
Fluctuation relations for diffusion that is thermally driven by a nonstationary bath

Raphaël Chetrite
Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel and Laboratoire de Physique, CNRS, ENS-Lyon,

Université de Lyon, Allée d’Italie, 69364 Lyon, France
�Received 6 August 2009; published 10 November 2009�

In the context of the Markovian dynamical evolution in a nonstationary thermal bath, we construct a family
of fluctuation relations for the entropy production that are not verified by the work performed on the system.
We exhibit fluctuation relations, which are global versions either of the generalized fluctuation-dissipation
theorem around a nonequilibrium diffusion or of the usual fluctuation-dissipation theorem for energy resulting
from a pulse of temperature.
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I. INTRODUCTION

One important recent progress in nonequilibrium statisti-
cal physics is the discovery of various fluctuation relations
which can be viewed as nonperturbative extensions of the
usual fluctuation-dissipation theorem �FDT� �1,2�. Such rela-
tions pertain either to nonstationary transient situations �3,4�
or to stationary regimes �5�. In particular, a family of fluc-
tuation relations holds for the distribution of work performed
on a system �4,6–8� which evolves in an equilibrium bath,
and another family of relations holds for the entropy creation
�7–10�. These developments had an important impact on the
physics of nanosystems and biomolecules �11�. Here, we ex-
amine the question of the extension of such relations to an
evolution in a nonequilibrium medium. More precisely, we
consider systems placed in the thermal bath that is nonsta-
tionary, a situation which can be realized experimentally by
adding or extracting heat, or by modulating the pressure. Let
us remark that nonstationarity of the temperature is linked
via Stokes law to nonstationarity of friction and that particles
with time-dependent radii have nonconstant mass and fric-
tion. This last situation is an important problem in astrophys-
ics for the formation of planets through dust aggregation
�12,13�. There is another situation where the nonstationarity
of friction can be realized with particles diffusing in ferro-
electric fluids when external magnetic fields are controlling
the intrinsic viscosity �14�.

A famous example of a system that evolves in a nonsta-
tionary bath is the temperature ratchet model �15� of a
Brownian motor. We can also consider the evolution of a
system initially in equilibrium at high temperature Ti �i.e., in
the state with the density �i=exp�−H /Ti�� put in contact with
a nonstationary bath reaching a low temperature Tf. The
function T�t� is then called the cooling schedule. A particu-
larly interesting case is the instantaneous quench of the ini-
tial system in a thermostat at temperature Tf, which corre-
sponds to the cooling schedule with instantaneous initial
change in temperature. The age �or waiting time� of the sys-
tem is then the time elapsed since the quench. Finally, at the
more formal level, such nonstationary evolution rules appear
naturally from a stationary dynamics after system size or
coarse-grained expansion �16�. Diffusion properties in a non-
stationary medium have been recently studied in the case of
unidimensional overdamped dynamics driven by multiplica-

tive nonstationary noise �17,18�, in the case of nonstationary
colored bath �19–21�, and in the case of local quasiequilib-
rium of slow relaxation systems �22,23�.

The present paper consists of five sections. Section II sets
the stage and notations for the model of nonequilibrium and
nonlinear Langevin dynamics that we consider. In Sec. III,
we recall the main result of �8� and we list different time
inversions that permit us to obtain fluctuation relations for
entropy production. We observe that in this context the work
performed on the system no longer obeys the fluctuation re-
lations but that there still exists a functional that upon aver-
aging gives the free-energy change in a nonequilibrium pro-
tocol. In Sec. IV we explicitly construct fluctuation-
dissipation relations that result from the Taylor expansion of
the last fluctuation relation. In particular, we recover the gen-
eralized FDT �24� around a nonequilibrium diffusion and the
usual FDT for the energy which results from a pulse of tem-
perature �25�. We discuss also the physical meaning of the
effective temperature of a harmonic oscillator in a nonsta-
tionary bath. Finally, Sec. V presents our conclusions.

II. THERMALLY DRIVEN NONLINEAR
LANGEVIN DYNAMICS

The general dynamics that we consider is described by a
nonautonomous diffusion process that we call Langevin dy-
namics �or nonlinear Brownian motion� in a d-dimensional
�phase� space E. The process obeys the stochastic differential
equation �SDE�

ẋi = − �t
ij�x�� jHt�x� + �t

ij�x�� jHt�x� + Gt
i�x� + wt

i�x� + �t
i�x� ,

�1�

which should be interpreted in the Stratonovich convention.
Here, Ht�x� is the Hamiltonian of the system �the time index-
ation corresponds to an explicit time dependence�, �t�x� is a
family of non-negative matrices, �t�x� is a family of anti-
symmetric matrices, Gt�x� is an external force �or a shear�,
and wt�x� is an additional corrective term which will be ex-
plicit in Eq. �3� below and which comes from the x depen-
dence of �t and �t. Finally, �t�x� is a white �i.e., mimics a
bath with very short time correlations or memory� Gaussian
vector field with mean zero and covariance
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��t
i�x��s

j�y�� = 2Dt
ij�x,y���t − s� with Dt�x,x� � dt�x�

=
1

�t
�t�x� . �2�

The last equality, which contains the temperature of the bath
Tt=1 /�t, is called the Einstein relation. In the case when the
bath is in equilibrium, this equation reflects the fact that the
friction and the noise are two dual effects of the interaction
with the bath. In this nonstationary setup, the Einstein rela-
tion is valid under the assumption of local thermal equilib-
rium, provided the thermalization of the immediate environ-
ment of the Brownian particle is much faster than the
characteristic variation of temperature. Let us underline that
in this context the term “nonlinear” concerns the nonhomo-
geneous properties of �t�x� and �t�x� �which may character-
ize nonhomogeneous properties of the bath� and not the fact
that Eq. �1� is nonlinear. Such nonlinear properties appear
naturally in many situations: nonideal plasmas and gases
�26,27�, ultracold clusters of atoms, or molecules cooled by
interaction with laser radiation active Brownian particles
�28�. Finally, the additional corrective term in Eq. �1� is
given by the expression

wt
i�x� = �yjDt

ij�x,y��x=y −
1

�t
� j�t

ij�x� . �3�

The presence of this term assures that in the case with sta-
tionary Hamiltonian and temperature �i.e., Ht=H, �t=�� and
without external force �i.e., G=0�, the Gibbs density
exp�−�H� is an invariant density.1 The presence of this term
wt�x� in Eq. �1� can appear as a makeshift arrangement, but it
was extensively studied in the literature of nonlinear Brown-
ian motion �26,27�. Note that wt vanishes in the case of linear
Brownian motion where Dt�x ,y�=Dt and �t�x�=�t. We call
the deterministic part of the second member of Eq. �1�,

ut
i�x� = − �t

ij�x�� jHt�x� + �t
ij�x�� jHt�x� + Gt

i�x� + wt
i�x� ,

�4�

the drift term. An elementary case of nonlinear Brownian
motion is the Landau-Lifshitz-Bloch dynamics of a Brown-
ian spin �29� in an effective magnetic field Bt

ef f�x�=−�Ht
�which can incorporate interaction with other spins�. It fol-
lows the dynamics

ẋ = − x � �Ht + 	tx � �x � �Ht� + Gt�x� + x

� 
t with �
t
i
s

j� =
2	t

�t
�ij��t − s� . �5�

The first term on the right-hand side is the precession term,
the second one is the damping term, and the third one is an
external torque. The noise �and the damping term� accounts
for the effect of the interaction with the microscopic degrees
of freedom �phonons, conducting electrons, nuclear spins,
etc.�. This dynamics is a particular case of Eq. �1� with
�t

ij�x�=	t��ijx2−xixj� and �t
ij�x�=�ijkxk with �ijk as the to-

tally antisymmetric tensor. In this example one sees the need
for the term �t

ij�x�� jHt�x� in Eq. �1� corresponding to the
Hamiltonian vector field which also permits us to describe
systems of nonoverdamped Brownian particles in the phase
space with coordinates � q

p �, with nonstationary mass, in an
external potential Vt, subjected to a nonconservative force f t,
and in a nonstationary bath giving rise to the noise and the
nonhomogeneous nonlinear but isotropic drag �t�q , p�. The
Stratonovich SDE that governs this model is then

q̇ =
p

mt
,

ṗ = −
�t�q,p�

mt
p − �Vt�q� + f t�q� +

�p�t�q,p�
2�t

+	2�t

�t
�, with ��t

i�s
j� = �ij��t − s� , �6�

which is again a subcase of Eq. �1� with

�t = 
0 0

0 �t
�, � = 
 0 Id

− Id 0
�, Ht =

p2

2mt
+ Vt�q�, Gt

= 
 0

f t�q�
� .

The Kramers case corresponds to the Stokes law of friction
�t�q , p�=�t�q�. Another example of friction with �t�q , p�
=��p2− p0

2� appears in the Rayleigh-Helmholtz theory of
sound �30�.

