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In this work we present a thorough analysis of the phase transitions that occur in a ferromagnetic two-
dimensional Ising model, with only nearest-neighbors interactions, in the framework of the Tsallis nonexten-
sive statistics. We performed Monte Carlo simulations on square lattices with linear sizes L ranging from 32 up
to 512. The statistical weight of the Metropolis algorithm was changed according to the nonextensive statistics.
Discontinuities in the m�T� curve are observed for q�0.5. However, we have verified only one peak on the
energy histograms at the critical temperatures, indicating the occurrence of continuous phase transitions. For
the 0.5�q�1.0 regime, we have found continuous phase transitions between the ordered and the disordered
phases, and determined the critical exponents via finite-size scaling. We verified that the critical exponents �,
�, and � depend on the entropic index q in the range 0.5�q�1.0 in the form ��q�= �10q2−33q+23� /20,
��q�= �2q−1� /8, and ��q�= �q2−q+7� /4. On the other hand, the critical exponent � does not depend on q.
This suggests a violation of the scaling relations 2�+�=d� and �+2�+�=2 and a nonuniversality of the
critical exponents along the ferro-paramagnetic frontier.
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I. INTRODUCTION

Inspired in the geometrical theory of multifractals, Tsallis
has suggested a generalization of the Boltzmann-Gibbs �BG�
entropy �SBG�, which is known as the nonadditive entropy
�1,2�. The entropy form is postulated to be

Sq = k
1 − �ipi

q

q − 1
, �1�

where �ipi=1 and k is a constant. The idea behind this gen-
eralization is that Sq is the measure of the information of
biased systems. Thus, being pi the probability of finding a
given system on the state i, the factor q introduces a bias into
the probability set, i.e., if 0� pi�1 then pi

q� pi for q�1 and
pi

q� pi for q�1. In other words, q�1 privileges the less
probable events in opposition to the more probable ones and
vice versa. This entropy is invariant under permutations be-
comes zero for the maximum knowledge about the system
and for q=1, i.e., for unbiased systems, it would recover the
BG entropy. The bias factor q is called the entropic index and
q�R. Recently, it has been proposed that q is connected to
the dynamics of the system �3–8�. Besides representing a
generalization, the nonextensive entropy Sq, as much as SBG,
is positive, concave, and Lesche-stable �∀q�0�. It has also
been shown that for systems with certain types of correla-
tions that induces scale invariance in the phase space, the
entropy Sq becomes additive �9–12�. The optimization of the
entropy in Eq. �1� leads to the equilibrium distribution and a

generalization of the Boltzmann-Gibbs statistics that is called
nonextensive statistics. This generalization has been success-
fully applied in many areas of physics, biology, and compu-
tation in the past few years �13–16�.

On the other hand, magnetic models are one of the most
studied systems in condensed matter and the Ising model is a
prototype that has been extensively investigated for the last
30 years. More recently, some works have investigated the
magnetic properties of some manganese oxides called man-
ganites and connections with the nonextensive statistics have
been proposed �6,17–19�. In a recent work, Reis et al. �19�
studied the phase transitions that occur in a classical spin
system within the mean-field approximation, in the frame-
work of Tsallis nonextensive statistics, and some interesting
properties were found: the system presents first-order phase
transitions for q�0.5, but only continuous transitions were
found for 0.5�q�1.0. The results present qualitative agree-
ment with experimental data in the La0.60Y0.07Ca0.33MnO3
manganite �20�.

From this, two natural questions appear: What properties
of infinite-range-interaction models can appear in short-
range-interaction ones? Can the mean-field predictions be
verified on low-dimensional systems? Although a two-
dimensional �2D� Ising model, defined in the limit of
nearest-neighbors interactions, is usually treated according
the BG statistics, a nonextensive approach can be seen as a
toy model for the elucidation of the question: will the mean-
field behavior be also present in a short-range-interaction
model? Furthermore, using this kind of study one can also
verify the accuracy of the nonextensive statistics applied to
magnetic systems.

In an attempt to clarify some of these questions, we report
in this paper results on the study of the phase transitions that
occur on a 2D Ising model within a nonextensive approach.
These results were obtained through Monte Carlo �MC�
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simulations upon replacing the statistical weight of the Me-
tropolis algorithm by the nonextensive one. We performed a
finite-size scaling in order to estimate the critical exponents
for different values of the entropic index q� �0,1�. As dis-
cussed in Ref. �21�, the critical temperatures Tc depend on
q�∀q� �0,1��, but we have found in the present work that
the critical exponents �, �, and � depend on the entropic
index q, in the range 0.5�q�1.0.

