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A method based on a modified Newton-Raphson scheme is presented to estimate parameters of a nonlinear
dynamical system from the time series data of the variables. The method removes some of the problems
associated with the standard synchronization based methods. An important achievement of this method is that
it is possible to determine the exact form of dynamical equations for systems with quadratic nonlinearity.
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Given the time series data, an important unsolved prob-
lem is to determine the form of the underlying dynamical
equations. Since this problem is difficult to handle, one uses
some physical model to determine the form of these equa-
tions. Recently, there has been considerable interest in deter-
mining parameters of a nonlinear chaotic dynamical system
from the time series data given the form of the equations
�1–4�. The interest is due to several possible applications as
discussed in the literature. Most of these studies use the syn-
chronization property of coupled dynamical systems �5,6�.
One constructs a slave system coupled to the original system
�master� using the known time series data obtained from the
master. The methods to determine the parameters may be
broadly categorized into two types. In the first type, one uses
some way of minimizing the synchronization error, �1� while
in the second type, one introduces additional dynamical evo-
lution equations for the parameters �2�.

Though the methods based on synchronization have
proved to be very useful in estimating the parameters of non-
linear dynamical systems, two limitations of these methods
may be noted. First, variables used in the estimation must be
synchronizing variables in the sense that with a suitable cou-
pling between two identical dynamical systems they should
lead to synchronization. Second, the total time must be larger
then the synchronizing time scale. The purpose of the present
Brief Report is to present a method of parameter estimation
which addresses these limitations. The method is based on a
modification of the Newton-Raphson method to include dy-
namics �7–9�. The method is able to remove the above two
problems associated with synchronization based methods
and also the accuracy of parameter estimation is better. It
works in the presence of noise. It is demonstrated using two
examples. In particular, for a three dimensional system with
quadratic nonlinearity one is able to determine the exact
form of dynamical equations by determining all possible pa-
rameters of such a system.

Consider an autonomous dynamical system,

ẋ = f�x,�� , �1�

where x= �x1 , . . . ,xd� is a d-dimensional state vector, f
= �f1 , . . . , fd� and ��� j , j=1, . . . ,m, are a set of m parameters.

As in the methods based on synchronization, assume that
the equations of the dynamical system, i.e., the functional
form of f and the time evolution of the variables x, are
known �10�. Now suppose that the set of parameters � is not
known. �Known parameters are not included in �.� Formally,
the problem at hand consists of estimating the unknown pa-
rameters � using the time series data.

Let y denote a system of variables, y= �y1 , . . . ,yd� such
that y has an identical form of evolution to that of x �Eq. �1��
but with different values � of m parameters,

ẏ = f�y,�� . �2�

Let w�t� denote the difference w�t�=y�t�−x�t�. We look for
the solution of the equation

w�t� = 0. �3�

Noting that the initial-state vectors, y�0� and x�0� and the
parameter sets � and � uniquely determine the difference
w�t�, one solution of Eq. �3� is y�0�=x�0� and �=�. Since
x�t� is assumed to be known, one can set y�0�=x�0�, and
hence the solution of interest is �=�.

We now introduce the notation wn=w�n�t�
=wn��y0 ,�� , �x0 ,���, where �t is a small time interval. Simi-
larly, yn=y�n�t� and xn=x�n�t�. With this notation condition
�3� becomes wn=0.

Modified Newton-Raphson method. The first step of our
approach to the solution of Eq. �3� is a modified Newton-
Raphson method, which includes the time evolution of the
system.

Let us first consider w1. We have

0 = w1��x0,��,�x0,���

= w1��y0,��,�x0,��� + ��y0 · �y0�w1��y0,��,�x0,���

+ ��� · ���w1��y0,��,�x0,��� + ¯ �4�

where �yn=xn−yn=−wn and ��=�−� �11�. For small �t, we
can write

w1��y0,��,�x0,��� = w0 + �t�f�y0,�� − f�x0,��� + ¯ .

�5�

Substituting Eq. �5� in the second and third terms of right-
hand side of Eq. �4� and neglecting higher order terms, we
get,*amritkar@prl.res.in
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w1��y0,��,�x0,��� = w0 − �t���y0 · �y0�f�y0,��

− ��� · ���f�y0,��� . �6�

Let Wn be a column matrix ��wn ,−���T. It is convenient to
write Eq. �6� in a matrix form as

W1 = �Id+m + �tJ0�W0 = A0W0, �7�

where Ik is the k�k identity matrix, Aj = Id+m+�tJj, and the
Jacobian matrix Jn is given by

Jn = ���ynf�yn,���T ���f�yn,���T

0 Im
� . �8�

Proceeding along similar lines, the equation for Wk is

Wk = �I + �tJk−1�Wk−1 = Ak−1
¯ A0W0. �9�

Since by construction W0= �0,���T, Eq. �9� gives us d inde-
pendent linear equations for m unknown quantities �� in
terms of �yk.

