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The deformation of dense random fiber networks is important in a variety of applications including biologi-
cal and nonliving systems. In this paper it is shown that semiflexible fiber networks exhibit long-range
power-law spatial correlations of the density and elastic properties. Hence, the stress and strain fields measured
over finite patches of the network are characterized by similar spatial correlations. The scaling is observed over
a range of scales bounded by a lower limit proportional to the segment length and an upper limit on the order
of the fiber length. If the fiber bending stiffness is reduced below a threshold, correlations are lost. The issue
of solving boundary value problems defined on large domains of random fiber networks is also addressed.
Since the direct simulation of such systems is impractical, the network is mapped into an equivalent continuum
with long-range correlated elastic moduli. A technique based on the stochastic finite element method is used to
solve the resulting stochastic continuum problem. The method provides the moments of the distribution func-
tion of the solution �e.g., of the displacement field�. It performs a large dimensionality reduction which is based
on the scaling properties of the underlying elasticity of the material. Two examples are discussed in closure.

DOI: 10.1103/PhysRevE.80.046703 PACS number�s�: 02.70.�c, 62.20.D�, 87.16.Ka, 46.65.�g

I. INTRODUCTION

Semiflexible networks are the building blocks of many
biological and nonbiological structures such as tissue scaf-
folds, blood vessels, extracellular matrix, and battery sub-
strates �1–4�. The cytoskeleton of eukaryotic cells, a random
network of F-actin, microtubules, and intermediate filaments,
is another example of such structures. The cytoskeleton con-
trols the mechanical and transport properties of the cell, in-
cluding the transport of biomolecules within the cytoplasm,
cell migration, and cell chemomechanical transduction and
signaling �5,6�. In semiflexible fiber networks, the persis-
tence length, the distance along a given fiber over which
orientation correlations are lost, is large. In such cases the
elastic strain energy is stored in both stretching and bending
deformation modes of filaments. The response of these struc-
tures to external loadings is quite different from that of flex-
ible networks �7–10�.

The mechanics of random fiber networks was studied nu-
merically, analytically, and experimentally. In analytic mod-
els it is often assumed that the network deforms affinely
�11–13�. Cox �11� computed the elastic constants of dense
fiber mats in terms of their microstructure �fiber orientation�
by assuming that all fibers span the entire problem domain
and are only loaded at their ends. Astrom et al. �12� and Wu
and Dzenis �13� extended the Cox model to networks of
discontinuous fibers which are modeled either as Euler-
Bernoulli beams, Timoshenko beams, or as simple trusses.
The overall response of the network is obtained by requiring
the network deformation to be locally compatible with that
of the effective homogeneous continuum subjected to the
same far-field loading, i.e., the affine deformation assump-
tion. However, it is well documented that the deformation of
randomly cross-linked fibers, such as that of other disordered
media �14–17�, is nonaffine �1,18–22�, i.e., the local strain
field is not homogeneous and is distinct from the far-field
imposed strain. The energy level at which the actual �non-
affine� deformation occurs is lower than the energy corre-

sponding to the affine deformation. Chandran and Barocas
�1� indicated that the actual system-scale stress in random
fiber networks subjected to displacement-strain boundary
conditions is about three times lower than the stress pre-
dicted using the affine deformation assumption. Their results
imply that in random networks there is almost no correlation
between the strain in a fibril and its orientation.

The elasticity of random fiber networks was studied ex-
tensively by numerical simulations, the central goal being to
understand how various microstructural parameters affect the
network elastic properties. Wilhem and Frey �18� studied the
elasticity of random networks consisting of rigid rods. They
computed the relation between the shear modulus and the
fiber density and showed that the network elasticity is domi-
nated by bending deformation modes in the intermediate
scaling regime. Heussinger and Frey �23� compared the be-
havior of foams and fiber networks and related their elastic
properties to the microstructure. They indicated that the mac-
roscopic shear modulus of random networks is almost inde-
pendent of the fiber length. Head et al. �19,20� conducted a
comprehensive study of random fiber networks and showed
that while networks with large fiber density behave affinely,
low density networks deform nonaffinely. Moreover, Head et
al. �24� investigated numerically the response to point forces
and force dipoles. These studies show that the macroscopic
behavior of random networks is highly dependent on the
local nonaffinity of the deformation field. A strain-based non-
affinity measure was introduced in �21,25�, and it was ob-
served that the nonaffinity exhibits a power-law dependence
on the scale of observation in semiflexible networks. Other
nonaffinity measures �20,22� show similar power-law scaling
for the nonaffine deformation of random networks.

