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Ab initio method for locating characteristic potential-energy minima of liquids
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It is possible in principle to probe the many-atom potential surface using density functional theory (DFT).
This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by
Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potential surface is facili-
tated by the random and symmetric classification of potential-energy valleys. Since the random valleys are
numerically dominant and uniform in their macroscopic potential properties, only a few quenches are necessary
to establish these properties. Here we describe an efficient technique for doing this. Quenches are done from
easily generated “stochastic” configurations, in which the nuclei are distributed uniformly within a constraint
limiting the closeness of approach. For metallic Na with atomic pair potential interactions, it is shown that
quenches from stochastic configurations and quenches from equilibrium liquid molecular dynamics configu-
rations produce statistically identical distributions of the structural potential energy. Again for metallic Na, it is
shown that DFT quenches from stochastic configurations provide the parameters which calibrate the Hamil-
tonian. A statistical mechanical analysis shows how the underlying potential properties can be extracted from
the distributions found in quenches from stochastic configurations.
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I. INTRODUCTION

The potential-energy surface underlying the motion of a
monatomic liquid is composed of intersecting valleys in the
many-atom configuration space. In vibration-transit (V-T)
theory, the atomic motion is described by vibrations within a
single valley, interspersed by transits, which carry the system
across intervalley intersections [1,2]. The pure vibrational
motion is described by a tractable Hamiltonian which ac-
counts for the dominant part of the liquid’s thermodynamic
properties. The remaining transit contribution is complicated
but small. The vibrational Hamiltonian is calibrated by po-
tential parameters evaluated at local minima (called struc-
tures) of the potential surface. These have been previously
evaluated for a model of liquid Na based on an interatomic
pair potential [3]. Our goal now is to introduce first-
principles electronic structure calculations within density
functional theory (DFT) to calculate the structural and vibra-
tional parameters of the V-T Hamiltonian.

In recent years, DFT has been used successfully in liquid
studies to support the development of ab initio molecular
dynamics (MD). The original Car-Parrinello method [4] was
successfully applied to the melting of Si [5]. Calculations of
the MD trajectory on the adiabatic (electronic ground state)
potential surface have been performed for a broad spectrum
of elemental liquids [6—8]. This work has provided accurate
and physically revealing results for Al [9], Fe [10], and Ge
[11]. The techniques we employ to calculate the supercell
ground state energy and Hellmann-Feynman forces are quite
similar to those of Kresse and Furthmiiller [12]. On the other
hand, rather than proceed to MD calculations, our objective
is to calibrate the (dominant) vibrational part of the liquid
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dynamics Hamiltonian from properties of local potential
minima. We believe that the Hamiltonian formulation will
usefully complement ab initio MD in the study of dynamical
properties of liquids.

The procedure of quenching a system to its potential-
energy minima was introduced by Stillinger and Weber
[13-15] and has become a valuable technique for studying
systems with interatomic potentials. The traditional methods
are to quench to many structures from an equilibrium MD
trajectory and then use statistical mechanics to extract the
underlying statistical properties of the potential surface
[16,17]. In V-T theory, however, we need very few
structures—in principle only one for a given liquid at a given
volume. Hence the traditional procedure for finding struc-
tures is inefficient as a large number of MD iterations are
required to bring the system initially to equilibrium as well
as to avoid unwanted correlations between quenches. The
problem is especially severe for DFT, where each iteration
requires a converged total energy calculation, which is com-
putationally very costly.

We propose a simpler and more efficient method to probe
the underlying potential landscape. Rather than quench from
equilibrium MD configurations, we quench from configura-
tions that are independent of interatomic interactions and
very fast to generate. Our purpose here is to demonstrate two
properties of this quench method: that it is capable of pro-
ducing the entire distribution of potential-energy minima,
and when used with DFT it can achieve our goal of ab initio
calibration of the Hamiltonian.

To perform the calibration, we will interpret structural
data via the original hypothesis of V-T theory [1]: the
potential-energy valleys are classified as random and sym-
metric. The random valleys numerically dominate the liquid
statistical mechanics as N— o, and they all have the same
potential-energy properties as N—o0; hence any one such
valley may be used to calibrate the Hamiltonian. The sym-
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metric valleys have a broad range of potential-energy prop-
erties but make an insignificant contribution to the liquid
statistical mechanics as N—oc. This hypothesis has been
verified for the pair potential model of liquid Na at N=500
[3], and work in progress extends this verification to N
=4000 [18].

