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Effects of energy loss on interaction dynamics of energetic electrons with plasmas
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An analytic model is developed for energetic electrons interacting with plasmas. This model rigorously treats
the effects of energy loss upon Coulomb interactions and reveals several important features, including the
coupling of scattering and energy loss—which previous calculations had erroneously treated as independent in
cases where an electron lost a significant amount (or all) of its energy. The unique transparency and generality
of these calculations allows for straightforward applications when quantitatively evaluating the energy depo-
sition of energetic electrons in various plasmas, including those in inertial confinement fusion.
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The interaction of energetic electrons with plasmas is a
fundamental problem with important implications for both
basic physics and practical applications [1-6]. This interac-
tion involves electron energy loss and scattering which leads
to electron energy deposition and trajectory bending in plas-
mas. In the context of a single electron interacting with plas-
mas, such scatterings alter electron distributions, resulting in
modifications of the energy deposition structure [7-9].

In addressing electron interactions with plasmas, the con-
vention is that while they scatter off the plasma ions, ener-
getic electrons lose their kinetic energy to the plasma elec-
trons. The two physics processes (i.e., energy loss and
scattering) have been treated independently and combined in
a simple way. For example, the mean square of the total
deflection angle can be calculated simply by averaging over
the solid angle

(%)= (1)
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where N, =is the number of the collisions (which is a func-
tion of the electron energy loss and can be independently
evaluated) [10]. The treatment of the scattering is exclusively
manifested by the integral [6*(do/d)d(). It has been dem-
onstrated that this approach is justified and is accurate for
energetic electrons interacting with “thin” targets (e.g. thin
solid foils) [11] since an electron suffers only a relatively
small number of collisions and the energy loss of each indi-
vidual collision is very small compared to its total kinetic
energy (due to the nature of small angle dominant Coulomb
interactions.) Because of this, the energy dependence in the

scattering cross sections can be essentially overlooked.
However, such a thin approximation is unjustified and in-
accurate when it is applied in the case where an electron
loses a significant amount or all of its energy (e.g., during
plasma heating) and suffers a very large number (over ~10°)
collisions, or when an electron interacts with hydrogenic
plasmas (Z=1, for which the e-e scattering could be compa-
rable with the e-ion scattering). This is explained in Fig. 1
where e-ion (Rutherford) and e-e (Mgller) scattering cross
sections are plotted as a function of the energy loss [AE
=(Ey-E)/E,] for 1 MeV electrons in hydrogenic plasmas.
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When AE changes from beginning to the end (0— 100% of
the energy loss), these cross sections increase about 3 orders
of magnitudes, indicating that the effects of energy loss on
scattering cannot be ignored in these cases, and that a rigor-
ous approach to the coupling of the energy loss to scattering
is necessary. In this Brief Report, we demonstrate the impor-
tance of the effects of energy loss upon scatterings in the
interaction regime described above using fundamental prin-
ciples [7-9]. This model naturally links scattering and energy
loss, and reveals several of the resulting new and important
effects.

In our approach [7-9], an integrodifferential diffusion
equation is solved to rigorously determine the angular and
spatial distributions of the scattered electrons:

g+ v-Vf= nzf [f(x.v',5) = f(x,v,5)Jo([v = v'])dv’,
(2)

where f(x,v,s) is the electron distribution function; n; the
number density of fully ionized, uniform time invariant
background plasma ions of charge Z; x the position where
scattering occurs; s is the arc length traveled by the electron;
o=0,+Z0,, the total scattering cross section with og,; the
Rutherford e-ion cross section [12], and o,, the Mgller e-e
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FIG. 1. The normalized Rutherford cross section (e-ion scatter-
ing) and Mgller cross section (e-e scattering) are plotted as a func-
tion of the fraction of the energy loss for 1 MeV electrons. Both
cross sections show the significant increase in scattering as an elec-
tron loses its energy. For vertical axis, ro=e?/myc? is the classical
electron radius.
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cross section [13]. The equation is solved with cylindrical
coordinates with the assumption that the scattering is azi-
muthally symmetric. Specifically, the angular distribution is
[7-9]

