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One of the most popular approaches to the study of the collective behavior of self-driven individuals is the
well-known Vicsek model �VM� �T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev.
Lett. 75, 1226 �1995��. In the VM one has that each individual tends to adopt the direction of motion of its
neighbors with the perturbation of some noise. For low enough noise the individuals move in an ordered
fashion with net transport of mass; however, when the noise is increased, one observes disordered motion in a
gaslike scenario. The nature of the order-disorder transition, i.e., first-versus second-order, has originated an
ongoing controversy. Here, we analyze the most used variants of the VM unambiguously establishing those
that lead either to first- or second-order behavior. By requesting the invariance of the order of the transition
upon rotation of the observational frame, we easily identify artifacts due to the interplay between finite-size and
boundary conditions, which had erroneously led some authors to observe first-order transitionlike behavior.
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The study and understanding of the collective notion of
self-propelled particles is a topic of interdisciplinary interest
that has attracted the attention of many scientists for a long
time. On the other hand, the ubiquity of the phenomenon and
the range of observational scales are striking: it is realized by
molecular motors at intracellular level; it occurs when cells
move collectively upon tumor growth or wound healing; and
of course, it is observed for a large number of living indi-
viduals such as amoebae, bacteria, insects, fish, birds, and
large quadrupeds �1–8�. Furthermore, another intriguing fea-
ture of the phenomenon is the onset of collective order with-
out the presence of any leader, gradient field, or geometrical
confinement �9�. Apart from the intrinsic biological interest,
technological applications of the knowledge obtained from
swarming studies in fields such as robotics, informatics, na-
noengineering, and granular material science �10� have also
been envisioned. In view of the widespread interest and ap-
plications of the phenomenon it is desirable to understand
one of the simplest possible models capable of capturing the
main features of collective motion in a nontrivial manner.
Within this context, Vicsek et al. �11� years ago introduced a
minimal model �Vicsek model �VM��, which has become the
hobbyhorse of statistical physicists aimed to describe a sub-
ject that can be technically described as the onset of long-
range orientational order via spontaneous symmetry break-
ing. In the VM, pointlike particles move at fixed velocity
trying to align locally with their neighbors, but suffering the
presence of some noise. By considering the low-density, low-
velocity limits, there is general agreement that the VM ex-
hibits an ordered phase with a macroscopic net mass trans-
port for low noise, while a disordered �gaslike� phase
emerges at the high-noise regime. Nevertheless, the nature of
that far-from equilibrium phase transition is a matter of open
debate. In fact, early simulations by the Vicsek’s group are
consistent with a continuous second-order transition �11�.
This picture has been challenged by the group of Chaté �12�
who claims that the transition should be discontinuous, i.e.,
of first order. The controversy was further stimulated by sub-

sequent papers of Vicsek et al. �13,14�, Aldana et al.
�15–17�, Dossetti et al. �18�, and Baglietto et al. �19,20�,
supporting the critical nature of the transition, which are in
conflict with the publication of additional results by the
group of Chaté �21–23�.

In view of the existing dispute, the aim of this Rapid
Communication is to provide conclusive evidence on the na-
ture of the phase transition of the VM and some of its vari-
ants. The achievement of this goal has become a highly de-
sired prerequisite for further studies in the field and to avoid
misunderstandings. A careful reading of the available litera-
ture reveals that various authors have introduced subtle
changes in the original VM, such as in the velocity update
procedure and in the evaluation of the noise. As we will
show below, these changes, which are often expected to be
irrelevant �12,21,22�, are one of the key features for the clari-
fication of the issue. Then, we will first clearly define the
most popular variants of the VM, and subsequently, we will
present and discuss our simulation results of the simplest
imaginable test for the robustness of the phase transition: to
check the invariance of the order of the transition under ro-
tation of the observational frame.

Simulations of the VM are performed in dimension d=2
where pointlike particles move off-lattice in finite samples of
side L with periodic boundary conditions. For the sake of
clarity each particle is labeled with an integer index �i�, such
that its position and velocity are denoted by x�i and v� i, respec-
tively. The direction of motion of the ith particle depends on
the average velocity of neighboring particles �including the
ith itself� within a circle of radius R. The system is a cellular
automaton, so both v� i and x�i are updated synchronously for
1� i�N, where N is the total number of particles. The ab-
solute value of the velocity of all individuals is assumed to
be constant, i.e., vo, ∀i.

Let us now define the most used updating rules:
�1� Angular noise �AN�. This method, originally proposed

by Vicsek et al. �11�, consists in the determination of the
angle of motion of the ith particle as due to the the average
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angle of motion of the neighboring j particles, also including
the ith itself, which is then affected by the noise term,

�i
t+1 = Arg��

�i,j�
ei�j

t	 + ��i
t, �1�

where � is the amplitude of the noise, and �i
t is a realization

of a �-correlated white noise uniformly distributed between
−� and �. Here, the index �i , j� in the summations refers to
the ith particle and its neighboring j particles. The AN term
can be thought as due to the error committed by the particle
when trying to adjust its direction of motion to the averaged
direction of motion of its neighbors.