The mechanics of random fiber networks was also studied
experimentally. The effect of cross linkers on mechanical
properties of F-actin networks was studied by Gardel et al.
�26� and Wagner et al. �27�. It is shown that in semiflexible
networks, the network elasticity depends strongly on the
cross linker densities. Moreover, by tracking embedded
probe particles in F-actin networks, Liu et al. �22� deter-
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mined the network microscopic deformation and reported a
power-law degree of nonaffinity which depends on polymer-
fiber length and cross-link density.

In this paper, we investigate first the local elasticity of
semiflexible random networks by probing the fields and elas-
tic moduli on various scales. To this end, the domain is vir-
tually decomposed in patches of dimensions equal to the
probing length and the local elasticity is evaluated based on
the local stress and the deformation of the respective subdo-
main. It is observed that the fiber density, the moduli and the
strain field exhibit power-law spatial correlations over a
range of scales bounded above by the fiber length. This in-
dicates that the network deforms in a manner similar to het-
erogeneous bodies with stochastic fractal distribution of
moduli. This observation leads to the need to develop a
method that can be used to solve boundary value problems
�and perform “homogenization”� defined on such materials.
Due to the presence of spatial correlations and to the stochas-
tic nature of the problem, usual system reduction methods
based on scale decoupling do not apply. We propose a tech-
nique based on the stochastic finite element method �SFEM�
to address this problem.

The paper is organized as follows: the model is introduced
in Secs. II–IV are dedicated to the investigation of correla-
tions and scaling properties of the networks density and elas-
ticity, the method proposed to solve boundary value prob-
lems is discussed in Sec. V �and Appendix D�, and two
examples are presented in Sec. VI.

II. MODEL DESCRIPTION

Two-dimensional �2D� networks are generated by depos-
iting straight fibers of length L0 in a square domain of di-
mensions L. Fiber centers are randomly distributed in the
problem domain and the fiber orientation has uniform distri-
bution over �0,��. The fiber number density, N, is defined as
the number of fiber centers per unit area. Fibers are con-
nected to each other rigidly at the intersection points and are
modeled as homogenous elastic beams with constant
Young’s modulus and cross section. The dangling ends of
fibers carry zero strain energy and are not considered in the

model. The fiber length, L0, the mean fiber segment length, lc
�inversely proportional to the fiber number density, N�, and
the system size L are the characteristic length scales of the
structure. An additional length scale is lb=�� /� which rep-
resents the relative importance of bending and stretching de-
formation; � and � are the bending and stretching stiffness of
the filaments, respectively.

The deformation of the network subjected to the far-field
boundary conditions is evaluated by minimizing its potential
energy. The strain energy of a fiber can be written as

U =
1

2
�� ��2u�2ds +

1

2
�� �dl�s�

ds
�2

ds , �1�

where u is the transverse displacement of the fiber, s is its
contour length and dl�s� /ds is the axial strain. The total
strain energy of the system is obtained by summing over all
fibers. The solution is obtained with a finite element solver.

III. SCALING PROPERTIES OF THE FIBER DENSITY

In order to probe the microstructure of the network on
various scales, let us partition the problem domain by over-
laying a regular grid of square elements as shown in Fig. 1.
The grid is used exclusively for probing. The element size is
defined by the length �, which is also the “probing length
scale.” The fiber density in each element is evaluated as the
total fiber length divided by the area of the element, �2. By
this procedure, a map of densities is obtained. The mean
density over the entire map is equal to the imposed mean
density �	�
�NL0� and is independent of the probing length
scale. Fluctuations increase as � decreases.

