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Pulses of synchronization in chaotic coupled map lattices are discussed in the context of transmission of
information. Synchronization and desynchronization propagate along the chain with different velocities which
are calculated analytically from the spectrum of convective Lyapunov exponents. Since the front of synchro-
nization travels slower than the front of desynchronization, the maximal possible chain length for which
information can be transmitted by modulating the first unit of the chain is bounded.
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I. INTRODUCTION

Chaos synchronization is a counterintuitive phenomenon
which has been extensively investigated since its original
discovery �1,2�. In particular, its potential of being applied
for novel secure communication devices has attracted a lot of
research on the foundations of chaos synchronization �3–5�.
Motivated by experiments on synchronized chaotic lasers,
networks of chaotic units with time-delayed couplings and
feedback are recently being studied �6,7�. For chains of cha-
otic units with delayed couplings other counterintuitive phe-
nomena have been found such as anticipated or sublattice
synchronization �8,9�. Chains of chaotic units are also dis-
cussed in the context of convective instabilities. Instabilities
of such systems have successfully been described by spectra
of comoving Lyapunov exponents �10–15�.

There are several possibilities to transmit a message be-
tween two synchronized chaotic units A and B �16�. One
possibility is chaos modulation: the message modulates the
dynamics of unit A. This affects the dynamics of unit B and
it is possible to recover the message with a certain bit error
rate �17,18�. This application is the motivation for the fol-
lowing question which we investigated in this Brief Report:
is communication based on chaos modulation possible in a
long chain of unidirectional coupled chaotic units?

The dynamics of the first unit is changed according to a
given bit sequence. These bits are recovered by observing the
synchronization of the two last units of the chain. Note that
we keep the system simple: the bits are not recovered for
each unit but only with the two last units of the chain indi-
cated in Fig. 1. The intermediate units act as passive relay
stations which may be necessary to transmit signals over
long distances. Note that the units can transmit the signals
with arbitrary delay times. In order to detect perturbations of
the first unit at the end of the chain we introduce a self-
feedback of the first sending unit with a delay time which is
identical to the coupling delay of the last two units. We ana-
lyze the transmission of information using the method of
comoving Lyapunov exponents.

In fact already for single units with delayed feedback one
finds, in a spatiotemporal representation, convective insta-
bilities which move in a cone with a spectrum of velocities
�19�. A chain of oscillators, nonlinear partial differential

equations close to instabilities, and lasers with delayed feed-
back have been analyzed with the spectrum of comoving
Lyapunov exponents �15�. Chains of chaotic units which
have been discussed in the context of turbulence show con-
vective instabilities as well �10–13�, even if the single units
have a delayed self-feedback which generates anticipated
chaos �14�. In this Brief Report we extend this analysis to
time-delayed couplings in the context of secure communica-
tion.

II. SYSTEM DYNAMICS

In this Brief Report we investigate the previous general
question for a simple model: a chain of coupled maps with
time-delayed transmission. The first unit has a self-feedback
which is necessary to obtain zero lag synchronization for the
last two units of the chain. The system is defined by the
following equations:

xt
0 = �1 − ��f�xt−1

0 � + �f�xt−�0

0 � ,

xt
n = �1 − ��f�xt−1

n � + �f�xt−�n

n−1 � . �1�

xt
n is the variable of the nth unit at the discrete time step t.

f�x� is a map which yields chaotic iterations. The transmis-
sion time from unit n−1 to unit n is denoted by �n and � is
the coupling strength. The first unit n=0 has self-feedback
with delay �0. It is easy to see that the system has the fol-
lowing synchronized solution:

xt
n = xt−�n

0 ,

FIG. 1. Scheme of the examined chain: each unit is driven by its
predecessor.
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�n = �
k=1

n

�k − n�0. �2�

If all delays are identical to the feedback delay of the first
unit, �n=�0, one finds complete zero lag synchronization,
xt

n=xt
0. For smaller values of �n one finds anticipated chaos

whereas for larger ones the units lag behind the first one.
When the transmission delay from unit N−1 to unit N is
identical to the feedback �0 of the first unit, the last two units
are synchronized without time shift, xt