We start by collecting the elementary properties of diffu-
sion processes that we shall need �31�. The Markovian gen-
erator Lt of the process xt satisfying the SDE �1� is defined
by the relation

�t�f�xt�� = ��Ltf��xt��, Lt = ût · �+ � ·
�t

�t
� , �7�

where the modified drift ût is defined in terms of the drift �4�,

ût
i�x� = ut

i�x� − �yjDt
ij�x,y��x=y . �8�

The time evolution of the instantaneous probability density
function of the process �t�x�= ���xt−x�� is governed by the
formal adjoint Lt

† of the generator Lt,

�t�t = Lt
†�t, �9�

which can be rewritten as a continuity equation �respectively,
a hydrodynamic advection equation� by defining the prob-
ability current jt

˜ �respectively, the mean local velocity vt˜�,

�t�t = − � · jt
˜ = − � · ��tvt˜�,

�jt
ĩ � �ût

i − �t
−1�t

ij� j��t, vt
ĩ �

jt
ĩ

�t
. �10�

As was explained in �24�, it is convenient to use the freedom
to add a divergenceless term in the definition of the probabil-
ity current to obtain the modified current and the modified
local velocity

1In fact, the Gibbs density is then an equilibrium density: an in-
variant density with vanishing modified probability current �24�.
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jt
i � jt

ĩ + �t
−1� j��ij�t�, vt

i �
jt
i

�t
, �11�

which verify also the continuity equation �10� but vanish in
the case of stationary Hamiltonian and temperature �i.e., Ht
=H, �t=�� for vanishing external force Gt=0.

III. FLUCTUATION RELATIONS AND TIME INVERSION

In �8�, various fluctuation relations were discussed for ar-
bitrary diffusion processes. We recall here the main result in
the context of systems with dynamics of type �1� �see also
Sec. 3 of �32��. With the use of combined Girsanov and
Feynman-Kac formulas, one obtains the detailed fluctuation
relation �DFR�

0�dx�PT�x;dy,dW�e−W = 0
r�dy��PT

r �y�;dx�,d�− W�� ,

�12�

where
�1� 0�dx�=�0�x�dx is the initial distribution of the origi-

nal forward process �1�,
�2� 0

r�dx�=�0
r�x�dx is the initial distribution of the back-

ward process obtained from the forward process by applying
a time inversion �see below�,

�3� PT�x ;dy ,dW� is the joint probability distribution of
the time T and position xT, of the forward process starting at
time zero at x, and of a functional WT �linked to the entropy
production� of the same process on the interval �0,T�, �de-
scribed later�, and

�4� PT
r �x ;dy ,dW� is the similar joint probability distribu-

tion for the backward process.
The time inversion acts on time and space by an involu-

tion

�t,x� � �t� = T − t,x�� . �13�

Such an involution induces the action x� x̃ on trajectories by
the formula x̃t=xT−t

� and, further, the action on functionals of

trajectories F� F̃, by setting F̃�x�=F�x̃�.
To recover various fluctuation relations discussed in the

literature �4,6,9,33–35� into two parts, u=u++u−, with u+
transforming as a vector field under the space-time involu-
tion �13� and u− as a pseudo-vector-field,

uT−t,�
ri �x�� = � ��kx

�i��x�ut,�
k �x�, ur = u+

r + u−
r . �14�

The random field �t�x� may be transformed with either rule.
By definition, the backward process satisfies then the Stra-
tonovich SDE

ẋ = ut
r�x� + �t

r�x� . �15�

Let us stress that, in general, this backward process differs
from the naive time inversion yt= x̃t of the forward process
�called natural time inversion in �8�� which is the case where
u+ vanishes and which satisfies, for example, when x�=x the
Stratonovich SDE

ẏ = − ut��y� � �t��y� . �16�

The requirement of a nonvanishing vector part u+ in general
can easily be seen by considering that a dissipative term �like

−�t
ij�x�� jHt�x�� in the forward process becomes antidissipa-

tive in process �16�, while the backward process is still in
contact with the bath. The functional WT is given by the
expression

WT = ln �0�x0� − ln��0
r�xT

����xT�� + �
0

T

Jtdt , �17�

where ��x�= �det��x� /�x�� is the Jacobian of the spatial invo-
lution. The intensive functional Jt has the interpretation of
the rate of entropy production in the environment and is
given by the expression

Jt = �tût,+�xt� · �t
−1�xt��ẋt − ut,−�xt�� − �� · ut,−��xt� . �18�

The time integral in Eq. �17� is taken in the Stratonovich
sense. When 0

r�dx��=T�dx� then the boundary contribution
ln �0�x0�−ln��0

r�xT
����xT��� to WT gives the change in the

instantaneous entropy of the process. In this case, the func-
tional WT becomes equal to the overall entropy production.
Moreover, with the interpretation of Jt as the entropy produc-
tion in the environment, the first principles give us that the
work TT performed on the system can be expressed in terms
of Jt,

TT = HT�xT� − H0�x0� + �
0

T Jt

�t
dt . �19�

We can underline that, in this setup, and contrary to the case
of a stationary bath �8�, the work TT cannot be identified with
the functional WT for an appropriate choice of initial densi-
ties of the forward and backward processes. This means that
the work does not verify the DFR.