The spatial correlation of fluctuations is evaluated by
computing the autocorrelation function �ACF� as

C��
�r� = 	�̂��x��̂��x + r�
x, �2�

where �̂�=��− 	��
 is the deviation from the mean of the
density in a given element of size � and 	��
= 	�
. The aver-
age is performed over multiple origins, x. Due to the isotropy

FIG. 1. Schematic representation of a random fiber network do-
main of size L�L probed using a regular overlay mesh of charac-
teristic dimension �. All fibers are of the same length, L0	L.

FIG. 2. Normalized autocorrelation function of the density dis-
tribution for networks with various fiber number densities probed at
different length scales � / lc. The power-law scaling is independent
of the fiber density. Note L0 /2lc=14, 28, and 56 for N=200, 400,
and 800, respectively.
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of the network, all directions in the plane are statistically
equivalent and the vectorial dependence on r can be replaced
with the corresponding scalar dependence, C��

�r�. The

normalized ACF is evaluated as C̄��
�r�= 	�̂��x��̂��x

+r�
x / 	�̂��x��̂��x�
x. Figure 2 shows C̄��
for networks with

different mean fiber densities probed at various length scales.
The function exhibits power-law scaling over about one and
a half decades and a cutoff at ��L0 /2; beyond this limit C̄��

drops to zero. The scaling C̄��
�r�
r−s� is independent of the

mean fiber density and of the probing length scale �, with
s�=0.88�0.04. As � increases, one loses information on the
smaller length scales but the large scale cutoff remains the
same. A larger range of the power-law scaling is obtained for
networks with large mean density �smaller lc� since smaller
elements of size � can be used. Probing is limited to ele-
ments of size �� lc in order to limit the number of elements
containing no fibers.

The power-law scaling of the ACF indicates that the re-
spective function has fractal properties over the respective
range of scales. The exponent s� is related to the fractal box
dimension D� as D�=3−s� /2 �28�. For the data in Fig. 2, the
fractal box dimension �29� of the density surface results D�

=2.56�0.02. The dimension is larger than 2, which indi-
cates a rough surface embedded in three-dimensional �3D�. A
similar example is the Weierstrass function which is a func-
tion of a single variable but has adjustable fractal dimension
between 1 and 2 �28�. Moreover, it is noted that Fig. 2 shows
that the correlation is independent of the fiber number den-
sity when both the probing length scale and the variable of
the correlation function �r� are normalized with lc. This is the
result of self-similar structure of the network and causes
curves corresponding to the same � / lc but different N to
overlap.

To understand this behavior, let us consider that one drops
fibers of length L0 �L�L0
�� at random, such that a generic
element i receives n̄�+�ni fiber centers. n̄� is the mean num-
ber of fiber centers �i.e., n̄�=N�2� and �ni represents the
variation from the mean of the number in element i. These
fibers contribute to the total fiber density in element i by
��n̄�+�ni�� /�2. In addition to the fibers having their center
in element i, the element is also crossed by fibers having
centers in element j located at a distance rij from i, rij
	L0 /2. The probability of a fiber centered in element j to
cross element i is approximately p�rij�=1 /2�� /rij, i� j.
Hence, the total number of fibers centered elsewhere and
crossing element i is �k=1

Qi p�rik��n̄�+�nk�, where Qi is the
number of elements k for which we have rik	L0 /2. The total
fiber density �fiber length by the element area� in element i
results �i= �n̄�+�ni+�k=1

Qi p�rik��n̄�+�nk�� /�. Considering
that the number of fibers with centers in i is not correlated
with the respective number in any other element j, i.e.,
	�ni�nj
=�N

2 �ij ��ij is the Kronecker delta function� and
	�ni
= 	�nj
=0, one obtains for the correlation function
C��

�rij�=�N
2 �1 /�rij� 
rij	L0/2+1 /4�2�k=1

Q 1 /rikrjk 
rij	L0
� and

for the normalized ACF, C̄��
�rij�=C��

�rij� /�N
2 . Here Q is the

number of elements k located such that rik	L0 /2 and rjk
	L0 /2. The first term dominates for small rij leading to a

scaling of ACF as C̄��
�r�
r−1 in the respective limit. The

ACF vanishes identically for r�L0, while for L0 /2	r	L0 a
transition following a r−2 scaling is expected.