�2� Vectorial noise �VN�. Following Chaté et al. �12�, one
could also argue that the noise arises from each interaction
between the ith particle and one of its neighbors. So, instead
of Eq. �1� one has

�i
t+1 = Arg��

�i,j�
ei�j

t
+ �nie

i�i
t	 , �2�

where ni is the current number of neighbors of particle i. It is
worth mentioning that the magnitude of the AN is indepen-
dent of the degree of local order, while the VN becomes
weaker when the local order is increased.

�3� Backward update �BU�. By using this schema, origi-
nally proposed by Vicsek et al. �11�, one first evaluates the
direction of motion �e.g., with the aid of either Eq. �1� or Eq.
�2�� and then proceeds to update the position of the particle
according to

x�i�t + �t� = x�i�t� + v� i�t��t . �3�

�4� Forward update �FU�. More recently, various authors
�21,22� have adopted this schema that replaces Eq. �3� by

x�i�t + �t� = x�i�t� + v� i�t + �t��t , �4�

which is expected to give the same results as in the case of
BU �22�.

In order to study the phase transition of the VM, the natu-
ral order parameter used is the absolute value of the normal-
ized mean velocity �	� given by

	�t� =
1

Nvo

�

i=1

N

v� i�t�
 . �5�

In all simulations we used R=1 and �t=1. So, the param-
eters to be varied are the noise amplitude ���, the particle
density �
=N /L2�, and the velocity vo.

Figure 1 shows the dependence of 	 on � as obtained for
four different variants of the VM that follow from some spe-
cific combinations of the types of noise and update rule,
which have been selected as the most studied in the available
literature. Figure 1 also shows the plots corresponding to the
same variants and parameters, but obtained by using samples
where the frame is rotated at random every time step. For
this purpose an angle is selected at random and the coordi-
nates of the particles are then transformed accordingly. By
using this procedure the configurations of the particles in the
sample remain unchanged, but the measurements are

performed from a new �rotated� frame. Since the properties
of the VM in general, and the order parameter in particular,
are invariant under rotations of the frame, the observance of
inconsistencies after this simple test will confirm, beyond
any doubt, the existence of artifacts due to the interplay be-
tween boundary conditions and finite-size effects. This kind
of test is suggested by the observation of the real-time be-
havior of the system, which for some specific combinations
of the rules leads to the formation of bands running along the
directions of either the horizontal or vertical axis of the
sample, as well as along the principal diagonals �see also
Fig. 2�. These observations were early reported by Vicsek et
al. �13� and are dramatically confirmed in many figures of
papers published by Chaté et al. �see, e.g., Figs. 4, 11, and 1
of Refs. �13,21,22�, respectively�.

Figure 1�a� corresponds to the VM with two combinations
of the rules, namely, �AN+BU� and �AN+FU�. In all cases
one observes smooth curves, characteristic of second-order
transitions, which are independent of the rotation of the
frame. Within the low-density, low-velocity regime �left-
hand side and central curves in Fig. 1�a�� we further confirm
that the updating rule, i.e., BU versus FU, causes a small
shift of the critical point but it does not affect the order of the
transition. These results are in agreement with early claims
�11� and subsequent results �13� of the group of Vicsek, as
well as with our previous combined finite-size scaling and
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FIG. 1. �Color online� Plots of the order parameter �	� versus
the amplitude of the noise ���, as obtained for the VM with differ-
ent combinations of updating rules. In all cases empty and filled
symbols are used for simulations performed in fixed and rotating
frames, respectively. �a� The left-hand side and central curves are
obtained for N=32768, 
=0.75, and vo=0.1, and correspond to the
combinations �AN+FU� and �AN+BU�, respectively. The right-
hand side curves are obtained for N=131072, 
=2.0 and vo=0.5, by
assuming �AN+BU�. �b� Results obtained for the combination
�VN+BU� with vo=0.5, L=32, and N=2048 �
=2.0, circles� and
L=4036 �
=4.0, squares�. �c� and �d� Results corresponding to
N=131072, 
=2 and vo=0.5, and assuming AN. In �c� the cases of
FU �squares� and BU �circles� are compared. Also, the stars in �c�
show data estimated by scanning Fig. 1 of Ref. �22�. Furthermore,
�d� shows that the combination �AN+FU� is no longer invariant
under the rotation of the frame and the transition is actually smooth
�triangles� instead of abrupt �circles�.
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short-time dynamic simulations �19�, which support the criti-
cal nature of the transition. Furthermore, all these conclu-
sions are consistent with the results of Aldana et al. �16�
pointing out that, in the VM and related models, AN leads to
the observation of second-order behavior. On the other hand,
smooth transitions are also observed for higher velocities and
densities �right-hand side curves in Fig. 1�a��. Figure 1�b�
shows that VN leads to the observation of robust �rotation-
ally invariant� first-order behavior. This finding is in agree-
ment which the results of the group of Chaté �12�, our own
simulations �24�, and the claim of Aldana et al. �16� stating
that the occurrence of first-order transitions in related models
is linked to VN.

