limit� of the master
equation for a jumping process in the framework of the
coupled CTRW �31�. That process is defined in terms of two
probability distributions: of the jumping size, in the Lévy
form, and the Poissonian, position-dependent waiting time
distribution. The diffusion coefficient �G�x��� in Eq. �6� is
then the jumping rate and the parameter � governs the trans-
port speed. In particular, for �=2, when the variance exists,
Eq. �12� describes the anomalous diffusion process: subdif-
fusion for ��0, enhanced diffusion for ��0, and the normal
diffusion for �=0. The same classification holds also for �
�2 when we introduce fractional moments �31�.

Equation �12� can be solved in the diffusion limit by ap-
plying the Fox functions formalism �35–37�. Details of the
derivation are presented in Refs. �31,38�. The Fox functions
are well suited for problems which involve Lévy processes
since any Lévy distribution, both symmetric and asymmetric,
can be expressed as the function H2,2

1,1�x� �39�. Moreover, due
to the multiplication rule, the term �x�−�pI�x , t� in Eq. �12� can
be easily evaluated and it produces the Fox function of the

same order, only the coefficients are shifted. Those properties
of Eq. �12� suggest the method of solution: we assume the
solution in the scaling form which involve the Fox function,

pI�x,t� = Na�t�H2,2
1,1�a�t��x�
�a1,A1�,�a2,A2�

�b1,B1�,�b2,B2� 	 , �13�

where N is the normalization constant, and try to adjust the
coefficients, as well as to derive the function a�t�. To imple-
ment the approximation of small k, we pass to the Fourier
space, in which Eq. �12� reads

�

�t
pI˜�k,t� = − K��k��Fc��x�−�pI�x,t�� . �14�

According to the well-known formula, the Fourier transform
from the Fox function is also the Fox function but of higher
order: Fc�H2,2

1,1�x��=H3,4
2,1�k�. Then we expand the Fox func-

tions, which correspond to pI˜�k , t� and Fc��x�−�pI�x , t��, in the
fractional powers of k; terms of the order �k�2�+� and higher
are neglected. Both sides of Eq. �14� can be adjusted only if
all terms except k0 and �k�� vanish. We can eliminate adverse
terms by a proper choice of the Fox function coefficients.
Inserting the coefficient values, determined in this way, to
Eq. �12�, yields the solution in the form

pI�x,t� = Na�t�H2,2
1,1�a�t��x���1 −

1 − �

� + �
,

1

� + �
�,�a2,A2�

�b1,B1�,�1 −
1 − �

2 + �
,

1

2 + �
� �;

�15�

the initial condition is pI�x ,0�=��x�. Moreover we assume
�+��0. The coefficients �a2 ,A2� and �b1 ,B1� are essen-
tially arbitrary and one needs additional requirements to
settle them. Expansion of the Fox function in Eq. �15� yields
pI�x , t���x�b1/B1�x→0�. It explains why the coefficients
�b1 ,B1� have not been determined: since small �k� corre-
sponds to large �x�, the diffusion approximation does not
cover the region of small �x�. In the following, we assume
b1=� and B1=1, which choice is exact for CTRW �38�. The
coefficients �a2 ,A2�, in turn, correspond to the shape of the
distribution in the limit �→2 �38�. From Eq. �14� follows a
simple differential equation for a�t� which yields a�t�
� t−1/��+��. The asymptotic expansion of Eq. �15� yields
pI�x , t�� t�/��+���x�−1−�. Therefore, we obtain the Lévy pro-
cess which has the same distribution as the driving process,
Eq. �4�. The variance and all higher moments are divergent.

For the Stratonovich interpretation, we introduce the new
variable y, according to Eq. �8�,

y�x� =
�

K�� + ��
�x���+��/� sgn x , �16�

which ends in Langevin equation with the additive noise.
Then Eq. �9� reads
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�

�t
pS�y,t� =

��

� �y��
pS�y,t� . �17�

It can be solved exactly and the solution expressed in the
form �40,41�

pS�y,t� =
1

��y�
H2,2

1,1� �y�
t1/���1,1/��,�1,1/2�

�1,1�,�1,1/2�
� , �18�

which corresponds to the symmetric Lévy process y�t�. The
inverse transformation to the original variable yields

pS�x,t� =
� + �

�2�x�
H2,2

1,1� �x�1+�/�

�1 + �/���K�t�1/���1,1/��,�1,1/2�

�1,1�,�1,1/2�
� .