II. NONEXTENSIVE STATISTICS AND MONTE CARLO
SIMULATION

In nonextensive statistics theory �see, e.g., Refs. �2,22,23�
for details�, the energy constraint is given by

�H�q � �
i=1

	

Pi
i = Uq, �2�

in which H is the Hamiltonian of the system under consid-
eration, 
i represent the 	 possible energy states, and we
have presented the concept of escort distribution �24�

Pi �
pi

q

� j=1
	 pj

q =
�eq

−�q�
i�q

� j=1
	 �eq

−�q�
j�q
, �3�

where

�q� =
�

� j=1
	 pj

q + �1 − q��Uq

, �4�

being � the Lagrange parameter associated with the con-
straint in Eq. �2�, eq

x ��1+ �1−q�x�+
1/�1−q� the q-exponential

and �y�+�y��y�, where ��y� denotes the Heaviside step
function. This implies a cutoff for 
i given by

�q�
i �
1

1 − q
. �5�

The definition of the physical temperature in the nonexten-
sive statistics is still an open issue �25–33�. From a prag-
matic point of view, since ��q��

−1 has the dimension of en-
ergy, ��q�k�−1 is a temperature scale which can be used to
interpret experimental results. The validity of this choice was
first shown experimentally �18� and later theoretically
�6,7,17,19� for manganites.

The MC technique has been successfully used to study the
physical properties of Ising models �34,35�. Thus, in order to
generalize the study of the properties of this model by a
nonextensive approach, we modified the Metropolis method
for the nonextensive statistics. To proceed the single spin flip
MC calculations �36� and to obtain the physical quantities of
interest of the system �magnetization, susceptibility, specific
heat, and other quantities�, we have changed the usual statis-
tical weight to �21�

wq =
Pi,after

Pi,before
= 	 eq

−
i
after/kT

eq
−
i

before/kT
q

. �6�

The above equation is the ratio between the escort probabili-
ties, Eq. �3�, before and after the spin flip, and 
i are the
energy states related to the Hamiltonian:

H = − J�
�ij�

sisj , �7�

where �ij� denotes the sum over nearest neighbors on a
square lattice of size N=L2, si= �1, and J�0 �which im-
plies a ferromagnetic interaction�.

Since Eq. �6� is a ratio, the calculated weight can also be
written as the ratio between the q-exponentials with a bias q
�21�. It is important to emphasize that wq is the quantity that
will be compared to a random number in the Metropolis
algorithm and also to note that the cutoff procedure, Eq. �5�,
must be taken into account, i.e., it must be included into wq
to avoid complex probabilities.

Taking into account Eqs. �5�–�7�, we performed MC
simulations with the entropic index q� �0,1� and linear lat-
tice sizes of L=32,64,128, 256, and 512, with periodic
boundary conditions and a random initial configuration of
the spins. The following results were obtained after 107 MC
steps per spin.

III. NUMERICAL RESULTS AND FINITE-SIZE SCALING

In the following we will show results for the magnetiza-
tion per spin, m, and for the susceptibility, 
, and the specific
heat, C, which can be obtained of the simulations from the
fluctuation-dissipation relations,


 =
�m2� − �m�2

T
, �8�

C =
�e2� − �e�2

T2 , �9�

where � � stands for MC averages and e is the energy per spin
�we have considered J=k=1 for simplicity�. In Fig. 1 it is
shown the simulations in the range 0.5�q�1.0, where we
present on the left side the magnetization versus the tempera-
ture for q=0.6, q=0.8, and q=1.0. As may be observed on
this figure, the magnetization curves changes continuously
from an ordered ferromagnetic phase to a disordered para-
magnetic one. Thus, the critical exponents and the critical
temperatures of the model can be obtained by the standard
finite-size scaling �FSS� forms,

m�T,L� = L−�/�m̃��T − Tc�L1/�� ,


�T,L� = L�/�
̃��T − Tc�L1/�� ,

C�T,L� = L�/�C̃��T − Tc�L1/�� ,

Tc�L� = Tc + aL−1/�, �10�

where a is a constant. In Eqs. �10�, the exponent � is related
to the behavior of the magnetization near the critical point
Tc, � is related to the divergence of the correlation length, �
governs the divergence of the susceptibility at the critical
point, � is related to the divergence of the specific heat at Tc,

and m̃, 
̃, and C̃ are scaling functions. The critical tempera-
tures of the infinite lattices Tc were obtained by extrapolating
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the Tc�L� values given by the susceptibility peaks positions1