This analysis indicates that the density correlation ob-
served here is due to the fact that fibers cover a finite spatial
domain, therefore, mediating nonlocal interactions with a
range proportional to their length.

It should be noted that the standard box-counting method
can also be used to probe the structure of the network on the
smallest scales. This type of analysis, also performed previ-
ously by Kaye �30� for the purpose of probing the porosity of
fiber-based filters, is not directly related to the analysis dis-
cussed here. However, it can be used to probe length scales
�� lc for which the geometry exhibits a range of fractality
with box dimension approximately 1.55. The method is not
applicable for larger length scales since in this case all ele-
ments contain fibers and the dimension of the embedding
space �D=2� is recovered.

IV. SCALING PROPERTIES OF ELASTIC MODULI

The mean fiber density 	�
 is linearly related to the stiff-
ness at large densities �20�. Hence, it is expected that the
elastic moduli computed on the scale of elements of size �
exhibit spatial correlations similar to those of the density. In
order to test this conjecture and investigate the elasticity of
the network at various length scales, the local moduli have to
be evaluated without separating the respective patch from the
network or perturbing the system configuration in any way.
Therefore, after solving for the nodal displacements of the
entire network subjected to the specified far-field loading �by
minimizing the system potential energy�, each square subdo-
main is considered and the points of intersection of fibers
with the patch boundaries �edges� are determined. The dis-
placements, axial forces, and bending moments at these in-
tersection points are evaluated from the solution of the global
discrete problem �forces in fibers are directly related to nodal
displacements through the stiffness matrix�. Therefore, the
traction distribution along the perimeter of each square ele-
ment of size � and subsequently the average stress state in
the respective domain are evaluated. Let us denote this
method for finding field quantities on scale � as the “F
method” �“fitting-based method”�.

In order to evaluate the average strain for each element,
the displacements of the element nodes �corners� must be
inferred from the displacements of the fiber-element edge
intersection points. To this end, least-squares fitting is per-
formed using linear interpolation functions. Once the dis-
placements of the element corner points are known, the local
strain results by taking the derivatives of the respective �lin-
ear� displacement field. In Ref. �21�, where we investigated
the scaling behavior of the strain nonaffinity in random fiber
networks, we used a procedure inspired by the tensometric
method to compute the effective strain on scale � from the
displacements of the fiber network nodes. The “tensometric
method” �“T method”� and the F method described here are
compared in Appendix A and are shown to be equivalent.

The elastic constants in each element are evaluated based
on the local stress and strain. The resulting stress field is an
equilibrium field because the underlying network is in equi-
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librium. Moreover, the resulting strain field is compatible
locally since linear interpolation functions are selected and
globally due to the fitting procedure which insures that the
deformation of neighboring elements is compatible. Thus,
we can replace each square domain by an isotropic homoge-
neous continuum. This fitting can be performed provided that
the fiber density in the respective element is sufficiently
large, condition leading to a lower limit for �, �0, as dis-
cussed in Appendix B. This condition insures that the elas-
ticity of elements of size � results approximately local and
isotropic. Furthermore, as long as L0 / lc�5, the variation in
the Poisson’s ratio, �, with the fiber density is small and �
remains close to the affine prediction v=0.5 �20�. The only
remaining parameter that fluctuates from element to element
is the effective Young’s modulus, E.