�19�

The asymptotic expansion of the Fox function in Eq. �19� is
given by the expression pS�x , t�� t�/��+���x�−1−�−���x�→��. It
differs considerably from the Itô result: the shape of the tail
depends not only on the order parameter of the driving pro-
cess, �, but also the � dependence emerges. As a result, the
variance may not be divergent. We can express the variance
by Mellin transform of the Fox function, 
�s�, and evaluate it
by simple algebra,

�x2� = 2�
0

�

x2p�x,t�dx = 2�K� �

�
+ 1�	2�/��+��

��
0

�

y2�/��+��p�y,t�dy =
2

�

��K� �

�
+ 1�	2�/��+��

t2/��+��
�−
2�

� + �
�

= −
2

��
�K� �

�
+ 1�	2�/��+��

��−
2

� + �
�

���1 +
2�

� + �
�sin� ��

� + �
�t2/��+��, �20�

where we assumed �=2� / ��+����, which implies ��2
−�. On that condition, the integral in Eq. �20� is convergent
and the variance exists. We conclude that the diffusion
process—in which the stochastic driving force is Lévy dis-
tributed and the stochastic equation is interpreted in the Stra-
tonovich sense—may not be accelerated for the case without
any external potential. If the variance exists, the diffusion is
anomalously weak since the convergence condition coincides
with the subdiffusion condition: the variance rises with time
slower than linearly, �x2�� t�. The slope of that dependence
diminishes with the parameter �. In the case �=2, beside the

subdiffusion, also the enhanced diffusion occurs, for ��0,
as well as the normal one if �=0.

IV. LINEAR FORCE

In the case of stochastic motion in the harmonic oscillator
field, F�x�=−�x, which is governed by the Langevin equa-
tion with the Gaussian white noise �the Ornstein-Uhlenbeck
process�, the probability distribution converges with time to
a steady state which corresponds to the Boltzmann equilib-
rium distribution. If the driving noise has the Lévy distribu-
tion with ��2, the stationary limiting distribution still exist
but the Boltzmann equilibrium is not reached and the vari-
ance is infinite �12�. We will demonstrate that, if the multi-
plicative noise is interpreted in the Stratonovich sense, the
steady state may have the finite variance.

In the Itô interpretation, FPE is given by Eq. �6�,

�

�t
pI�x,t� = �

�

�x
�xpI�x,t�� + K� ��

� �x��
��x�−�pI�x,t�� , �21�

and its Fourier transformation yields

�

�t
pI˜�k,t� = − �k

�

�k
pI˜�k,t� − K��k��Fc��x�−�pI�x,t�� .

�22�

The solution of Eq. �22� can be obtained �42� in a similar
way as in the case F�x�=0, namely by inserting the expres-
sion �13� into Eq. �22�. Then the Fourier transforms of the
respective functions are expanded and terms of the order
�k�2�+� and higher are neglected. The same conditions for the
Fox function coefficients are required because contribution
from the drift term contains only the component �k��. There-
fore we obtain the solution of Eq. �21� in the form �15�. The
comparison of terms of the order �k�� on both sides of Eq.
�22� results in a simple differential equation for the function
a�t�. Its solution reads

a�t� = � �/cL

1 − exp�− ��� + ��t�	1/��+��

. �23�

The constant cL=K�h0 /�h� involves the expansion coeffi-
cients h� and h0 of the functions pI˜ and Fc��x�−�pI�, which
correspond to the orders �k�� and k0, respectively. They are
given by h�=N��+����−����1+�+��cos��� /2� /��a2
+A2�1+�����−��+�� / �2+��� and h0=N��+�� / �2+����a2
+A2�1−���, where the normalization constant N=��−� / �2
+�����a2+A2� /2��1+����−� / ��+���. The numerical val-
ues of the solution can be computed by means of series ex-
pansions, both for small and large �x�. Expansion of the func-
tion �15� in powers of �x�−1 produces the following
expression:

pI�x,t� = N�� + ���
i=1

�
��1 + �� + ��i�

��a2 + A2�1 − � + �� + ��i����−
� + �

2 + �
i�i!

a�t��−��+��i�x�−1+�−��+��i, �24�

TOMASZ SROKOWSKI PHYSICAL REVIEW E 80, 051113 �2009�

051113-4



where a�t� is given by Eq. �23�. In the following, we assume
the remaining Fox function coefficients in the form: a2
=1 /2+��1+�� / �2+�� and A2=1−1 / �2+��. For these coef-
ficients, pI�x , t� agrees with the exact diffusion equation so-
lution in the case �=2: it corresponds to the stretched-
Gaussian dependence �38�

pI�x,t� � a1+��x��exp�− const�a�x��2+�� . �25�

Equation �24� implies the asymptotic shape of the distribu-
tion, pI�x , t���x�−1−�, the same as for the case F�x�=0.
Therefore, the variance is also divergent for all � and ��2.