The quench calculations are carried out for metallic Na at
the density of the liquid at melt using our model interatomic
potential and also using DFT. The Na potential was derived
in pseudopotential perturbation theory, with an added Born-
Mayer repulsion, and was calibrated from experimental crys-
tal data at zero temperature and pressure [19]. The potential
has since been shown to give excellent results for a broad
range of experimental properties of crystal and liquid Na (for
a partial summary, see [20]). While there is no doubt DFT
will provide accurate total energy results, we shall still need
to verify that DFT quenches arrive at random structures, not
symmetric ones. This verification will be accomplished with
the aid of the Na interatomic potential results.

Our application of DFT to liquid dynamics theory is being
pursued for a number of nearly free-electron metals and tran-
sition metals. A preliminary report has been presented on
results for Na and Cu [21]. We have not attempted to study
elemental liquids whose equilibrium configurations are influ-
enced by molecular bonding. Examples are As, Se, and Te,
which have strong and weak bonds, and Ge, whose liquid
structure shows a contribution from covalent crystal bonds.
This anisotropic bonding will complicate the random struc-
tures underlying the motion in such liquids. This complica-
tion remains beyond the scope of the present work. More-
over, since we have not yet presented structural data for other
liquid metals, the present conclusions are strictly valid only
for liquid Na. The results are expected to apply to many
elemental liquids, perhaps all of them, but this extension is
not demonstrated here.

We consider a system of atoms in a cubic box with peri-
odic boundary conditions. We construct configurations in
which the nuclei are distributed uniformly over the box
within a constraint limiting the closeness of approach of any
pair. These are called constrained stochastic or simply sto-
chastic configurations. The procedure is described in Sec. II,
and the spatial uniformity is verified by means of pair distri-
bution functions. In Sec. III, our twofold purpose is ad-
dressed by two separate quench studies. In Sec. IIT A, the Na
pair potential is used to quench both equilibrium MD con-
figurations and stochastic configurations. Comparison of the
results will validate the use of stochastic configurations. In
Sec. III B, DFT is used to quench Na from stochastic con-
figurations. Comparison of the results with pair potential re-
sults will confirm that the DFT structures are random and
therefore calibrate the Hamiltonian. In Sec. IV, relations are
derived between quenched distributions and the densities of
states in the underlying potential-energy surface. This analy-
sis provides the statistical mechanical framework for inter-
preting results of the present quench technique. Our conclu-
sions are summarized in Sec. V.

II. GENERATING STOCHASTIC CONFIGURATIONS

Only minimal information is required to generate stochas-
tic configurations: the number of atoms N and the system
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volume V plus a distance of closest approach which is de-
scribed below. Nothing of boundary conditions or the system
potential has to be specified; however, after the stochastic
configuration is constructed, for all further calculations peri-
odic boundary conditions are used.

For a cubic cell with volume V, we construct a configu-
ration by choosing the particle coordinates at random over
the cell. Randomness is important, as we shall use it in Sec.
IV to determine the statistical weight factors for stochastic
configurations. Next, a configuration is discarded if any two
atoms are closer than a distance d. This is done for practical
reasons: the self-consistent field (SCF) calculation of DFT
will not converge if atoms are too close to each other, and the
pair potential at very small radii could lead to numerical
instabilities in the conjugate gradient method due to the re-
pulsive core. In practice, the excluded space can be very
small. For Na we choose d=0.4 10\, so the relative excluded
space (4m/3)d*/V,, where V, is the volume per atom, is
only 6.5X 1073, Hence the stochastic configurations are ex-
pected to be spatially uniform to a very good approximation.

To test the uniformity of stochastic configurations, we ex-
amine their pair distribution functions g(r). The conditional
probability density g(r) is constructed as follows: pick a sys-
tem atom as central atom and denote its position by r=0.
Make a set of bins labeled b=1,2,... in the form of concen-
tric shells. Bin b has inner radius r,, outer radius r,,;, and
volume V,,=(4/3)(r},,~r}). The pair distribution function
g(r) has histogram n,(V,/V,), where n,, is the number of
atoms in bin b. Given the small size of d described in the
previous paragraph, we expect g(r) to be nonzero even at
relatively small radii. It is therefore important to normalize
the bin count of bin b with the correct volume of the bin
instead of using the approximate volume 47TrZArb as is often
done. The bin contents are then averaged over the choice of
each system atom as the central atom. While the bin radii are
arbitrary, we usually take either Ar,=r,,,—r,=const or V,
=const.