�see Fig. 2�. On the other hand, the exponents � were ob-
tained by means of the Binder cumulant �37�, defined as

UL = 1 −
�m4�

3�m2�2 , �11�

which has the FSS form

UL = ŨL��T − Tc�L1/�� , �12�

where ŨL is a scaling function that is independent of L. The
error bars in the estimations of � were obtained following the
standard procedure for collapsing data of the Binder cumu-
lant in the finite-size scaling approach, i.e., by monitoring
small variations around the best collapsing pictures. In Fig. 3
we show, as an example, the Binder cumulant for q=0.6
�Fig. 3�a�� and the best collapse of data �Fig. 3�b��, based on
Eq. �12�, obtained with the critical temperature Tc and the
exponent � given in Table I. Also in Fig. 3 we show, for

q=0.6, the values of the magnetization at the pseudocritical
points Tc�L� for various lattice sizes L �Fig. 3�c�� and the
corresponding values of the susceptibility peaks positions
�Fig. 3�d��, in the log-log scale. Linear fitting of data yield
the parameters:

1Equivalently, we can determine the Tc�L� values by the maxima
of the specific heat curves.
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FIG. 1. �Color online� Magne-
tization versus temperature �left
side� and scaling plots �right side�
for some values of 0.5�q�1.0.
We observe phase transitions for
all values of q in that range at dif-
ferent critical temperatures and
with distinct critical exponents
that are given in Table I.
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FIG. 2. �Color online� The pseudocritical temperatures Tc�L�
versus L−1 for some values of q. The extrapolation given us the
critical temperatures Tc in the thermodynamic limit �L−1→0�. No-
tice that for the q�0.5 case the Tc�L� values do not depend on L.

FINITE-SIZE ANALYSIS OF A TWO-DIMENSIONAL… PHYSICAL REVIEW E 80, 051101 �2009�

051101-3



�/� = 0.025 � 0.001, �13�

�/� = 1.69 � 0.04. �14�

By repeating the fitting procedures of the specif-heat peaks
positions versus the lattice size L, in the log-log scale, we
have estimated the ratio � /�=0.34�0.01, for q=0.6 �see
Table I�. We have calculated the exponent � by means of the
Binder cumulant, as above discussed, which allowed us to
estimate the critical exponents �, �, and �. The procedure
was the same for the other values of the entropic index q, and
the best collapse of the magnetization data, presented on the
right side of Fig. 1, supports the validity of the FSS forms in

Eqs. �10� and the reliability of the numerical results for the
critical exponents. The obtained numerical results are sum-
marized on Table I. Note that for q=1, the critical exponents
�, �, �, and � are quite close to the exact known values of
the standard 2D Ising model, as expected. However, for dif-
ferent values of q in this range, we have found different
values of the exponents �, �, and �, as we can see in Table
I, whereas the values of � are the same, within the deter-
mined uncertainty. These results will be discussed in with
more details below.

In Fig. 4 �right side� we show as example the susceptibil-
ity and the specific heat for q=0.8, as well as a histogram of
the energy states visited during the dynamics of the system,
at the critical temperature. This histogram shows only one
peak, i.e., we have a continuous phase transition, as shown in
the magnetization curves, Fig. 1.

TABLE I. Three different entropic indexes in the range 0.5�q�1.0 and its respective critical tempera-
tures and exponents �, �, �, and �. For q=1, the critical exponents and temperature are very close those
expected, �=0.0, �=0.125, �=1.0, �=1.75, and Tc=2.269. Notice that the exponents � are essentially the
same for the three cases, whereas �, �, �, and Tc depends on q. We have found a logarithmic dependence of
� on the lattice size L in the q=1 case, as expected, which give us ��q=1�=0. The errors in the numerical
estimates of the critical temperatures and the critical exponents are also presented.