N−1=xt
N. Hence, the

synchronization of the chain can be measured from the dif-
ference of the variables of the last two units. From now on
identical delay times �n=�0 are used, since different �n lead
to trivial time shifts. The stability of the chaotic synchro-
nized solution xt

n=xt
0 can be calculated by considering small

perturbations of this trajectory and linearizing Eq. �1�. The
evolution of deviations between two consecutive units,
�t

n=xt
n−xt

n−1 , n=1, . . . ,N are determined by the following
set of linear equations:

�t
1 = �1 − ��f��xt−1

0 ��t−1
1 ,

�t
n = �1 − ��f��xt−1

0 ��t−1
n + �f��xt−�0

0 ��t−�0

n−1 . �3�

If only the unit n is perturbed, �t
k=0 for k�n, then the de-

viation �t
n follows the equation

�t
n = �1 − ��f��xt−1

0 ��t−1
n . �4�

This perturbation is stable if

�ln�f��xt
0��� � − ln�1 − �� . �5�

Note that the average � . . . � is taken over the first unit which,
due to the feedback delay �0, is hyperchaotic; i.e., it has a
spectrum of positive Lyapunov exponents. According to Eq.
�5�, the synchronized solution �2� is stable if the coupling
strength � is large enough.

III. CHAOS MODULATION

Now we apply chaos modulation to a concrete system: we
take f�x�=rx�1−x� with r=4 for the bulk of the chain and a
variable r0 for the first unit depending on the message to
transfer. If r0=r=4 then the chain will successively relax
into the synchronized state starting from the head. If one
chooses r0=r��r, for example, r�=3.95, the system leaves
the common trajectory, again beginning at the head. This
creates pulses of �de�synchronized phases traveling through-
out the chain. We will call r0=r the tuned and r0�r the
untuned state. Figure 2 shows numerical results of a simula-
tion for �=0.8, �0=10: the chain starts in a desynchronized
state and is tuned at t=0. After 100 time steps it is untuned
again. The absolute difference ��t

n�= �xt
n−xt

n−1� is shown in
color code; i.e., the dark areas mark synchronization.

The velocities of the signal fronts are defined as

v =
�number of units

�time
.

In numerical simulations two units are considered synchro-
nized if ��t

n��� with a small threshold �	10−10. We find

that for ��1 the results for the velocities of the head and
tail of the pulse do not depend on the actual choice of the
threshold. In the simulation shown in Fig. 2 one finds that
synchronization travels with a speed of approx vs=0.088
whereas desynchronization propagates with vd=0.100 which
is the maximum possible velocity defined by the coupling
delay �0=10. Thus, desynchronization finally overtakes syn-
chronization and the pulse cannot be detected in the rest of
the chain.

Figure 3 shows vs as a function of the coupling strength �.
Near the critical coupling one observes a slowing down. One
would expect a monotonous decrease in the speed with de-
creasing coupling strength. However, there are two small
peaks in the data. For �0�1 the value distribution of the first
unit and thus the local Lyapunov exponent 	0= �ln�f��� aver-
aged over this distribution are functions of �. Near the peaks
	0 becomes rather small making the map “less chaotic” or
even nonchaotic and thus accelerating synchronization.

Figure 4 shows the additional delay per unit 
 with
v=1 / ��0+
� as a function of �0. For large �0 there is a satu-
ration effect.

IV. CONVECTIVE PERTURBATIONS

For a chain of connected relay stations one might expect
the coupling delay between the units to be on a much larger
time scale than the one of the internal dynamics. In our
model this would imply �0�1. However the numerical re-
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FIG. 2. �Color online� Absolute value of the difference �t
n be-

tween neighboring units: for t�0, 100� t the first unit is untuned
�r0=r�=3.95�. For 0� t�100 the chain is tuned �r0=r=4�, thus,
creating a synchronized pulse. �=0.8, �0=10.
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FIG. 3. �Color online� Propagation velocity of synchronization
in units of the maximum velocity 1 /�0 for different coupling pa-
rameters � at �0=10. Here the critical coupling is �c	0.35.
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sults presented by now indicate that the value of �0 has a
quantitative effect on the velocities but does not change the
behavior of the chain in principle �see Fig. 4�. Hence, for
analytical treatment we shall focus on �0=1. We start with a
completely synchronized chain, xt

n=xt
0, and consider small

perturbations, Eq. �3�. Then the discrete Green’s function of
the system is �10�

gt
n = 
 t

n
��1 − ��t−n�n�

i=1

t

f��xi−1
0 � . �6�

The evolution of an arbitrary perturbation �0
k of the synchro-

nized solution can be obtained by

�t
n = �

k

�0
kgt

n−k.