For Na at N=500, we constructed 1000 stochastic con-
figurations and the g(r) histogram for each. With Ar,
=const, the mean and the standard deviation of the g(r) his-
togram are shown in Fig. 1. The blank space at small r is the
empty sphere of radius d. The scatter at small r reflects the
decreasing V,, as r decreases and the corresponding decrease
in n;,. With V, =const, the mean and standard deviation of the
g(r) histogram are shown in Fig. 2. There the distance be-
tween points increases as r decreases, but the standard devia-
tion remains nearly constant because n; remains nearly con-
stant. The figures show the uniformity of stochastic
configurations for r>d, with d being very small compared to
the mean nearest-neighbor distance.

We also show the distribution of potential energies of the
1000 initial stochastic configurations. The mean of the dis-
tribution shown in Fig. 3 is at 3.75 eV/atom, which is con-
siderably higher than the mean potential energy after the
quench [see Eq. (1)].

III. PROPERTIES OF THE QUENCHED STRUCTURES

A. Validation of quenches from stochastic configurations

Figures 4 and 5 compare two distributions of ®,/N, each
from 1000 pair potential quenches at N=500. Figure 4 is
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FIG. 1. Mean and standard deviation of the pair distribution
functions g(r) for 1000 stochastic configurations of N=500 atoms.
The error bars indicate the standard deviation per histogram bin.
The center of the nearest-neighbor peak in g(r) for the quenched
configuration of Na, shown in Fig. 6, is at r;=3.77 A.

obtained by steepest-descent quenches from equilibrium MD
at 800 K. This figure is an extension of the work reported in
[3]. Figure 5 is obtained by conjugate gradient quenches
from stochastic configurations. We have verified the equiva-
lence of the two quench techniques for our system; for a
related verification, see [22,23].

In each histogram we see the distinct random and sym-
metric distributions consistent with the V-T hypothesis. The
random distribution is taken to be the dominant peak out to
where the histogram vanishes on either side. The symmetric
structures are interpreted as the isolated parts of the histo-
gram that are located outside the main peak on the low-
energy side.
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FIG. 2. Mean and standard deviation of the pair distribution
functions g(r) for 1000 stochastic configurations of N=500 atoms.
The bins have a constant volume of V,=(1/8)V,, where V, is the
atomic volume of Na. The center of the nearest-neighbor peak in
g(r) for the quenched configuration, shown in Fig. 6, is at r
=3.77 A. For this particular binning volume, we have only two
bins below the nearest-neighbor peak.
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FIG. 3. Potential-energy distribution of 1000 stochastic configu-
rations of N=500 Na atom systems.

The random distribution is numerically dominant and
very narrow. The mean and standard deviation of each ran-
dom distribution are given by

—183.29 = 0.50 meV/atom (MD)

CD()/NZ .
—183.37 = 0.50 meV/atom (stochastic).

(1)

Note that the dominant volume-dependent part of the pair
potential is omitted here (see [24], Eq. (1.1), and Fig. 1). For
this reason, most of the binding energy is missing from the
pair potential energies in Eq. (1). The mean value is the most
accurate approximation to the thermodynamic limit value
that we can make. The standard deviation is the error ex-
pected from quenching only once and using that result. If N
is increased, the mean value is expected to change slightly in
converging to its thermodynamic limit, while the standard
deviation goes to zero as N— . For a physical measure of
the difference in mean values, we note that the main contri-
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FIG. 4. Potential-energy distribution of N=500 Na atom sys-
tems after quenching from 1000 configurations drawn from a mo-
lecular dynamics trajectory at 800 K or 2.167,, using a steepest-
descent quench method.
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FIG. 5. Potential-energy distribution of N=500 Na atom sys-
tems after quenching from 1000 stochastic configurations using a
nonlinear conjugate gradient method.

bution to the liquid thermal energy is the classical vibrational
contribution 3kz7, which is 95.90 meV/atom at T,,. The dif-
ference in means is 0.08% of this. Experimental error in the
thermal energy of elemental liquids at 7,, is typically
0.1-0.5 %. Hence the two random distributions in Figs. 4
and 5 are identical to better than experimental error.
Performing so many quenches has allowed us to see a
clear and meaningful distribution of symmetric structures
(compare, for example, [3,24,25]). Quenching from equilib-
rium MD yields 18 symmetric structures out of 1000
quenches (Fig. 4). Quenching from stochastic configurations
yields 23 symmetric structures in 1000 quenches
(Fig. 5). Very approximately, the symmetric distribution
is constant and ranges from the bcc crystal, (I)BCC/ N=-
196.12 meV/atom [24], to the lower end of the random dis-
tribution. This broad distribution with few structures is con-
sistent with the V-T hypothesis. If N is increased the sym-
metric distribution width is expected to remain the same,
while the relative number of symmetrics is expected to be-
come negligible. In all these properties, the symmetric dis-
tributions in Figs. 4 and 5 are the same to statistical accuracy.