One of the most intriguing results, however, concerns the
combination of �AN+FU�, within the high-density, high-
velocity regime, as shown in Fig. 1�c�. In fact, while �AN
+BU� yields second-order behavior, as already discussed
within the context of Fig. 1�a� but included in Fig. 1�c� for
the sake of comparison, the combination �AN+FU� gives a
clear first-order transition. Our results for this latter case are
in full agreement with those reported by Chaté �notice that
data points scanned from Fig. 1 of Ref. �22� have also been
drawn for the sake of comparison�. The first conclusion that
one can draw from this evidence is that, in contrast to some
expectations �21�, the update procedure, i.e., FU versus BU,
may actually influence the results dramatically. So far, this is
not the only unexpected result, but more interesting, the first-
order nature claimed for the combination �AN+FU� does not
persist when the angle of the frame is randomized at each
time step, as shown in Fig. 1�d�. So, the first-order nature of

the transition is an artifact that can be confirmed straightfor-
wardly by means of a simple test. Further inshight into the
origin of this artifact can be gained by analyzing typical
snapshot configurations as shown in Fig. 2. Here, all figures
correspond to AN but different situations are selected as fol-
lows: �i� the upper and lower panels compare FU versus BU,
respectively. �ii� The left and right panels compare the case
of fixed and randomly rotating frames, respectively. Figure
2�a� was obtained for �AN+FU� with �=0.43, i.e., a regime
within the ordered phase and close to the false coexistence
point of the first-order �artifact� transition shown in Figs.
1�c� and 1�d�. Here one observes a high-density band moving
upwards with an average direction almost parallel to the ver-
tical axis �see the arrow showing the direction of the move-
ment of the center of mass�. Also, the order parameter is
relatively high ���0.4, see also the magnitude of the arrow
that is proportional to ��. This scenario changes dramatically
when the observational frame is randomly rotated �Fig. 2�b��.
In this case the largest and denser band becomes almost dis-
solved �the order parameter decreases significantly in agree-
ment with the results shown in Fig. 1�d��, and the direction
of motion is irrelevant. It is worth mentioning that the rota-
tion of the frame causes the particles to almost become con-
fined within a circle of radius r=L /2, i.e., naturally replacing
the square sample with periodic boundary conditions by a
circular geometry where such conditions are irrelevant.

Coming back to Fig. 2�a�, one has to recall that due to the
periodic boundary conditions the band is actually a “ring”
moving in a toroid so that the band is highly correlated along
the direction perpendicular to the movement, with a typical
correlation length of the order of ��L /2. It is known �13�
that for v0�0.3, the diffusion of particles in the direction
perpendicular to the motion of the system becomes signifi-
cantly larger than the diffusion in the parallel direction.
Then, the flocks tend to elongate laterally until a certain
point in which they break into pieces that remain traveling
independently. However, when bands grow and reach perco-
lating sizes before disintegration, periodic boundary condi-
tions prevent the natural dismemberment that would take
place in an infinite plane, because particles moving away in
one sense are approaching in the opposite one. In this way,
some order is artificially maintained in this metastable situ-
ation. Summing up, one has that the interplay between those
mechanisms, the geometry of the sample, and the periodic
boundary conditions stabilize a high-density percolating
band moving along one of the main directions of the sample.
Of course, this situation is changed when considering a ro-
tational frame that destroys the artificial stabilization mecha-
nisms of the band and the pseudo first-order nature of the
transition �Fig. 2�b��. On the other hand, on has that the
combination �AN+BU� in a fixed frame leads to the forma-
tion of loose bands that hardly percolate and the direction of
the movement is no longer strictly parallel to one of the main
axis of the sample �Fig. 2�c��. This situation remains almost
unchanged upon the rotation of the frame �Fig. 2�d��. Also
notice that in this case the magnitude of the order parameter
is maintained, in agreement with the results shown in Fig.
1�c�. Here, the second-order nature of the transition is pre-
served upon the rotation of the frame.
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FIG. 2. �Color online� Typical snapshot configurations of the
VM with AN, taken within the stationary regime for N=131072,

=2, v0=0.5, �=0.43, and for different situations as follows: �a�
and �c� fixed frame with FU and BU, respectively; �b� and �d�
rotating frame with FU and BU, respectively. In all cases the arrows
show the average direction of motion of all particles, and its mag-
nitude is proportional to the value of the order parameter. More
details in the text.
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Summing up, we have analyzed the ongoing controversy
about the nature of the order-disorder transition of the VM. It
is shown that subtle changes introduced to the model, e.g.,
angular versus vectorial noise, and forward versus backward
updates, which are expected to be irrelevant, are actually

essential in order to clarify the controversy. We conclude that
AN and VN lead to the observation of second- and first-order
transitions, irrespective of the update rule.
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