The elastic constants in each element can be evaluated
using an alternative method �Appendix C�. Let us refer to
this method as the “FEM method” �finite element-based
method�. In this procedure, the overlay mesh is considered as
a finite element mesh. The solution of this equivalent con-
tinuum to specified boundary conditions is obtained by mini-
mizing the global potential energy while requiring that: �1�
the strain energy in each element is equal to the strain energy
of the underlying patch of the fiber network and �2� the dis-
placements computed with the continuum model are closest
possible to those evaluated with the discrete model �in the
least-squares sense�. Therefore, the unknown variables in
this formulation are the mesh nodal displacements and the
elastic constants in each element. As discussed in Appendix
C, the two methods lead to similar local moduli and to iden-
tical Young’s modulus ACFs.

It is also necessary to inquire about the moments resulting
from this procedure acting along each edge of a given ele-
ment. In general, although the total moment per element van-
ishes as mandated by the equilibrium condition for the un-
derlying network, the moment acting on a given edge is not
zero. In such cases, a micropolar formulation for the con-
tinuum has to be used instead of the local constitutive model.
However, we verified that taking elements of size ���0 is a
sufficient condition to eliminate the need for higher-order
constitutive formulations �Appendix B�.

Let us turn now to the analysis of the stiffness map. Fig-
ure 3 shows the autocorrelation function of Young’s modu-

lus, C̄E�
�r�= 	Ê��x�Ê��x+r�
x / 	Ê��x�Ê��x�
x for networks of

various fiber number densities probed at different length

scales, �, with Ê=E− 	E
. A power-law results, C̄E�
�r�
r−sE,

with the exponent approximately equal to that obtained for
the density, sE=0.92�0.06. The fiber number density and
the scale of observation � / lc have no influence on sE. The
resulting fractal dimension of the stiffness map is DE=3
−sE /2=2.54�0.03.

The effect of the fiber bending stiffness, lb /L0, on the
power-law scaling of the network elasticity was also studied.
The details of this analysis will appear in a separate publica-
tion; however, the main conclusions are reviewed here for
completeness. For lb /L0� �10−4 ,10−1�, the variation in the
filament bending stiffness results exclusively in a vertical

shift of C̄E�
�r� curves in the log-log plot �Fig. 3�, the scaling

exponent sE being independent of lb /L0. If the fiber stiffness

is smaller, lb /L0	10−4, no correlations can be evidenced. It
is important to note that density correlations always exist,
but they only translate into stiffness correlations for large
enough lb /L0. If the fiber stiffness is larger, lb /L0�10−1, the
resulting bending moments on scale � are large and the local
elasticity formulation used here does not hold.

The observation that the elastic moduli are long-range
power-law correlated implies that random fiber networks de-
form similarly to highly heterogeneous continua with sto-
chastic fractal distribution of stiffness over a certain range of
scales. In such structures, scale decoupling does not exist in
the range of self-similarity and long-range correlations of all
deformation fields �stress and strain� are expected. In fact,
the power-law scaling of the nonaffine strain observed in
random fiber networks �21� is a consequence of the scaling
properties of the effective elastic constants discussed here.

In structures exhibiting long-range correlations of elastic
properties and scale-free characteristics, usual methods of
system reduction based on scale separation cannot be used.
Therefore, a specialized method of analysis such as that de-
veloped in Ref. �31� is required. The method and its imple-
mentation are presented in the next section. The technique is
most useful in situ in which very large semiflexible fiber
network domains subjected to prescribed boundary condi-
tions are considered. In such cases, seeking the solution by a
direct approach such as the minimization of the total system
potential energy is impractical, particularly if the structure is
stochastic.

V. SOLUTION OF BOUNDARY VALUE PROBLEMS

A method to solve boundary value problems defined on
large fiber network domains is presented in this section. Let
us consider a domain � with prescribed, deterministic
boundary conditions �on contour ��, containing a random
fiber network of fiber number density N, significantly above
the percolation threshold. The structure of the network is
known only in the statistical sense, i.e., the mean fiber num-

FIG. 3. Autocorrelation function of the stiffness distribution of
networks with various fiber number densities probed at different
length scales � / lc. Note L0 /2lc=14, 28, and 56 for N=200, 400, and
800, respectively.
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ber density and fiber orientation distribution functions are
defined. Fiber elastic properties �bending and axial stiffness�
and the fiber length L0 are known and assumed identical for
all fibers. The objective is to determine the solution field
�e.g., displacement or strain-stress� throughout the problem
domain. Since the structure is stochastic, the solution is like-
wise stochastic. We are interested in obtaining the first two
moments of the distribution function of the solution at each
point of �.