�Wk�i = 	
j

�Ak−1
¯ A0�ij�W0� j, i = 1, . . . ,d . �10�

Thus, we get a full set of m equations by writing equations
for W1 , ¯Wk so that kd�m. These equations can be solved
by using some guess values for � to yield ��. The process
can be iterated as in Newton-Raphson method by taking the
improved guess values as �+��. The total duration of the
time series required for this procedure is k�t.

However, in practice, the above procedure works only for
a small number of parameters. Due to the nonlinear nature of
our equations, there are multiple solutions and as the number
of unknown parameters increases, it is difficult to converge
to the correct solution. A slower rate of convergence can
partly avoid these problems if we iterate with the guess pa-
rameter values as �+r�� where the moderating parameter r
satisfies 0�r	1. However, this procedure also fails as the
number of unknown parameters increases further. The sec-
ond step of our procedure addresses this problem.

Embedding with suitable time delays. We have noted
above that Eq. �10� provides d independent equations for the
unknown quantities ��. The total time duration is k� starting
from the initial time t=0. Now, instead of iterating with time
steps of �t to obtain m equations, let us now fix some value
of k and choose different initial times, say t1 , . . . , tn. For each
initial time we obtain d equations with time evolution for k�t
using Eq. �10�. We get the required m equations provided
nd�m. A simple way of choosing the initial times is by
embedding with a delay of time 
 so that the initial times
may be 0,
 , . . . , �n−1�
. The total time duration
is �n−1�
+k�t. Note that we need the values of the variables
only at 0 ,
 , . . . , �n−1�
 and k�t , . . . , �n−1�
+k�t. There are
different methods of choosing the time delay 
 �12–14�. In
our case, a much smaller time delay than the standard em-
bedding time is sufficient to avoid the multiple solutions �see
the examples�.

How does the embedding avoid the problem of multiple
solutions? Except the correct solution, the other �spurious�
solutions depend on the local values of the variables and
hence vary depending on the location of the variables in the

phase space. By embedding we combine different phase-
space locations and thus the spurious solutions are removed
and only those invariant in the phase space survive. Numeri-
cal experiments show that after a suitable embedding almost
always two solutions survive, the correct solution and the
diverging solution. The diverging solution is easily identified
and mostly can be avoided by changing the initial conditions.

How does one avoid the exponential sensitivity of chaotic
systems? The beauty of the Newton-Raphson method is that
it works for both positive as well as negative slopes of the
function at the roots of the equation. In the language of dy-
namical systems where the proposed modification is applied,
it means that it works for both stable and unstable solutions.

We now illustrate the method described above
using two examples. First consider the Rössler system
�ẋ1 , ẋ2 , ẋ3�= �−x2−x3 ,x1+ax2 ,b+x3�x1−c��. Let us rewrite
the equations with all possible terms with quadratic nonlin-
earity. For x1, we write

ẋ1 = a0 + a1x1 + a2x2 + a3x3 + a4x1
2 + a5x2

2

+ a6x3
2 + a7x1x2 + a8x2x3 + a9x3x1. �11�

There are ten terms and ten parameters a0 , . . . ,a9. We can
write similar equations for x2 and x3 giving us twenty more
parameters, say b0 , . . .b9 and c0 , . . . ,c9. Comparing with the
Rössler equations we see that the only nonzero parameters
are a2=a3=−1, b1=1, b2=a, c0=b, c3=−c, and c9=1. Objec-
tive is to determine all the 30 parameters given the times
series of the variables. Using the method described above it
is possible to obtain all the parameters to a good accuracy.
This is demonstrated in Fig. 1. Figure 1�a� shows how the
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FIG. 1. �a� The absolute values of the errors in the estimation of
the ten parameters, 
�ai
 , i=0, . . . ,9 are shown as a function of the
iterations of the method for Rössler system. These ten parameters
are as in Eq. �11� for the dynamics of x1 and correspond to all the
terms with quadratic nonlinearity. b and c are similar plots for the
errors 
�bi
 and 
�ci
 and are for the dynamics of x2 and x3, respec-
tively. Rössler parameters are a=b=0.2 and c=7.0. The other pa-
rameters are �t=0.01, 
=0.1, k=1, and r=1.0. The initial guess
values of the parameters were chosen to randomly lie between �1
of the correct values. d. The plot shows the average of the absolute
errors ē in the estimation of all the 30 parameters shown in a–c as
a function of the iterations.
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absolute values of the errors 
�ai
 , i=0, . . . ,9 reduce to zero
for the ten parameters ai as a function of the iterations of our
procedure. Figures 1�b� and 1�c� are similar plots for the
twenty parameters bi and ci. Figure 1�d� shows the average
of the absolute errors ē= �1 /30�	i
��i
 of all the 30 errors in
Figs. 1�a�–1�c� as a function of the iterations. Thus, a reason-
ably accurate estimate of all the 30 parameters is obtained.
Thus, for a class of three dimensional systems with quadratic
nonlinearity, we are able to determine the exact form of the
dynamical equations �15�.