The DFR �12� holds even if the measures 0 and 0
r are

not normalized, or even not normalizable. When they are
normalized, let us denote by �−� and by �−�r the expectations
of functionals of, respectively, the forward and the backward
processes on the time interval �0,T�, with initial distributions
0 and 0

r . One of the immediate consequences of the DFR
equation �12� is the �generalized� Jarzynski equality �4�

�e−WT� = 1 �20�

obtained by the integration of the both sides of Eq. �12�. It
implies the inequality �WT��0 that has the form of the sec-
ond law of thermodynamics stating the positivity of the av-
erage entropy production. With a little more work �8�, the
DFR �12� may be cast into a form of the �generalized�
Crooks relation �6�

�F exp�− WT�� = �F̃�r. �21�

We will now restrict ourselves to the class of time inver-
sions �14� such that there exists a nonstationary density f t
such that

û+,t = �t
−1�t � ln f t and then u−,t = − �t � �Ht + �t

−1 ln f t�

+ �t � Ht −
1

�t
� · �t

T + Gt. �22�

After a straightforward calculation, the rate of entropy pro-
duction in the environment may be expressed as
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Jt = ẋt · �� ln f t��xt� + ��f t�−1Lt
†f t��xt� . �23�

With the choice 0�dx�= f0�x�dx and 0
r�dx��= fT�x�dx the

functional WT takes then the simple form

WT = �
0

T

��f t�−1Lt
†f t − �t ln�f t���xt�dt . �24�

We can then remark that the class of time inversions �14� is
the most general which allows the functional WT to become a
functional of just xt and not of the derivative ẋt. We shall see
that, due to this independence of ẋt, the fluctuation relations
associated with this peculiar family of inversions are the
natural generalizations of the FDT. We shall now describe
particular cases in this family of time inversions.

A. Complete reversal

As the function f t in Eq. �22� we take the instantaneous
density function �i.e., f t=�t� of the forward process �1� dis-
tributed with initial condition f0 �8�. Here, the functional �24�
trivially vanishes WT=0 and the DFR �12� takes the form of
the generalized detailed balance

0�dx�PT�x;dy� = T�dy�PT
r �y�;dx�� . �25�

One may show that �t
r�x���t��x�� is the instantaneous den-

sity of the backward process and that the corresponding
probability current satisfies the relation

jt
i,r̃�x� = − ��kx

�i��x�jk̃
t��x�� . �26�

This inversion is employed in many articles in probability
theory �36–40�. It corresponds to the vanishing overall en-
tropy production.

B. Current reversal

Another useful choice of time inversion, called the current
reversal �8,35�, is based on the choice f t=�t, where �t satis-
fies Lt

†�t=−� · jt
˜ =0. In the case where Gt=0, we have �t

=exp�−�t�Ht−Ft�� with Ft as the free energy �i.e., exp�
−�tFt�=�exp�−�tHt��. One can show �8� that �t

r�x�
��t��x�� is the density for the backward process that corre-

sponds to the conserved current � · jt
r̃=0 and that Eq. �26�

still holds. The functional �24� takes now the form

WT
ex = − �

0

T

��t ln �t��xt�dt , �27�

where the index “ex” stands for “excess” �7,8�. For the back-
ward process, the functional WT

ex,r is given by the same ex-
pression with �t replaced with �t

r. The Jarzynski equality
�20� for this case was first proven in one dimension in �41�
and in the general case in �8,42,43�.

C. Canonical inversion

A natural choice for systems �22� is to take f t to be the
Gibbs density exp�−�t�Ht−Ft��, where Ft is the free energy
�i.e., exp�−�tFt�=�exp�−�tHt�� if the Gibbs density is nor-

malizable and zero otherwise �8�. This corresponds to the
choice û+,t=−�t�Ht in Eq. �22�. The functional �24� be-
comes

WT
ci = − ��TFT − �0F0� + �

0

T

��t��tHt� + �tGt · �Ht − � · Gt�

��xt�dt , �28�

where the index “ci” means “canonical inversion.” The gen-
eralized Jarzynski equality �20� can be rewritten in the form

�exp
− �
0

T

��t��tHt� + �tGt · �Ht − � · Gt��xt�dt��
= exp�− ��TFT − �0F0�� , �29�

which permits us to extract the difference of free energy out
of a nonequilibrium experiment in a nonstationary bath �but
the connection with the work performed is lost�. For ex-
ample, for the Brownian particle �6�, this functional takes the
form

WT
ci = − ��TFT − �0F0� + �

0

T ��̇t
 pt
2

2mt
+ Vt�qt��

+ �t
−
ptṁt

mt
2 + ��tVt��qt� + �f t · �Vt��qt���dt �30�

which, as compared to the functional which appears in the
usual Jarzynski equality �4,33�, contains terms proportional
to the variation of temperature �t�t and of mass �tmt. From
the Jarzynski equality �20�, one can deduce the inequality
which constrains the evolution in a nonstationary bath,

�WT
ci� � 0.

In the case with a stationary Hamiltonian �i.e., Ht=H� and
without external force �i.e., Gt=0� this constraint reads

�
0

T

��t�t��H�xt��dt � ��TFT − �iFi� .