To obtain the solution of Eq. �1� in the Stratonovich in-
terpretation, we introduce the variable y, which is given by
Eq. �16�, and transform the drift term according to Eq. �8�.
The Langevin equation takes the form

ẏ = −
�

�
�� + ��y + ��t� �26�

and FPE, expressed by the new variable, has the constant
diffusion coefficient,

�

�t
pS�y,t� = ��1 + �/��

�

�y
�ypS�y,t�� +

��

� �y��
pS�y,t� .

�27�

The above equation can be solved exactly with the initial
condition pS�y ,0�=��y� �12�. The Fourier transform of the
solution reads pS˜�k , t�=exp�−K���t��k���, where

��t� =
1 − exp�− ��� + ��t�

��� + ��
. �28�

After inverting the Fourier transform and transforming back
to the original variable, we obtain the probability density
distribution in the following form:

pS�x,t� =
� + �

�2�x�
H2,2

1,1� �x�1+�/�

�1 + �/��K�1/���1,1/��,�1,1/2�

�1,1�,�1,1/2�
� ,

�29�

which can be evaluated by series expansions, similar to Eq.
�24�. The tail of the distribution pS�x , t� has the same form as
in the case F�x�=0: pS�x , t���x�−1−�−�. The second moment
is convergent if ��2−�. On that condition, the system
reaches with time a steady state which is characterized by the
variance

lim
t→�

�x2��t� = −
2

��
�K� �

�
+ 1�	2�/��+��

��−
2

� + �
���1

+
2�

� + �
�sin� ��

� + �
���� + ����−2/��+��. �30�

The above quantity is presented in Fig. 1 as a function of �
for some values of � and �. In all cases it declines with �;
this fall is particularly rapid for large �. Predominantly, the
distribution is broader for smaller � but this trend turns to
the opposite in the limit �→�. The parameter � influences
the convergence speed to the steady state, according to Eq.

�28�, which is the same as for the Itô interpretation, cf. Equa-
tion �23�.

V. NUMERICAL SIMULATIONS

In this section, we compare the analytical results with
numerical stochastic trajectory simulations from the Lange-
vin Eq. �1�. For the Itô interpretation we apply the Euler
method. Equation �2� implies that for each integration step �
the stochastic integral from the function G�x� can be ex-
pressed by the noise value �i by means of the following
formula �43�:

�
0

t

G�x�t���dt = �
0

t

G�x�t��d� = �
i=0

N

G�x�ti���1/��i,

�31�

where ti= i� and N= t /�; the random numbers �i are sampled
from the Lévy distribution �4� with the order parameter �. In
the case of the Stratonovich interpretation, we first transform
Eq. �1� to the corresponding equation with the additive noise.
Then we apply the Heun method of integration,

FIG. 2. �Color online� Comparison of numerical solutions of Eq.
�1� for the case G�x�=x and F�x�=0, with �=1.5 at t=1. The dis-
tribution pI�x , t� �lower line� was calculated according to Eq. �31�
and pS�x , t� from Eq. �32� �upper line�. The dashed line presents
result of the evaluation of pS�x , t� by means of Eq. �3�.

FIG. 1. Variance of the steady-state solution of Eq. �1� in the
Stratonovich interpretation for the case F�x�=−�x, calculated from
Eq. �30�.
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yi+1 = yi + �F̂�y�ti�� + F̂�y�ti� + F̂�y�ti������/2 + �1/��i.

�32�

Transformation back to the original variable produces the
stochastic trajectory x�t�. We demonstrate results of those
algorithms in Fig. 2 for the simple case G�x�=x and F�x�
=0. The applied parameters, number of trajectories 106 and
�=0.001, ensure sufficient accuracy. The above results are
compared with the probability distribution obtained from the
numerical integration of the equation with the multiplicative
noise, in which the stochastic integral is defined by Eq. �3�.
Agreement of both results is very good. A similar compari-
son is presented in Fig. 3 for the nonlinear G�x� in the form
�11� with two values of the parameter �, both positive and
negative; no cutoff in the Lévy measure was introduced. This
case is numerically more complicated because the difference
formula is not explicit and numerical solving of a nonlinear

equation is required at each integration step. Agreement of
both methods of calculation in Fig. 3 demonstrates that rules
of the ordinary calculus are applicable for the Lévy processes
with infinite variance.