This problem can be approached using the SFEM devel-
oped by a number of authors and reviewed in �32�. A brief
overview of the method is presented in Appendix D. In this
method one seeks the minimum of the global potential en-
ergy �=�eV

e−W, where Ve is the strain energy of element e
and W is the total work done by boundary tractions. The
solution is expressed in terms of nodal displacements u�x ,��
which are functions of position, x, and of a random variable,
�. The unknowns are written in a separable form as u�x ,��
=N�x�d���, i.e., a product of a deterministic function of po-
sition and a function of stochastic variables. Further, each of
these functions is expanded in an orthonormal basis defined
on the respective space. Specifically, N�x� is expanded in the
finite element base functions �in the examples presented in
Sec. VI we consider linear base functions� and d��� is ex-
panded as a series of chaos polynomials, �(����):

d��� = �
j

c�j�� j„����… . �3�

The stochastic input to the problem is the stiffness tensor
in each element, D�x ,�� �Eq. �D3��. When this quantity is
correlated, as in the case of random fiber networks �Fig. 3�, it
is convenient to represent it through a Karhunen-Loeve �KL�
expansion �32� as D�x ,��=D�x�+�i=1

��i�i���a�i��x� �Eq.
�D9��, where ��i���� is a set of random variables, ��i� is a set
of constants and �a�i��x�� is an orthonormal set of determin-
istic functions. The random variables ��i���� satisfy
	�i���
�=0 and 	�i���� j���
�=�ij. The constants � and the
deterministic functions a�x� are the eigenvalues and eigen-
functions of the covariance of the elastic constants, i.e., the
solutions of the homogeneous Fredholm integral equation of
the second kind, ��Cov�x ,y�a�y�dy=�a�x�, where

Cov�x,y� = 	D�x,��D�y,��
� = �
�

D�x,��D�y,��dP���

�4�

and P��� is the probability measure defined on the domain of
�. The eigenfunctions are orthogonal and form a complete
set, i.e., ��a�i��y�a�j��y�dy=�ij. When the variational prin-
ciple corresponding to the minimization problem for � is
written in terms of these quantities �Appendix D� and when
the Poisson’s ratio is a deterministic quantity in each element
�not necessarily identical�, a system of equations for the un-
known constants c in Eq. �3� results �Eq. �D16��. The most
important aspect of the formulation is that the system is de-
terministic since all stochastic components are grouped and
averaged over when the balance equation is written in the
weak form on the system scale. This, in turn, allows solving
a single problem for all possible realizations of the random

structure. Once, c, and therefore d �Eq. �3�� are evaluated,
the mean and variance of u�x ,�� can be easily computed
�32�.

VI. EXAMPLES

To demonstrate the capabilities of the proposed method,
let us consider 2D random fiber networks without preferen-
tial fiber orientation obtained by the procedure described in
Sec. II. The models are subjected to uniaxial tension. The
networks �multiple realizations�, probed at resolution � / lc,
are mapped using the method outlined in the previous Sec-
tions into equivalent stochastic continua subjected to the
given boundary conditions. The resulting ensemble of con-
tinua with stochastic elastic moduli is solved using the sto-
chastic finite element method with square elements of size
� / lc. The Poisson’s ratio is identical in all elements �=0.5
�20�, while Young’s modulus, E�x ,��, is stochastic. As dis-
cussed, the autocorrelation function of E�x ,�� is a power law
over a range bounded below by the mean fiber segment
length lc and above by L0 /2. Correlations on larger length
scales vanish. The solution is sought at a probing length
scale �resolution� � / lc=22, arbitrarily selected within the
range of self-similarity defined by �lc / lc=1, L0 /2lc=57.5�.