Let us consider now the overdamped particle in a three-
dimensional time-dependent harmonic potential. Such an ex-
ample admits an analytical computation of the distribution of
the functional WT

ci. We consider a nonstationary bath ��t ,�t�
and the harmonic potential Ut�x�= �kt /2��x−at�2, where kt is
the stiffness coefficient and at is the instantaneous center of
the potential. The particle is initially distributed with the
Gibbs density �0�x�=exp�−�0�U0�x�−F0��= � C

2� �3/2exp�− C
2 �x

−a0�2�. Further, we will restrict our study to the particular
case, not necessarily physical, where the temperature of the
bath and the stiffness coefficient are such that their product is
stationary: kt�t=C. This setup generalizes the unidimen-
sional stationary case �kt=k, �t=�, �t=�, and at=ut� consid-
ered in �44,45�. The system satisfies the linear SDE

ẋ = −
kt

�t
�x − at� + �t with ��s

i�t
j� =

2

�t�t
��t − s��ij .

�31�

The functional WT
ci=WT

ex takes here the form
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WT
ci = − C�

0

T

ȧt · �xt − at� .

The distribution of WT
ci for a process with the initial Gaussian

density �0 is Gaussian due to the linearity of Eq. �31�. A
straightforward calculation gives the mean

�WT
ci� = C�

0

T

dt�
0

t

ȧt · ȧs exp
− �
s

t ku

�u
du�ds �32�

and the variance of this Gaussian �we assume that the inte-
grals exist�

VT � ��WT
ci − �WT

ci��2� = 2C�
0

T

dt�
0

t

ȧt · ȧs

�exp
− �
s

t ku

�u
du�ds . �33�

The distribution of WT
ci is then

PT�W� =
1

	2�VT

exp
−
�W − �WT

ci��2

2VT
� , �34�

and an elementary calculus shows that the Jarzynski equality
�20� is equivalent to the fact that VT=2�WT

ci�, which is evi-
dent from the comparison of Eqs. �32� and �33�.

D. Alternative inversion

We choose for the function f t the mean instantaneous den-
sity �t� of another Langevin dynamics �1� which possesses
the same parameters �t, �t, Gt but with another nonautono-
mous Hamiltonian Ht� and another bath temperature �t�. We
note Lt �respectively, Lt�� the Markovian generators of the
process with the Hamiltonian Ht and the bath temperature �t
�respectively, Ht� and �t��. The functional �24� takes now the
form

WT = �
0

T

���t��
−1�Lt − Lt��

†�t���xt�dt . �35�

This alternative inversion will permit us to recover generali-
zations of the FDT around nonstationary nonequilibrium dif-
fusions �see also �24,32,46��.

IV. GENERALIZATIONS OF THE FLUCTUATION-
DISSIPATION THEOREM

As noted in �9,47�, the fluctuation relations may be
viewed as extensions to the nonperturbative regime of the
Green-Kubo and Onsager relations for the nonequilibrium
transport coefficients valid within the linear-response de-
scription of the vicinity of the equilibrium. Reference �8�
contains a detailed argument showing that if in a stationary
bath one perturbs an equilibrium system by introducing a
weakly time-dependent Hamiltonian Ht�x�=H�x�−ga,tO

a�x�
then the Jarzynski equality associated with Eq. �27� or Eq.
�28� gives in the second order of the Taylor expansion in g
the usual FDT. Reference �32� showed that similar corre-

spondence still holds around nonequilibrium steady states for
a stationary dynamics with an external force �i.e., G�0�. In
this case, it is the Crooks relation �21� associated with the
functional �27� that gives the modified fluctuation-dissipation
theorem �MFDT� �32,48� after the first-order Taylor expan-
sion in g. The second-order expansion of Jarzynski equality
�20� associated with the functional �27� gives in such a situ-
ation only a special case of this theorem. We shall now in-
vestigate which type of fluctuation-dissipation identities may
be deduced by Taylor expanding the fluctuation relation cor-
responding to the time inversion of Sec. III D.

A. FDT around nonstationary diffusions

We consider system �1� with the Hamiltonian Ht�x�
=Ht

0�x�−ga,tO
a�x�. Following Sec. III D, we choose f t as the

mean instantaneous density �t
0 of the unperturbed system

with g=0. The functional �35� becomes

WT = �
0

T

ga,s���s
0�−1Ms

a†�s
0�sds with Ms

a

= ��s � Oa − �s � Oa� · � , �36�

where the subscript “s” on ���s
0�−1Ms

b†�s
0� signals that the

latter function should be taken at the point xs. Let us now
write a particular case of Crooks relation �21�, where the
average is in system �1� with the Hamiltonian Ht, associated
with a single time functional F�x�=Oa�xt��Ot

a �0� t�T�,

�Ot
ae−WT� = �OT−t

a �r. �37�

We shall denote by � · �0 the average of the process with the

dynamics driven by Ht
0 and by L0, v0̃ and v0, respectively, its

Markovian generator, its mean local velocity, and its modi-
fied mean local velocity. The first-order Taylor expansion

exp�− WT� = 1 + �
0

T

gb,s���s
0�−1Ms

b†�s
0�sds + O�g2� �38�

in Eq. �37� gives the relation

�Ot
a�0 +� �gb,s

�

�gb,s
�

g=0
�Ot

a�ds

− �
0

T

gb,s�Ot
a��s

0−1Mb†�s
0�s�0ds + O�g2� = �OT−t�r.