The comparison with analytical results for the linear drift,
presented in Fig. 4, indicate good agreement of those meth-
ods of solution. On the other hand, results which correspond
to the Itô and Stratonovich interpretations for the same case
differ considerably. Since they coincide for �=0, one can
expect that the difference rises with ���. In Fig. 5, the prob-
ability distributions for various �, evaluated by numerical
trajectory simulations, are presented. The difference between
pI�x , t� and pS�x , t� for �=2 is indeed very large. The slope of
pI�x , t� remains constant for a given � and that of pS�x , t�
rises with �. We present those slopes, as a function of the
order parameter �, in Fig. 6. The slopes rise with �, accord-
ing to the analytical results −�−1 and −�−�−1 for the Itô
and Stratonovich interpretations, respectively.

VI. SUMMARY AND CONCLUSIONS

We have studied the nonlinear Langevin equation with the
multiplicative white noise which is distributed according to
the Lévy statistics and has the power-law strength. The cor-

FIG. 4. �Color online� Probability distributions obtained from
trajectory simulations for the case F�x�=−�x. The Stratonovich
�pS�x , t�� and Itô �pI�x , t�� results are marked by the dashed and
dashed-dot lines, respectively. The analytical solutions of Eq. �1�
�solid lines� follow from the series expansions of Eq. �29� both for
small and large �x�, as well as from Eq. �24�. Parameters are the
following: �=1.2, �=1, �=1, and t=1.

FIG. 5. �Color online� Probability distributions pS�x , t� and
pI�x , t� obtained from trajectory simulations for the case F�x�=
−�x at t=1, with �=1.5 and �=1.

FIG. 3. �Color online� Comparison of numerical solutions of Eq.
�1� for G�x�= �x�−�/� and F�x�=−�x, with parameters: �=1.8, �=1,
and t=1, in the Stratonovich interpretation. Distributions marked by
lines were calculated by using the variable transformation, from Eq.
�32�, and those marked by dots—directly from Eq. �3�. Cases for
two values of � are presented: �=−0.2 �upper line for small and
large x� and �=0.5.

FIG. 6. Slope of the solution pI�x , t� �lower points� and of
pS�x , t� �upper points� for large �x�, calculated by the numerical in-
tegration of Eq. �1� for the case F�x�=−�x and t=1. The param-
eters: �=1 and �=1. The lower and upper straight lines have the
slopes −�−1 and −�−�−1, respectively.
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responding Fokker-Planck equation is fractional and its form
depends on the interpretation of the stochastic equation. In
the Itô interpretation, FPE possesses the variable diffusion
coefficient. In the case without any external force, FPE co-
incides with the diffusion equation which was obtained in the
framework of the coupled CTRW with the position-
dependent waiting time. Solution of FPE with variable dif-
fusion coefficient, both for the case without drift and for the
harmonic oscillator potential, represents the Lévy process
with simple scaling and the same order parameter as the
driving noise. This property does not hold for other poten-
tials. For example, solution to the problem of the wedge-
shaped potential, F�x��sgn x, studied in Ref �42�, is a com-
bination of two Lévy processes and simple scaling is lacking.
Nevertheless, slowly decaying Lévy tails are present in that
solution and then the variance is divergent for all �.

In the Stratonovich interpretation, FPE has been obtained
by the variable transformation; in this case the problem is
reduced to Langevin equation with the additive noise. The
resulting probability distributions differ considerably from
those in the Itô sense. In particular, shape of the tail depends
on the parameter of noise intensity � and, as a result, the
variance may be convergent. Therefore the diffusion process,
for the case without drift, can be either accelerated or anoma-
lously weak, in contrast to the Itô result, which predicts only

the accelerated diffusion. For the case �=2, both approaches
differ by an additional, effective force in the Langevin equa-
tion. The disagreement between both interpretations is in fact
not surprising since the deterministic force in the Langevin
equation is not just the Newtonian one; those forces are iden-
tical only in the case of the external noise, i.e., for the Stra-
tonovich interpretation �24�. Since the difference between the
interpretations is deterministic in nature no different under-
lying stochastic dynamics is implied. For the general Lévy
stable processes, relation between distributions in both inter-
pretations is more complicated and the corresponding equa-
tions cannot be related one to the other by means of a drift
term.

The distribution tails, which are algebraic and fall rapidly
enough to ensure convergence of the variance �“fat tails”�,
are of physical importance. They are well known, e.g., in the
field of the economic research �44,45�. Based on the poor
empirical performance of the Black-Scholes model of option
pricing, which mathematically resolves itself to the Langevin
equation, one proposes to replace the Gaussian noise by the a
Lévy one but with a truncated tail �18�. Such process may
converge to the Gaussian so slowly, that numerical calcula-
tions yield only fat tails �38,46�. The Langevin equation with
the multiplicative Lévy noise in the Stratonovich interpreta-
tion could be an alternative model of the fat tails.
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