The covariance matrix is written based on the numerically
computed autocorrelation function �Fig. 3� and making use
of the isotropy of the network. Its eigenvalues and eigenvec-
tors are computed, which allows expanding D��� in the
Karhunen-Loeve expansion.

Note that in Eq. �D9� the sum is infinite. Since a dis-
cretized version of the covariance is used, the sum includes a
number of terms equal to the dimensionality of the covari-
ance. The set of eigenvalues ��i� is shown in Fig. 4. The
number of terms in the expansion, M, which are actually
kept in the formulation and used in the numerical work is a
variable. Increasing M increases the accuracy of the solution
but also increases the computational cost. Therefore, a trade-
off should be achieved. Usually, one includes the eigenfunc-
tions corresponding to few largest eigenvalues. For example,
with M =4 all eigenvalues larger than 20% of the largest
eigenvalue are included in the expansion. Furthermore, a fi-
nite number of chaos polynomials are retained in the expan-

FIG. 4. Eigenvalues of the covariance matrix of the elastic con-
stants for the network with L0 / lc=115 and lb /L0=0.01 probed at
� / lc=22. The presence of few large eigenvalues guaranties the ac-
curacy of the truncated Karhunen-Loeve decomposition.
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sion of the unknown solution vector of Eq. �3� �and Eq.
�D14��. np denotes the order of chaos polynomials. With the
Karhunen-Loeve decomposition of the moduli and the ex-
pansion of the solution in terms of chaos polynomials, one
follows the procedure outlined in Appendix D to find the
statistics of the deformation field. In the examples considered
here and some other problems in the literature �31,32�, it is
seen that the first two moments of the solution converge fast
with respect to the number of terms in the chaos polynomials
expansion and relatively slower with the number of terms in
the KL expansion.

The solution obtained by this method is compared with
two “reference” solutions obtained by replica averaging of
�a� the equivalent stochastic continuum and �b� multiple re-
alizations of the fiber network. In the equivalent continuum
replica averaging �referred to as “C averaging”�, the classical
finite element method is used to solve a large number of
realizations ��5000� of equivalent continua; each of one of
these is a deterministic problem and the stiffness distribution
inside the domain is obtained by sampling the probability
distribution function of the stochastic Young’s modulus re-
sulting by probing the discrete model on scale � / lc �Sec. IV�.
The sampling is performed by generating correlated random
variables based on the covariance matrix of the Young’s
modulus. The fiber network replica averaging �referred to as
“N averaging”� is based on generating and solving replicas
��250� of the fiber network. Therefore, the degree of N av-
eraging is smaller then that of C averaging but is limited by
the much larger computational expense involved. In both
cases, the displacement field on scale � / lc is inferred and
compared with the solution obtained from the stochastic fi-
nite element method at each node of the finite element mesh.
It should be mentioned that N averaging is required to deter-
mine the correlation functions in the first place. However, a
small number of replicas are required for that purpose be-
cause correlations are evaluated by considering many data
pairs from each realization. Hence, correlations converge
fast. In contrast, when fields corresponding to specified
boundary value problem are desired, many more replicas are
necessary since at each point of the problem domain one
replica leads to a single data point.

Let us consider as the first example the network subjected
to uniform far-field tension, p�L ,x2�= p0, as shown in Fig.
5�a�. Let u�i , j� denote the displacement vector of the node
located at x1= �i−1�� and x2= �j−1��, where i , j=1, . . . ,n
+1 and n=L /�. The nodal displacements are random vari-
ables with mean 	u�i , j�
��u�i , j� and standard deviation
�	u�i , j�2
�− 	u�i , j�
�

2��u�i,j�. Moreover, let 	u�i , . . .�
x2
and

	�u�i,.�
x2
represent the average of the mean and standard de-

viation of nodal displacements along lines x1= �i−1��:

	u�i, . . .�
x2
=

1

n + 1�
j=1

n+1

u�i, j� ,

	�u�i,. . .�
x2
=

1

n + 1�
j=1

n+1

�u�i,j�. �5�

This averaging is meaningful since, due to the symmetry
of the problem, all points along any of these lines have sta-
tistically equivalent displacements. Figure 5�b� shows the
normalized average of the mean horizontal displacement,
	ū1�i , . . .�
x2

/ 	ū1�n+1, . . .�
x2
as a function of x1= �i−1��,

along with results from replica averaging. All three methods
lead to consistent results.