f(6,E) = LE (2€ + 1)P(cos 6)
47T€=0

E r\ -1
Xexp(—f K((E’)(%) dE’), (3)
Eqy S

where P, (cos 6) is the Legendre polynomial. In this solu-
tion, the energy loss is manifested by the plasma stopping
power [14,15]
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where B=v/c and y=(1-8%)7"2, ry=e*/myc? is the classical
electron radius, Nc=%/mc is electron Compton wavelength,
and Np=(kT/4mn,e)"? is Debye length. Note that Eq. (4) is
valid when B>« (=1/137), however, its classical counter-
part would be accurate enough when S<« for which the
plasma Debye length is shorter than the electron deBroglie
length, such as in the case of low-energy electron preheating
inertial confinement fusion (ICF) targets. The effects of scat-
tering are characterized by the “macro” transport cross sec-
tions

Ko(E) = n; f (Z—é)u _ Py(cos 6)]dQ, (5)

where the Legendre polynomial converges rapidly for the
large angles. The dominant terms are €=1
In A“} ,

4(y+1)?
(6)
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which is related to the slowing down cross section and char-
acterizes the loss of directed velocity (momentum) in the
scattering [4]; and €=2

2
Ky (E) = 127Tn,~(yr—;2) [22<1n A - %)
4(y+1)? W 1
+Wz<ln/\ —5):|’ (7)

which is related to the deflection cross section and represents
the mean-square increment in the transverse electron velocity
during the scattering process [4]. It should be noted that such
simple analytic versions of transport coefficients [Egs. (6)
and (7)] are only valid for y<<~ 10 [7-9], because to have a
small angle-interaction dominant Rutherford-like Mgller
cross section, several approximations have been made (e.g.,
the effects of large-angle scattering, as well as higher-order
terms in the expansions have been neglected). Equation (8)
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FIG. 2. The ratio of e-e scattering cross section to e-ion scatter-
ing cross section is plotted as a function of 7.

gives the ratio of such a simplified Mgller cross section [7-9]
to Rutherford cross section

do\*“ (do\“  4(y+1)* 1
o) () - e o

This ratio is plotted in Fig. 2 for hydrogenic plasmas (Z
=1), (do/dQ)* is slightly larger (~20%) than (do/dQ)¢ for
y<T7 (consistent with Fig. 1), while significantly smaller for
y>10. Figure 2 also shows that for a nonrelativistic case
(y=1), one has (do/dQ)*= (da/dQ)¢ [12]. This clearly in-
dicates that directly applying a nonrelativistic result to the
cases of relativistic electron-plasmas interactions, such as
fast-ignition ICF [16], results in inaccuracy.

Mutual couplings between energy loss and scatterings are
explicitly reflected by the following integrand from Eq. (3),

E 1\ -
f KK(E')<‘;£) . (9)
Eq S

The integration is a function of electron residual energy (E).
Because there is no restriction on electron energy loss, Eq.
(9) is valid in the case of an arbitrary amount of even total
energy loss. How the thin approximation decouples the ef-
fects of energy loss and scattering is discussed below: by
assuming the energy dependence of « is weak, so the scat-
tering effects can be approximately factored out from the
integration in Eq. (9).

E dE/ -1 E dE/ -1
k(EN—| dE' =~ ky(E)| |—| dE’
d d
Eq S Eg \ 48

= k(E)S(E) = k(E)t.  (10)

Where ¢ is the thickness of the plasma and when it is thin, we
find that t~S(E)=[3ds' = fgo(dE’/ds)dE'. The linkage of
energy loss to scattering is implied by the relationship be-
tween the distance that an electron transverses and energy
loss, since the father an electron transverses, the more energy
it loses and the more scatterings it suffers. The approxima-
tion in Eq. (10) makes sense when AE is very small such that
do/dQ) in Eq. (5) can be treated as independent of the en-
ergy. As a consequence, the calculation with a scattering pa-
rameter x, being factored out of the integration in Eq. (10) is
thus justified, and indicates that scattering and energy loss
have been treated separately. However, this approximation,
as discussed above and shown in Fig. 1, is unjustified in the
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FIG. 3. Mean-square deflection angle (6?) calculated from the
unified approach, which has taken into account the effect of energy
loss on electron scattering (solid line), and is compared with the
conventional thin approximation (dashed line).

cases of total or even significant energy losses of energetic
electrons in the plasmas which this paper is focused on.