�39�

The right-hand side has a functional dependence only on
gu ,u� t�, so if we apply ��� /�gb,s��g=0, for 0�s� t, to the
last identity, we obtain

� �

�gb,s
�

g=0
�Ot

a� = ����s
0�−1Mb†�s

0�sOt
a�0. �40�

A short calculation gives

��s
0�−1Ms

b†�s
0 = �svs

0̃ · �Ob − �sLs
0Os

b + �s
ij�� jO

b��i ln��s
0�

+ ��i�s
ij�� jO

b = �s�2vs
0̃ · �− Ls

0�Ob

− �svs
0̃ · �Ob + �s

ij�� jO
b��i ln��s� + ��i�s

ij�� jO
b
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= �s�2vs
0̃ · �− Ls

0�Ob − �svs
0 · �Ob. �41�

Moreover, we have the sum rule �for s� t�

�s�Os
bOt

a�0 = ���2vs
0̃ � − Ls

0�Ob�sOt
a�0. �42�

With Eqs. �40�–�42�, we obtain the MFDT

�s�Os
bOt

a�0 = � 1

�s

�

�gb,s
�

g=0
�Ot

a� + ��vs
0 · �Ob�sOt

a�0. �43�

This is a generalization of the FDT around a nonequilibrium
diffusion process in a stationary bath ��t=�� of Refs.
�24,32,46,49,50� and of FDT around nonstationary Langevin
equation of Ref. �51�. It may be also proven as in �24� using
the fact that the diffusion process becomes an equilibrium
one in the Lagrangian frame of its modified mean local ve-
locity v0, verifying in that frame the usual FDT. The trans-
formation of the latter back to the Eulerian �i.e., laboratory�
frame leads to Eq. �43�. Let us remark that, here, similarly as
in the stationary case discussed in �32�, the Jarzynski equal-
ity �20� for the functional �35� leads upon the second-order
expansion in g to a particular case of the MFDT where the
observable Ot

a is replaced with Aa= ��t
0�−1Mt

a†�t
0, which is a

�time-dependent� functional of Oa.
The violation of the usual FDT can be parametrized by

using Eq. �43� via the introduction of the so-called effective
temperature �52,53� defined by

Tef f�s,t,Oa� �
�s�Os

aOt
a�0

� �

�ga,s
�

g=0
�Ot

a�
=

1

�s
+

��vs
0 · �Oa�sOt

a�0

� �

�ga,s
�

g=0
�Ot

a�
.

�44�

We shall consider now the case where this effective tempera-
ture may be computed analytically in order to verify its
physical consistency.

Unidimensional harmonic oscillator in a nonstationary
bath. The SDE that governs this system is

ẋ = −
k

�
x + � with ��t�s� =

2Tt

�
��t − s� . �45�

We take the cooling schedule Tt such that the bath passes
from an initial temperature �T0=Ti� to a lower final tempera-
ture �T�=Tf �Ti� during a time �. The system is initially in
equilibrium with the bath and its initial density is �0�x�
=exp�−�k /2Ti�x2� /Zi. We consider two particular examples
of cooling schedules:

�1� instantaneous quench

Tt = �Ti if t = 0

Tf if t � 0,
� �46�

�2� linear decrease in temperature

Tt = �Ti +
t

�
�Tf − Ti� if t � �

Tf if t � � .
� �47�

Due to the linearity of Eq. �45�, one can compute explicitly
the response of the position to an external perturbation
V�x�= k

2x2→Vt��x�=V�x�−gtx with g0=0,

� �

�gs
�

g=0
�xt� =

1

�
exp
−

k

�
�t − s�� . �48�

It has a stationary form and is independent on the cooling
schedule. In a similar way, we obtain also an explicit expres-
sion for the dynamical two-time correlation function of the
position in the unperturbed system in the two cooling sched-
ules. For s� t, we obtain for the instantaneous quench