q Tc � � � �

0.6 1.761�0.003 0.34�0.01 0.025�0.001 1.69�0.04 1.00�0.01

0.8 1.891�0.007 0.15�0.02 0.075�0.002 1.71�0.04 1.00�0.01

1.0 2.259�0.011 0.00�0.00 0.124�0.006 1.75�0.01 1.00�0.02
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FIG. 3. �Color online� Upper figures: Binder cumulant, Eq. �11�, versus temperature for q=0.6 �Fig. 3�a�� and the best collapse of data
�Fig. 3�b��, based on the FSS in Eq. �12�. The parameters are �=1.0 and Tc=1.761. Lower figures: magnetization values at each pseudo-
critical temperature Tc�L� for various lattice sizes L �Fig. 3�c�� and the corresponding values of the susceptibility peaks �Fig. 3�d��, for q
=0.6. The fittings in the log-log scale give us the corresponding values of the critical exponents ratios � /� and � /�, 0.025�0.001 and
1.69�0.04, respectively.
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In Fig. 5 it is shown the behavior of the magnetization
as a function of the temperature for two cases of q�0.5. One
can see that the critical temperatures, Tc,

2 are the same for
all lattice sizes, as shown in Fig. 2. This result is a conse-
quence of the cutoff of the escort distribution, Eq. �3�, and
the magnetization jumps at Tc from m=1 to m=0 �for more
details, see �21��. The cutoff also affects the susceptibility
and the specific heat, as we can see in Figs. 4�a� and 4�c�,
respectively. However, if we compute histograms of the
energy states visited during the dynamics,3 at the critical
temperatures, we can verify that we have only one peak for
all q� �0,1�, indicating the occurrence of continuous phase
transitions �see Figs. 4�e� and 4�f��. In other words, the cutoff
keep the MC simulation trapped in the ground state for
T�Tc and the thermodynamic quantities suddenly change at
Tc.

We can see from Table I that the critical exponent � does
not depends on q in the range 0.5�q�1.0 and we conjec-
ture that the correct value for any q is �=1.0. However, �, �,
and � depend on the value of q. Fitting the numerical values
of � with a second-order polynomial function of q, we have
found that ��q�=0.5q2−1.65q+1.15, for 0.5�q�1.0 �see
Fig. 6�a��, or

��q� =
1

20
�10q2 − 33q + 23� , �15�

which give us the exact known value ��q=1�=0,4 and ��q
=0.8�=0.15 and ��q=0.6�=0.34, in agreement with the val-
ues given in Table I. In addition, fitting the numerical values
of � also with a second-order polynomial function of q, we
have found that ��q�=0.25q2−0.25q+1.75, for 0.5�q
�1.0 �see Fig. 6�b��, or

��q� =
1

4
�q2 − q + 7� , �16�

which give us the exact known value ��q=1�= 7
4 , ��q=0.8�

=1.69, and ��q=0.6�=1.71. These results are also close to

2According to Ref. �21� the critical temperatures in this regime are
given by Tc=4�1−q�.

3The energy per spin curves show jumps at the critical tempera-
tures Tc for the q�0.5 cases, but the histograms of the energy states
visited clearly show one-peak structures, indicating the occurrence
of continuous phase transitions. In other words, the jumps are only
an effect of the cutoff of the Tsallis distribution, as in the magneti-
zation curves.

4We have found a logarithmic dependence of � on the lattice size
L in the q=1 case, as expected, which give us ��q=1�=0.
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FIG. 4. �Color online� Results
for the magnetic susceptibility 

for L=128 and typical cases of q
�0.5 �q=0.2, �a�� and q�0.5
�q=0.8, �b��. It is also shown the
specific-heat curves for the same
values of q ��c� and �d�, respec-
tively�. Although it is possible to
observe a jump on the left figures,
the histograms of the energy states
visited during the MC simulation
�Figs. 4�e� and 4�f��, at the corre-
sponding critical temperatures,
show only one-peak structures, in-
dicating continuous phase transi-
tions, even for the case q�0.5.
We have defined the energy as the
fraction of unhappy bonds in the
system, e= �E+2N� / �4N�, where
E is the total energy given by Eq.
�7� and N is the total number of
spins.
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the ones obtained numerically. On the other hand, fitting the
numerical values of � with a straight line, we have found
that ��q�=−0.124+0.249q, for 0.5�q�1.0 �see Fig. 6�c��.
We may conjecture that the exact dependence of � on q in
this range is

��q� =
1

8
�2q − 1� , �17�

which give us the exact known value ��q=1�= 1
8 , ��q=0.8�

=0.075, and ��q=0.6�=0.025, values that are also close to
the ones obtained numerically.