B. Calibration of the V-T Hamiltonian

In order to calculate ab initio the thermodynamic proper-
ties of liquid Na for comparison with experiment, we
quenched a stochastic configuration at V,=41.27 A® with
DFT [21]. The normal mode frequency spectrum g(w) was
also calculated at this volume. For almost all monatomic
liquids, the vibrational motion is nearly classical at T=T,,.
This means that the essential information required from g(w)
is the logarithmic moment of the frequencies, which provides
the characteristic temperature 6,. Hence for calculation of
thermodynamic properties, the V-T Hamiltonian is calibrated
from @,/ N for the energy and 6, for the entropy. Additional
data which automatically accompany the calculation of g(w)
will calibrate the Hamiltonian for nonequilibrium statistical
mechanics.

The DFT calculation is done with the VASP code [26]
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using the projector augmented wave method in the general-
ized gradient approximation [27,28]. The plane wave energy
cutoff is 101.7 eV, the maximum core radius is 2.5 A, and
the total energy convergence criterion is 107® eV. We use a
I'-centered Monkhorst-Pack grid [29] with 14 k points in the
irreducible Brillouin zone. The total energy convergence for
these parameters was carefully verified. Note that it is the
large size of the real-space supercell which allows us to use
few k points in comparison to the large number (several
thousands) needed for crystal metal calculations with small
unit cells. The quench is done by nonlinear conjugate gradi-
ent method. The system is considered quenched when the
energy difference between subsequent configurations is
1077 eV or less. The DFT structure is at N=150, a number
large enough to get potential-energy parameters accurate to a
few percent but small enough that convergence properties of
the calculations can be studied.

Because of the strong dominance of random valleys in the
potential-energy surface, the DFT structure is expected to be
random. To eliminate different zeros of energy, we evaluate
the energy difference

Ad, = D} — D5, (2)

where the superscripts r and bcc represent the random struc-
ture and the bce crystal, respectively. The comparison is

{12.75 meV/atom (pair potential)
A@O/ N = (3)
12.76 meV/atom (DFT).
The value for the pair potential is from the second mean in
Eq. (1), which is also calculated from stochastic configura-
tions. The difference of 0.01 meV/atom is small compared to
theoretical errors in A®,/N and also compared to experi-
mental error in the energy of liquid Na at melt.

An independent confirmation is furnished by 6,. Using
the Na pair potential value from [3], we find

98.4 K (pair potential)

~ 976 X (DFT). “

0
The relative difference of 0.8% in 6, will make a corre-
sponding difference of 0.3% in the theoretical entropy of
liquid Na at melt. The difference is well within theoretical
error in 6, and is close to the experimental error in the
entropy.

The structural pair distribution G(r) is not a parameter of
the V-T Hamiltonian, but G(r) has a role in density fluctua-
tion phenomena, and it is therefore interesting to compare
the DFT and pair potential results. The comparison is shown
in Fig. 6, where the agreement is excellent. Notice the DFT
curve (N=150) has a small deficiency at the tip of the first
peak compared to the pair potential curve (N=500). This
deficiency is a small-N effect and is observed also with the
pair potential at N=168 but not at N=500 ([25] and Fig. 2).