The Green’s function can be approximated by

�gt
n� 	 exp„��v�t…, v = n/t , �7�

��v� = �1 − v�ln
1 − �

1 − v
� + v ln
�

v
� + 	0, �8�

where 	0= �ln�f��xt
0��� is the Lyapunov exponent of the ap-

plied map and ��v� is the convective Lyapunov exponent as
mentioned in �10–14�. Outside the interval v� �0:1� ��v�
has to be set −
 due to causality. Figure 5 shows the con-
vective Lyapunov exponent ��v� of Eq. �8�. ��v→0� de-
scribes the relaxation of a local perturbation, for negative

values the chain finally relaxes to the synchronized trajec-
tory, in agreement with Eq. �5�. The fronts of desynchroni-
zation and resynchronization are at the border of stability,
��v�=0. Hence, the first zero at vs determines the velocity of
synchronization and the second one yields the velocity of
desynchronization. If ln����−	0 one finds the maximal pos-
sible desynchronization speed vd=1.

Hence, a local perturbation of the synchronized trajectory
generates a pulse of deviations with a front velocity vd and a
tail velocity vs. The maximum of the pulse propagates with
vm=� and the integrated pulse increases exponentially with
the exponent 	0.

Figure 6 compares this theory with results obtained from
simulations. Obviously the prediction of ��v� is correct even
if the linear equations do not describe the dynamics in the
noisy regions of the chain preceding the final synchroniza-
tion process. Note that for �0=1 one finds 	0=ln 2; hence,
the critical coupling is �c=1 /2. At this critical point the ve-
locity of synchronization goes to zero; again one observes a
critical slowing down for synchronization.

V. INFORMATION TRANSFER

Pulses of synchronization and desynchronization can be
used for communication: sender and receiver define a certain
bit length L. Then the sender switches r0 between r and r� in
time intervals L according to the bit sequence �let us define
r0=r
 true, r0=r�
 false�. Regions of corresponding state
are created at the head and start to propagate throughout the
chain. The receiver decodes the message by observing the
synchronization state of the last two units.

It is in any case vs�vd so the true-bits will always suffer
from shrinking and a single true-bit will finally vanish at a
chain position approximately determined by

n� 	 L
vdvs

vd − vs
. �9�

However if a true-bit is followed by a second one, the second
bit can travel a longer distance before vanishing. Obviously
bit sequences with consecutive ones such as 01110 can be
transmitted with much lower bit error rates than isolated ones
such as 01010.
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FIG. 4. �Color online� The additional delay 
=1 /vs−�0 as a
function of the coupling delay �0 with �=0.6: for large �0 there is a
saturation effect.

0

λ0

0 0.2 0.4 0.6 0.8 1

Λ

v

vs vdε

Λ(0)

FIG. 5. �Color online� The convective Lyapunov exponent ��v�,
Eq. �8�, for 	0=0.3 and �=0.6.
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FIG. 6. �Color online� vs and vd obtained by simulations are
compared to the predictions made by ��vi�=0 for �0=1.
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VI. CONCLUSION

Pulses of synchronization in chaotic chains can be used
for communication. The information has not to be restored at
every unit but is recovered by observing the synchronization
status of the last two units. We have analyzed the propaga-
tion of pulses using the method of convective Lyapunov ex-
ponents �10–15,19�. We find that the front of a synchroniza-
tion pulse travels slower than its tail. This limits the maximal
chain length for which the pulse can be detected and, thus,
has a large influence on the bit error rate.

We have investigated the propagation of binary informa-
tion by detuning the first chaotic unit. For a chain of chaotic

lasers this may be accomplished by detuning the pump cur-
rent of the first laser. It would be interesting to investigate
the conditions for which analog signals can be transmitted.
From our results we expect two major criteria for reliable
transmission: The signal must have a spectrum of low fre-
quencies compared to the inverse minimal bit length �9� and
the linear approximation of the time evolution must hold; see
Eq. �3�.
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