�xsxt�0 =
Ti − Tf

k
exp
−

k

�
�s + t�� +

Tf

k
exp
−

k

�
�t − s�� ,

�49�

and for the linear decrease in temperature schedule

�xsxt�0 = ��
Ti

k
+

Tf − Ti

k�

s −

�

2k
��exp
−

k

�
�t − s�� +

��Tf − Ti�
2k2�

exp
−
k

�
�s + t�� if s � �, s � t

Tf

k
exp
−

k

�
�t − s�� −

��Tf − Ti�
2k2�

�exp
2k

�
�� − 1�exp
−

k

�
�s + t�� if � � s � t . � �50�

We see in these two formulas that the characteristic time of
convergence toward the Gibbs density exp�−�k /2Tf�x2� /Zf is
�
k for the instantaneous quench and �+ �

k for the linear de-
crease schedule. Note the relation

�xsxt�0 = �xs
2�0exp
−

k

�
�t − s�� = ��xs

2�0�
�

�gs
�

g=0
�xt�

�51�

holding for both cooling schedules. It shows that at very
large times �i.e., t�s�� , �

k � the correlation functions �49�

and �50� take a stationary form depending on t−s. The in-
stantaneous mean density of the process is Gaussian at all
times. It follows that the mean local velocity has the form

vs
0�x� = 
−

k

�
+

Ts

��xs
2�0

�x �52�

and the corrective term in the FDT �43� is
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��vs
0 · �x�sxt�0 = ��vs

0�sxt�0 = 
−
k

�
+

Ts

��xs
2�0

��xsxt�0.

�53�

Using relations �51� and �53�, the FDT �43� may be rewritten
in this case as the identity


�s +
k

�
��xsxt�0 = �2Ts

�

�gs
�

g=0
�xt� , �54�

which is easy to check directly.

The effective temperatures for the instantaneous quench
TQ

ef f and for the linear decrease in temperature schedule TLD
ef f

are

TQ
ef f�s,t,x� = Tf + �Tf − Ti�exp
−

2k

�
s� if 0 � s � t ,

�55�

TLD
ef f�s,t,x� =�

Ti +
1

�
�Tf − Ti��s +

�

2k
�1 − exp
−

2k

�
s��� if 0 � s � �,s � t

Tf + �Tf − Ti�exp
−
2k

�
s� exp
2k

�
�� − 1

2k

�
�

if � � s � t . � �56�

The two effective temperatures have an expected behavior
for large time s converging toward Tf. However, we may see
in this system the problems with the physical interpretation
of the effective temperature �52,53�. For example,
lims→0 TQ

ef f =2Tf −Ti�Ti and this expression can be negative
if Tf �Ti /2. The possibility to find negative effective tem-
perature has been observed also in �32� and, for the kineti-
cally constrained model, in �54�. Moreover, the effective
temperature grows toward its limit Tf, which does not corre-
spond to the physical intuition for the temperature of a
cooled system. The investigation of the linear-decrease cool-
ing schedule is instructive for the understanding of these two

problems. For this schedule, lims→0 TLD
ef f =Ti and the effective

temperature decreases from this value until time � when it
reaches TLD

ef f���=Tf + �Tf −Ti��1−exp�− 2k
� ��� / 2k

� ���Tf. So,
the problem with the initial time limit of TQ

ef f was due to the
instantaneous modeling of the quench. On the other hand, the
second part of the evolution for the linear cooling schedule
�i.e., for s��� begins with an effective temperature below Tf
that may be even negative. The last features are not really
physically satisfying but the first one explains why the effec-
tive temperature TQ

ef f converges toward Tf by growing, the
fact which is confirmed by Eq. �56�. We present below in
Fig. 1 a typical joint evolution for the linear cooling schedule
of the bath temperature T �crosses� and the effective tem-
perature TLD

ef f �solid lines� in the case where Ti=300 K, Tf

=200 K, and 2k
� =1 s−1 for �=0.1 s �red�, �=1 s �blue�, and

�=10 s �black�. The singularity of the limit �→0 is evident
on this graph.

B. Response of a diffusion to a pulse of bath temperature

Let us consider the system whose dynamics is governed
by Eq. �1� with the variable bath temperature �t

−1= �1
+gt��0

−1. We choose as the function f t the mean instantaneous
density �t

0 of the similar system with the constant bath tem-
perature �0

−1. The functional �35� becomes

WT = �
0

T

gs���s
0�−1Ms

†�s
0�sds with Ms = ��0�−1��− � j�s

ij

+ � j�s
ij��i + �s

ij�i� j� . �57�

With the same reasoning as in Sec. IV A, we find the link
between the response to a pulse of temperature at time s and
the dynamical correlation function in the system with sta-
tionary inverse temperature �0,

100

150

200

250

300

T
eff

(K)

0 2 4 6 8 10 12
Time s

FIG. 1. �Color online� Red solid curve �extreme left at little
time�: TLD

ef f for �=0.1 s. Red circles: T for �=0.1 s. Blue dotted-
dashed curve: TLD

ef f for �=1 s. Blue crosses: T for �=1 s. Black
solid curve �upper in little time�: TLD

ef f for �=10 s. Black box �upper
in little time�: T for �=10 s.
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� �

�gs
�

g=0
�Ot� = ����s

0�−1M†�s
0�sOt�xt��0. �58�

Here, there does not seem to exist a simplification of this
relation in the spirit of Eq. �43� and we cannot say more
except for the case when the system with the bath tempera-
ture �0 is an equilibrium one.