IV. EXTRACTING DENSITIES OF STATES FROM
QUENCH RESULTS
A. Quenches from equilibrium configurations

In classical statistical mechanics, the partition function for
a single potential valley harmonically extended to infinity is
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FIG. 6. (Color online) Structural pair distribution function G(r)
for quenched structures from pair potential (solid curve, N=500)
and a single DFT calculation (broken curve, N=150).

e B®(T/ 6,)3N. The factor (T/ 6,)*" expresses the vibrational
motion. The transit contribution, which accounts for the
valley-valley intersections, will be neglected here. The total
liquid partition function Z is

T 3N
Z= f J G(q)(), Go)e_ﬁ(b‘)(;) da()dq)(), (5)
0

where G(®,, ;) is the joint density of states for the collec-
tion of valleys. The normalization of G(®,, 6,) is N, the total
number of valleys. The equilibrium statistical weight of a
single valley is

e Bo(T/ 6,)>N
Wy (@0, 00) = ———— (6)

In equilibrium at 7=T,,, the probability of finding the sys-
tem in d @, at 6, and in d®D, at @, is P(Dy, 6,)d 6yd®P, where

P(q)O’ 00) = G((DO’ 00)Weq(q)0’ 00) . (7)

Upon quenching from an equilibrium trajectory at 7=T,,
the structures sampled will exhibit a distribution proportional
to P(®y, 6,) [30]. In view of Egs. (5) and (6) it follows that
P(®,, 6,) is insensitive to the normalization of G(®, ;).
Therefore measurements of P(®d,, ;) cannot be used to
count the valleys.

The probability of finding the system in d®, at ® is
P(®y) dd,, where

P(®) =f P(Dy, 6,)d 6. (8)

Upon quenching from an equilibrium trajectory at 7T=T,,,
the structures sampled will exhibit a distribution of ®, pro-
portional to P(®,). The distribution in Fig. 4 is proportional
to P(®,). However, the density of states in @ is G(P),
given by
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G(Dy) = f G(Dg, 0p)d by, )

and differs from P(®) by the statistical weight W, (D, 6)).
In our studies of liquid dynamics, the purpose of quenching
is to determine the densities of states G(P,) and G(Py, ;)
because these are parameters of the Hamiltonian. These den-
sities of states must be solved for from the observed distri-
butions P(P,) and P(P, 6,) from the above equations. Even
though the symmetric structures are supposed to be unimpor-
tant for the liquid as N— <, those structures will always be
statistically important at 7<<7T,, and will therefore be in-
cluded in our analysis.

Let us introduce subscripts r and s for random and sym-
metric, respectively, and write

G(Dy, 6p) = G(Dy, ) + G(Dy, 6,) (10)

and correspondingly Z=Z,+Z,. From Figs. 4 and 5, P(D,)
at N=500 has very small width, comparable to experimental
error in the internal energy of the liquid at melt, and this
width is expected to decrease further as N increases [18].
These results suggest a model for G.(P,, 6,). Let us define
the liquid (Df) as the mean ®; for random structures when
N — oo, with a similar definition for 0{,. The model is

G (P, b)) = N, 8Dy — Dp) 86— 6)[1 + ON)],

GH(Pg) = N8Py — Py + ON], (11)

where @>0 and VN, is the number of random valleys. From

this it follows that Z,:./\f,e‘ﬁq’é(T/ 06)3’\’ and the random con-
tributions to Egs. (7) and (8) become

(D, — D) &6, - 6))

P (D, 6,) = (277 [1+O(N"9],
S(d, — D
P(Dg) = ﬁ[l +O(N")]. (12)

Hence, to finite-N errors, the random valley Hamiltonian pa-
rameters @6 and 66 are determined directly by quenches
from equilibrium MD at T=T,,. And, because of the form of
Eq. (11) for G(®,, 6,), these observations will remain true
when the statistical mechanics theory is improved to include
transit effects.

The symmetric density G(®,,6,) apparently has
N-independent width with @, ranging from ®{ to ®}. Sym-
metric structures with d,>®; exist, but they are rare for
monatomic systems. The 6, dependence of G,(P, 6,) is not
trivial. One expects that additional (symmetry) parameters
are important for symmetric structures. Nevertheless, G(d,)
and G,(dy, 6,) are well defined and can be extracted from
quench data with the aid of Egs. (7) and (8).

B. Quenches from stochastic configurations

On an equilibrium trajectory at 7=T,,, the probability the
system is found in a given potential-energy valley is
W, (®y, 6,) for that valley. The statistical weight is quite
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different for stochastic configurations. These configurations
are uniformly distributed over configuration space except for
the small excluded Cartesian-space volume at each nucleus.
Neglecting this constraint, the probability the system is
found in a given potential valley is the valley volume divided
by the entire 3N-dimensional volume. Let us denote the cor-
responding statistical weight factors as W.(®,,6,) and
W(®y, ;) for random and symmetric valleys, respectively.