These results suggest a nonuniversality of the critical ex-
ponents along the ferromagnetic-paramagnetic frontier. In
addition, it also suggest that the scaling relations

2� + � = d� ,

� + 2� + � = 2, �18�

where d is the dimension of the lattice �d=2 for the square
lattice�, should be changed. Thus, if we consider the above
dependence of �, �, and � on q, the first scaling relation of
Eqs. �18�, will become

2� + � = �d + nq�� , �19�

where

nq =
1

4
�q2 + q − 2� . �20�

Notice that for q=1, one has n1=0, and the standard scaling
relation is recovered. On the other hand, although �, �, and
� depend on the entropic index q, the Rushbrooke equality is
satisfied for all 0.5�q�1.0, within uncertainty.

IV. CONCLUSIONS

We have studied the Ising model with nearest-neighbors
interactions on a square lattice by means of numerical
Monte Carlo simulations. In our approach, different from
other authors �25,26,38–40�, we simply changed the weight
in the Metropolis algorithm to a ratio between the escort
probabilities of the nonextensive statistics. This study was
motivated by possible connection of the Tsallis statistics
and some manganese oxides called manganites such as
La0.60Y0.07Ca0.33MnO3 �6,17–19�. Due to computational cost,
our simulations were done after 107 Monte Carlo steps, with

the entropic index q� �0,1� and the linear lattice sizes L
=32, 64, 128, 256, and 512.

The Monte Carlo simulation of an Ising model with
nearest-neighbors interactions showed a distinct behavior of
the same system considered in the infinite-range-interaction
limit �19�. Jumps on the magnetization and susceptibility
curves in the range 0.0�q�0.5 occur in both approaches,
but for short-range interactions we do not have first-order
phase transitions. In addition, the mean-field calculations
foresee the same critical exponents of the 2D Ising model in
the framework of the Boltzmann-Gibbs statistics. However,
our calculation of the magnetization, the susceptibility and
the specific heat for the short-range interacting system
showed that three of the critical exponents depend on q in the
range 0.5�q�1.0.

Finite-size scaling analysis of the results showed that the
critical exponents �, �, and �, that are related to the behavior
of the specific heat, the magnetization, and the susceptibility
near the critical point Tc, respectively, depend on q in the
range 0.5�q�1.0. Based on the numerical estimates of
these exponents, we conclude that the dependencies are of
the form ��q�= �10q2−33q+23� /20, ��q�= �2q−1� /8, and
��q�= �q2−q+7� /4. Although the exponents �, �, and � de-
pend on q, as well as the critical temperatures Tc �21�, the
exponent � does not; we found that �=1.0∀q. These depen-
dencies of the critical exponents on the entropic index sug-
gest a nonuniversality of those exponents along the
ferromagnetic-paramagnetic frontier. It also suggest a viola-
tion of the scaling relations �+2�+�=2 �Rushbrooke equal-
ity� and 2�+�=d�. However, when we take into account the
q dependence of the critical exponents showed in Table I, we
notice that the former scaling relation should be changed to
2�+�= �d+nq��, where nq= �q2+q−2� /4 �note that for q
=1, we obtain n1=0�, but the Rushbrooke equality is not
altered. Thus, the inhomogeneities introduced in the system
by the nonextensive statistics may be responsible for the q
dependence of the critical exponents �, �, and �, as well as
the critical temperatures Tc.

On the other hand, we have a completely different sce-
nario in the range 0.0�q�0.5. The cutoff of the Tsallis
distribution keep the system in the ground state �with m=1�
for T�Tc=4�1−q�, and at Tc the magnetization jumps sud-
denly to zero, i.e., to a equiprobable state �21�. In the same
way, the susceptibility and the specific-heat curves also
present jumps at Tc, due to the cutoff. Although the presence
of these jumps, the histograms of the energy states visited
during the dynamics, at the critical temperatures, show only

1 2 3 4 5
T

0

0.2

0.4

0.6

0.8

1

m

L = 32
L = 64
L = 128
L = 256
L = 512

q = 0.2

1 2 3 4
T

0

0.2

0.4

0.6

0.8

1

m

L = 32
L = 64
L = 128
L = 256
L = 512

q = 0.5

(b)(a)

FIG. 5. �Color online� Magne-
tization versus temperature for q
=0.2 and q=0.5. We observe
jumps on the curves at the corre-
sponding critical points, but these
Tc values are independent of the
lattice size, showing that the scal-
ing naturally occurs on the q
�0.5 regime.
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one-peak structures, which is a indicative of the occurrence
of continuous phase transitions.