Temperature pulse around equilibrium. In the case where
the system with the bath temperature �0 is in equilibrium
�i.e., without external force Gt=0 and with a stationary
Hamiltonian Ht=H and the Gibbsian instantaneous density�,
the functional �28� takes the form

WT
ci = WT

ex = − ��TFT − �0F0� + �
0

T

�̇tH�xt�dt . �59�

We want to prove that the Taylor expansion in the second
order of the Jarzynski equality �20� associated with this func-

tional gives the usual fluctuation-dissipation theorem for the
energy �25�

�s�HsHt�0 = � 1

�0

�

�gs
�

g=0
�Ht� . �60�

Equality �20� takes now the form

�exp
− �
0

T

�̇tH�xt�dt�� =
�exp�− �TH�x��dx

�exp�− �0H�x��dx
. �61�

We develop the left member in second order in gt or ht=gt
−gt

2 assuming that gt vanishes for t�0,

�exp
− �
0

T

�̇tH�xt�dt�� =�exp
�0�
0

T

ḣtH�xt�dt� + O�h3�� =�1 + �0�
0

T

ḣtH�xt�dt +
�0

2

2
�

0

T

dt�
0

T

ḣtḣsH�xt�H�xs�ds

+ O�h3�� = 1 + �0�
0

T

ḣt�H�xt��0dt + �0�
0

T

dt�
0

t �ḣthu
�

�gu
�

g=0
�Ht�du

+
�0

2

2
�

0

T

dt�
0

T

ḣtḣs�H�xt�H�xs��0ds + O�h3� = 1 + �0�
0

T

ḣt�H�xt��0dt + �0�
0

T

dt�
0

T

ḣtḣs��t

− s�ds�
s

t � �

�gu
�

g=0
�Ht�du +

�0
2

2
�

0

T

dt�
0

T

ḣtḣs�H�xt�H�xs��0ds + O�h3� ,

where the last equality was obtained by expressing hu

=�0
uḣsds in the second term and changing the order of inte-

gration over s and u. Expansion of the right member of Eq.
�61� gives in turn

�exp�− �TH�x��dx

�exp�− �0H�x��dx
= 1 + �0hT�H�0 +

1

2
��0hT�2�H2�0 + O�h3�

= 1 + �0�
0

T

ḣt�H�xt��0dt

+
�0

2

2
�

0

T

dt�
0

T

ḣtḣs�H�xt�2�0ds .

The comparison of the terms quadratic in ḣ leads to the iden-
tity

1

�0
�

s

t �du
�

�gu
�

g=0
�Ht� = �Ht

2�0 − �HsHt�0 �62�

for s� t, which gives relation �60� by the derivation with
respect to s. Once again the Jarzynski equality appears as a
global version of the FDT.

V. CONCLUSIONS

We have discussed fluctuation relations for diffusion pro-
cesses �1� in a nonstationary thermal bath. Those included
the fluctuation relations for the entropy production �12�. The
work performed on the system no longer verifies such fluc-
tuation relations, but that there still exists relation �29� that
permits us to extract the free-energy difference in a nonequi-
librium experiment. We proved that the fluctuation relations
involving the functional �35� are global versions of the
MFDT �43� around a nonequilibrium diffusion extending the
MFDT obtained before in �24,32� and of the usual FDT for
energy �60� �25� resulting from a pulse of temperature. Along
the way, in Sec. IV A we illustrated the extended MFDT on
a simple example of a harmonic oscillator in a thermal bath
with variable temperature and we investigated the physical
meaning of the effective temperature introduced in �52,53�
for such a system. One should underline that the interaction
with a nonstationary bath is one among many ways to ther-
mally drive a system. For example, the thermodiffusion ef-
fect �or Sorret effect� which appears in a bath with nonuni-
form temperature �i.e., ��x�= 1

T�x� � has been explained in
�55�, for the unidimensional case, using a stationary nonequi-
librium microscopic model of type �1� with G=0 but with
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the thermophoretic force −�
dT
dx added to the drift �4�. In the

same spirit, many years ago, Landauer �56� proposed a
model with the wall temperature varying along a very narrow
pipe filled with the Knudsen gas described by a stationary
nonequilibrium microscopic model of type �1� but with the
thermophoretic force −�

dT
dx and the chemical force −T d�

dx
added to the drift. Finally, another way to drive a system is to
consider fluctuating coefficients in Eq. �1�; for example, �13�
considered a fluctuating mass and �57–59� considered a sto-

chastic friction. It would be interesting to describe the fluc-
tuation relations in those setups.
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