Because of their uniformity, the random valleys all have
the same volume in the thermodynamic limit. To arrive at a
complete solution, it is necessary to include the symmetric
valleys. Let us assume that they also have a uniform configu-
ration space volume. The number of random (symmetric)
valleys is denoted NV, (N;) and the single-valley volume is
V. (V,). The statistical single-valley weights are

v,

W,=——"—, 13
NN, "
W, Y (14)
NV NS
The probability distributions are
Pr(q)07 00) = Gr(q)O’ 00) Wr’ (15)
P (D, ) = G(Dy, 6p) W, (16)

Hence the random and symmetric densities of states are each
proportional to the distribution found in quenches from sto-
chastic configurations. Applying the model of Eq. (11) for
G, (D, 6,) yields

8Py — ) 36y - 6h)
I+ (vav/ N rvr)

The conclusion here is the same as with equilibrium configu-
rations [Eq. (12)], that the parameters @}, and 6, are deter-
mined directly by quenches from stochastic configurations
up to finite-N errors. The reason, of course, is the form of the
model for G.(®,, 6,) [Eq. (11)]. For symmetric structures,
the above equations reveal two significant points:

(1) Quenches from stochastic configurations can deter-
mine the magnitude of G (P, §,) relative to G (D, 6,) but
only when W,/ W, is known.

(2) The relation between G (P, 6,) as determined by the
two quench methods is unknown until W is evaluated.

These points are relevant to the distributions shown in
Figs. 4 and 5.

Pr(q)07 00) =

[1+OWN9]. (17)

V. CONCLUSIONS

In this paper, we have addressed two main research goals:
(1) the use of stochastic configurations to probe the distribu-
tion of potential-energy minima and (2) the calibration of the
V-T Hamiltonian with DFT.

A. Stochastic configurations

Quenches from stochastic configurations produce statisti-
cally indistinguishable distributions of the potential energy,
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@,/ N, compared to quenches from equilibrium liquid MD
trajectories. We have demonstrated that quenching from sto-
chastic configurations can be used to find the entire distribu-
tion of Na potential-energy minima, i.e., they reliably repro-
duce the correct distribution of random and symmetric
structures. This is illustrated by a comparison of ®,/N dis-
tributions for quenches from equilibrium MD and from sto-
chastic configurations (Figs. 4 and 5 and Sec. III A).
Quenches from stochastic configurations yield an accurate
random distribution for Na in agreement with the random
distribution from quenches from equilibrium MD [Eq. (1)].

Compared to generating and selecting configurations from
equilibrium MD trajectories, our stochastic configuration
method is significantly faster and more economical (Sec. II).
Stochastic configurations do not require interatomic poten-
tials or costly equilibration and long simulation times. Sim-
ply generate random Cartesian coordinates for each atom un-
der a minimal excluded-volume constraint to eliminate
particle overlap. Hence, this procedure requires very little
computational effort, an economy that accommodates ab ini-
tio quench methods even for large systems.

B. Calibration of the V-T Hamiltonian

Calibration of the V-T Hamiltonian is based on the pre-
sumed dominance and uniformity of random valleys as
N— o, This view is given mathematical expression in the
model for G,(®y, 6,) [Eq. (11)]. It follows that the thermo-
dynamic limit parameters ®) and ¢ are determined directly
from data for either MD quenches or stochastic quenches up
to finite-N errors.

We have demonstrated that the DFT structure in Sec. III B
is random by comparing the mean potential energy ®,/N
with the pair potential results in Eq. (3), the phonon moment
6, in Eq. (4), and the pair distribution function G(r) in Fig. 6.
We conclude that being random, the DFT structure can pro-
vide ab initio calibration of the V-T Hamiltonian.

As verified by their pair distribution function, stochastic
configurations have nuclei distributed nearly uniformly over
the system volume (Figs. 1 and 2 and Sec. II). Therefore
among stochastic configurations, the statistical weight for a
many-atom potential-energy valley is (nearly) proportional to
the valley volume. This is in contrast to quenches from equi-
librium MD, which require extensive modeling to extract the
Boltzmann factor from the weight [16]. Given the statistical
weight, characteristics of the underlying potential surface can
be extracted from data acquired by stochastic quenches (Sec.
V).

We do not suggest that DFT quenches from stochastic
configurations will invariably arrive at random structures,
just as quenches from an equilibrium MD trajectory may
result in a symmetric structure. Indeed, some symmetric
structures have appeared in our DFT quenches. Precisely
what is required to eliminate symmetric structures from any
collection of quench data is an ongoing research question.
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