To further illustrate the effects of energy loss on scatter-
ing, we calculate the mean-square deflection angle {6*) from
Eq. (9). For the sake of simplicity, the Fokker-Planck ap-
proximation is used [by expanding the Legendre polynomial
to the power of & and keeping only the first two terms [17],
ie., Py(cos )=1-0.25¢(¢+1)#]. Using Eq. (3) and con-
ducting the integration, the first-order approximation in
terms of [Jk,(s")ds’ for an exponential function results in

E r\ -1
fmw(di) dE'ziﬁ(hl)(eZ)Av. (11)

Eo ds

The (6) is now ready to be evaluated based on the dominant
contributions from €=1 and €=2

<02> =~ V<92>%:1 +<02>%:2- (12)
where
E dEr -1
<92>e=1=2f Kl(E’)<d—) dE'. (13)
Eq S
and

E r\ -1

o=t [ e () e gy
3JE, ds

Figure 3 compares the (#?) calculated from Eq. (12) and Eq.

(1). As shown, a significant difference occurs when electrons

have lost more energy.

Another important result from this unified model is that
the phenomenological ad hoc cutoffs (required to prevent
mathematical divergence in the two-body Coulomb interac-
tions) have been effectively removed or significantly reduced
because of the inclusion of energy loss in the electron scat-
terings. The choosing of a suitable model for plasma screen-
ing and performing this phenomenological cutoff are usually
nontrivial undertakings. The ad hoc cutoffs directly reflect
the approximations made in the theoretical formulations. De-
pending on the different plasma densities and temperatures,
for example, the screening distances can be determined by
either Debye length, Thomas-Fermi screening length (A rp
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FIG. 4. Using different screening models (Debye, Thomas-
Fermi, and interparticle distance), the normalized «; are plotted as a
function of the electron energy in DT plasma (p=300 g/cm? and
T,=5 keV) (a). As is shown, the difference indicates the impor-
tance of properly choosing the screening parameters if the elastic
scatterings are treated independently. However, as is seen in (b),
these differences are dramatically reduced when we take the ap-
proach that energy loss and scattering are coupled.

=0.885a,Z"'3, where ay=%>/me?* is the Bohr radius), or
mean interparticle distance (A=A, =n""3). The Debye
length from an exponential screened Coulomb potential [10],

@(r) = o>, (15)

describes the shielding distance at which the potential falls to
its e folding from its maximum. The Thomas-Fermi screen-
ing length, (a result derived originally from nuclear screen-
ing, with corrections for the effects of plasma temperature
and density) is a reasonable approximation for ideal gas.
Also, the mean interparticle distance is an approximation for
dense plasmas when the Debye length is even smaller than
the mean interparticle distance.

Such a model constraint is largely relaxed due to the ef-
fective cancellation embedded in Eq. (9). For example, the
electron deflection is a function of product of energy loss
(dE/ds) with scatterings («),

el 4(‘y+ 1)2 ee
n — 1IN
dE -1 (2\£(y+1)/2)4
E) — | « . 16
o )( ds) In A (16)

The effective cancellation of the Coulomb logarithms [7] in
the numerator and denominator of Eq. (16) significantly re-
duces the sensitivity of the selection of plasma screening
models. The physics behind such a cancellation can be un-
derstood as the deflection occurring simultaneously during
the slowing down and scattering-off of the energetic elec-
trons in the encountering plasma mediums. This is illustrated
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in Fig. 4, where the normalized transport cross sections
[k1(E)(47n;)~"(r5/ yB*)~?] are plotted as a function of the
energy loss [Fig. 4(a)], and differences exist for different
models. As shown in Fig. 4(b) where «,(E)(dE/ds)™" is plot-
ted as a function of energy loss, negligible differences make
the effects of different screening models insignificant.

In summary, we have used an analytical model to rigor-
ously examine the effects of energy loss upon the Coulomb
interactions, which results in revealing of several new and
important findings never before realized, including the cou-
pling of scattering and energy loss. The unique transparency
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and generality of these calculations allows for straightfor-
ward applications in the cases of partial to even total energy
loss of energetic electrons: for example, the quantitative
evaluation of the energy deposition of energetic electrons in
various plasmas, including those of inertial confinement fu-
sion.
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