A comment about the accuracy of parameter estimation.
We use Euler expansion in Eq. �5�, and hence one may ex-
pect the error in parameter estimation to be of the order
��t�2. However, the actual parameter estimation is several
orders better than this. This is because first, we use a more
accurate procedure �fourth order Runge-Kutta� to obtain the
variables yn from yn−1 in Eq. �8� and then combine it with
Euler expansion. Second, the evolution is nearly linear for
the small time interval k�t between the initial and final val-
ues of the variables.

Another comment on the numerical procedure: in Fig. 1
the initial guess values of the parameters were chosen ran-
domly to be within �1 of the correct values. It is possible to
increase this range, but then one has to opt for a slower
convergence, i.e., a smaller value of the moderating param-
eter r. E.g., if the initial guess values are chosen randomly to
be within �5 of the correct values, then with r=1 we get
numerical instabilities, but r=0.01 gives good results.

As the second example we consider a system of N
coupled Rössler oscillators,

ẋ�i� = f�x�i�� + 	
j�i

Aij�x1
�j� − x1

�i��, i = 1, . . . ,N �12�

Here, only the component x1 is coupled. Here, the unknown
parameters are the coupling constants Aij , i� j. Again a rea-
sonable estimate of the coupling constants is obtained using
our method. This is shown in Fig. 2�a� which plots the aver-
age value of the absolute errors ē, in the estimation of all the
90 coupling constants for N=10, as a function of the itera-
tions. Figure 2�b� shows the asymptotic value �for large iter-
ates� of ē�, as a function of the time interval �t. The average
error is decreases upto �t�0.005 and then increases for

�t
0.005, till the system becomes unstable for �t
0.2.
This behavior is obtained as a competition between the Euler
formula �Eq. �5��, which is better for smaller �t and the
information content of the data which is better for larger �t.

We now turn to the important question of the effect of
noise on the estimation of the parameters �16�. We note that
the procedure described in steps A and B above is very sen-
sitive to noise and fails to converge even with a small noise.
Fortunately, it is possible to introduce a simple averaging
procedure to take care of this problem.

Noise reduction. In step B above we choose different ini-
tial times, say t1 , . . . , tn, so that nd�m. We can increase the
number of initial conditions, i.e., n, so that nd�m. Thus, we
can generate a much larger number of equations for the un-
known quantities �� than needed for the calculations. This
allows us to use the standard least square method of error
minimization �9� and in the process a noise reduction.

We demonstrate the noise reduction technique by using
the example of the 30 parameter estimation of Rössler sys-
tem shown in Fig. 1. The noise is introduced in two different
ways. First, it is introduced as an additive white noise in all
the observed variables. Figure 3 shows the plot of the aver-
age value of the absolute errors ē of the 30 parameters as a
function of the iterates of our procedure in the presence of
noise. For the noise strength �	0.2, all the parameters get
determined to a good accuracy i.e., 
��i
��. For
0.2��	1.0, most of the parameters get 
��i
��, though
for one or two parameters the error is of the order of �. For
�
1, it is difficult to estimate all the 30 parameters, though
some parameters can be estimated to a reasonable accuracy.
Second, the noise is introduced as an additive term in all the
evolution equations. Here, the parameter estimation is at
least an order of magnitude better that the previous case �not
shown in the figure�. This is because the effect of noise in the
variables is of the order ���t which is much smaller than �.
We have also carried out numerical simulations for other
chaotic systems such as Lorenz system and find similar re-
sults as for Rössler system.

To conclude a method to estimate parameters of a nonlin-
ear dynamical system from the time series data of the vari-
ables is introduced. As compared to the methods based on
synchronization, the present method has two advantages.
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FIG. 2. �a� The plot shows the average of the absolute errors ē
in the estimation of all the ninety coupling constants as a function
of the iterations for a network of ten coupled Rössler oscillators.
The other parameters are as in Fig. 1. �b� The plot shows the
asymptotic value of the average of the absolute errors ē� in the
estimation of all the ninety parameters for a network of ten coupled
Rössler oscillators.
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FIG. 3. The plot shows the average of the absolute errors ē in
the estimation of the 30 parameters of Rössler system expressed
with all quadratic terms as a function of the iterations in the pres-
ence of noise. White noise of strength � is added to all the variables
both at the times ti , i=1, . . . ,n and ti+k�t which are used in Eq.
�10�. The parameters are as in Fig. 1 �k=5� and n=10 000.

BRIEF REPORTS PHYSICAL REVIEW E 80, 047202 �2009�

047202-3



First, the method works for any system and the concerned
variables may or may not have the synchronizing property.
Second, the total length of the time series required for the
calculations is smaller than the synchronization based meth-
ods. Also the accuracy of parameter estimation is in general
better. The method gives reasonably good results in the pres-

ence of noise. The method is demonstrated using two ex-
amples. Especially, it is possible to determine all the 30 pa-
rameters of a three dimensional nonlinear dynamical system
with maximum quadratic nonlinearity. Thus, it is possible to
determine the exact form of the dynamical equations for the
class of systems with quadratic nonlinearity.
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