Previous works on long- and short-range interactions one-
dimensional Ising models �41–43� predict that the magneti-
zation scales differently for q�1.0 and q=1.0 regimes.
Therefore, in this work we showed that the magnetization of
the short-range 2D Ising model scales also differently in two
regimes: for 0.5�q�1.0 the system scales as a 2D Ising
model, but for q�0.5 the magnetization and the critical tem-
perature are independent of the lattice size due to the cutoff;
thus, the scaling appears naturally on the system.

Also in a previous work �25�, it was shown that 2D Ising
model with nearest-neighbors interactions does not undergo
phase transitions except for q=1.0. The main difference be-
tween their approach and ours is related to the definition of
the temperature scale. In that work �25�, the authors have
chosen � as the parameter related to the temperature scale
and, in this work, we have chosen �q�. The relation between
these parameters is given in Eq. �4�. The advantage of our
approach over previous one, for the choice of the tempera-
ture scale, is that ours is supported by previous description of

the magnetic properties, experimentally and theoretically in-
vestigated of manganites �6,7,17–19�. Thus, based on that,
we believe that the 2D Ising model undergoes a phase tran-
sition even for q�1.0 and the scaling relations should be
changed as described above.

Extensions of this work to describe inhomogeneous mag-
netic systems, i.e., systems in which the exchange interaction
changes along the sites of the lattice, as well as the study of
the effects of uniform and random magnetic fields, within a
nonextensive approach would be of great interest, because it
can yield some clues to questions about the connection of
such systems and the nonextensive statistics.

ACKNOWLEDGMENTS

The authors acknowledge S. M. D. Queirós for his com-
ments. We would like to thanks the Brazilian funding agen-
cies CNPq, CAPES, and the Brazilian Millennium Institute
for Quantum Information for the financial supports. D.O.S.P.
thanks FAPESP for financial support, M.S.R. thanks the fi-
nancial support from PCI-CBPF program and A.M.S. would
like to thanks the Ontario Goverment.

�1� C. Tsallis, J. Stat. Phys. 52, 479 �1988�.
�2� C. Tsallis, Introduction to Nonextensive Statstical Mechanics:

Approaching a Complex World �Springer, New York, 2009�.
�3� F. Baldovin and A. Robledo, Phys. Rev. E 66, 045104�R�

�2002�.
�4� C. Tsallis, Physica A 340, 1 �2004�.
�5� S. M. Duarte Queirós, Europhys. Lett. 71, 339 �2005�.
�6� M. S. Reis, V. S. Amaral, R. S. Sarthour, and I. S. Oliveira,

Phys. Rev. B 73, 092401 �2006�.
�7� M. S. Reis, V. S. Amaral, R. S. Sarthour, and I. S. Oliveira,

Eur. Phys. J. B 50, 99 �2006�.
�8� S. M. Duarte Queirós, Braz. J. Phys. 38, 203 �2008�.
�9� For a complete and updated list of references, see the website:

tsallis.cat.cbpf.br/biblio.htm.
�10� C. Tsallis, M. Gell-Mann, and Y. Sato, Proc. Natl. Acad. Sci.

U.S.A. 102, 15377 �2005�.
�11� A. Rodríguez, V. Schwämmle, and C. Tsallis, J. Stat. Mech.:

Theory Exp. �2008�, P09006.
�12� F. Caruso and C. Tsallis, Phys. Rev. E 78, 021102 �2008�.
�13� F. P. Agostini, D. O. Soares-Pinto, M. A. Moret, C. Oshtoff,

0.6 0.8 1.0
q

-0.1

0

0.1

0.2

0.3

0.4

α

0.6 0.8 1.0
q

0

0.05

0.1

0.15

β

0.6 0.8 1.0
q

1.5

1.6

1.7

1.8

1.9

γ

(b)(a)

(c)

FIG. 6. �Color online� The
critical exponents �, � and � as
functions of the entropic index q.
In the range 0.5�q�1.0, the de-
pendencies on q are given by
��q�= �10q2−33q+23� /20, ��q�
= �2q−1� /8, and ��q�= �q2−q
+7� /4. The error bars for �, �,
and � fittings are less than 5%.

FINITE-SIZE ANALYSIS OF A TWO-DIMENSIONAL… PHYSICAL REVIEW E 80, 051101 �2009�

051101-7



and P. G. Pascutti, J. Comput. Chem. 27, 1142 �2006�.
�14� S. M. D. Queirós, L. G. Moyano, J. de Souza, and C. Tsallis,

Eur. Phys. J. B 55, 161 �2007�.
�15� B. M. Boghosian, Phys. Rev. E 53, 4754 �1996�.
�16� D. O. Soares-Pinto, M. S. Reis, R. S. Sarthour, and I. S. Ol-

iveira, J. Stat. Mech.: Theory Exp. �2007�, P08011.
�17� M. S. Reis, J. P. Araújo, V. S. Amaral, E. K. Lenzi, and I. S.

Oliveira, Phys. Rev. B 66, 134417 �2002�.
�18� M. S. Reis, J. C. C. Freitas, M. T. D. Orlando, E. K. Lenzi, and

I. S. Oliveira, Europhys. Lett. 58, 42 �2002�.
�19� M. S. Reis, V. S. Amaral, J. P. Araújo, and I. S. Oliveira, Phys.

Rev. B 68, 014404 �2003�.
�20� V. S. Amaral, J. P. Araújo, Y. P. Pogorelov, P. B. Tavares, J. B.

Sousa, and J. M. Vieira, J. Magn. Magn. Mater. 242-245, 655
�2002�.

�21� D. O. Soares-Pinto, I. S. Oliveira, and M. S. Reis, Eur. Phys. J.
B 62, 337 �2008�.

�22� C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A 261,
534 �1998�.

�23� C. Tsallis, Nonextensive Entropy—Interdisciplinary Applica-
tions, Chapter Nonextensive Statistical Mechanics: Construc-
tion and Physical Interpretation edited by M. Gell-Mann and
C. Tsallis �Oxford University Press, New York, 2004�.

�24� C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems:
An Introduction �Cambridge University Press, Cambridge,
1993�.

�25� A. R. Lima, J. S. S. Martins, and T. J. P. Penna, Physica A 268,

553 �1999�.
�26� R. Salazar and R. Toral, Physica A 283, 59 �2000�.
�27� S. Martínez, F. Pennini, and A. Plastino, Physica A 295, 246

�2001�.
�28� S. Martínez, F. Pennini, and A. Plastino, Physica A 295, 416

�2001�.
�29� S. Abe, S. Martínez, F. Pennini, and A. Plastino, Phys. Lett. A

281, 126 �2001�.
�30� R. Toral and R. Salazar, Physica A 305, 52 �2002�.
�31� R. Toral, Physica A 317, 209 �2003�.
�32� Q. A. Wang, L. Nivanen, A. LeMéhauté, and M. Pezeril, Eu-

rophys. Lett. 65, 606 �2004�.
�33� S. Abe, Physica A 368, 430 �2006�.
�34� A. Linke, D. W. Heermann, P. Altevogt, and M. Siegert,

Physica A 222, 205 �1995�.
�35� D. Stauffer, Physica A 244, 344 �1997�.
�36� R. H. Landau and M. J. Paez, Computational Physics: Problem

Solving with Computers �Wiley-VHC, Weinheim, 2004�.
�37� K. Binder, Z. Phys. B 43, 119 �1981�.
�38� C. Tsallis and D. A. Stariolo, Physica A 233, 395 �1996�.
�39� U. H. E. Hansmann, Physica A 242, 250 �1997�.
�40� I. Andricioaei and J. E. Straub, Physica A 247, 553 �1997�.
�41� R. Salazar and R. Toral, Phys. Rev. Lett. 83, 4233 �1999�.
�42� R. Salazar, A. R. Plastino, and R. Toral, Eur. Phys. J. B 17,

679 �2000�.
�43� R. Salazar and R. Toral, Physica A 290, 159 �2001�.

CROKIDAKIS et al. PHYSICAL REVIEW E 80, 051101 �2009�

051101-8