Figure 5�c� shows the normalized average of the standard
deviation of the horizontal displacement, �u1�i,. . .� / 	ū1

�n+1, . . .�
x2
versus position along the horizontal line x1

= �i−1��. Several solutions obtained with SFEM by consid-
ering various numbers of terms in the Karhunen-Loeve ex-
pansion as well as various number of terms in the expansion
of the solution in chaos polynomials �Eq. �D14�� are pre-
sented. As in �31�, it is observed that the number M of terms
considered in the Kahunen-Loeve decomposition is more im-
portant in defining the accuracy of the results than the order
np of chaos polynomials considered in the expansion of d. It
is also noted that since a limited number of replicas have
been used in the N averaging process, the standard deviation
is overpredicted. The N and C averaging results are expected
to come together if sufficient replicas are considered.

In the second example, the same structure is subjected to
nonuniform far-field loading. A sinusoidal distributed force
p�L ,x2�= p0 sin��x2 /L� is applied �Fig. 6�a�� in order to de-
termine the effect of field gradients on the accuracy of the

FIG. 5. �a� Schematic representation of the boundary value
problem for the first example considered: a random fiber network
subjected to uniform tensile loading in direction x1. Variation in the
�b� normalized mean horizontal nodal displacement,
	ū1�i , . . .�
x2

/ 	ū1�n+1, . . .�
x2
and �c� of the normalized standard de-

viation of the horizontal nodal displacement, �u1�i,. . .� / 	ū1�n
+1, . . .�
x2

, along the x1 direction. The respective quantities are ob-
tained by averaging along vertical lines in �a� �x1=const�. The nor-
malization is performed with the maximum horizontal displacement
at x1=L. Data obtained by continuum replica averaging �C averag-
ing� and network replica averaging �N averaging� are presented
along with data from the SFEM model with various number of
terms in the Karhunen-Loeve decomposition �M =2 and 4� and
chaos polynomials of different orders �np=2 and 4�.
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solution. The notation defined above is also used for this
example. Hence, ū1�n /2+1, j� and �u1�n/2+1,j�, where j
=1, . . . ,n+1, denote the mean and standard deviation of the
horizontal components of the displacement along the vertical
line x1=L /2. Moreover, ū1�n /2+1,n /2+1� represents the
mean displacement of the node at �x1=L /2,x2=L /2�. Figure
6�b� shows the normalized mean horizontal displacement,
ū1�n /2+1, j� / ū1�n /2+1,n /2+1�. It is observed that the
mean of the deformation field predicted by the stochastic
finite element method agrees with the mean displacement
obtained from replica averaging over many realizations �both
C averaging and N averaging�.

The normalized standard deviation of the horizontal dis-
placement, �u1�n/2+1,j� / ū1�n /2+1,n /2+1� along line x1

=L /2 is shown in Fig. 6�c�. In this case, fluctuations of the
displacement field about its mean are larger than those in the
case of the uniform far-field loading. As above, taking more
terms in the Karhunen-Loeve expansion �larger M� improves
the accuracy. The comparison with the C averaging result is
positive, while the N averaging leads to an overprediction of
the standard deviation due to the limited number of replicas
considered.

VII. CONCLUSIONS

The elasticity of 2D semiflexible fiber networks is inves-
tigated in this work with focus on �a� the scaling of density,
elastic moduli and elastic fields fluctuations, and �b� on the
constitutive representation of the continuum equivalent of

such discrete systems. It is shown that the fiber density and
all elastic quantities investigated �including the nonaffine
strains� exhibit long-range correlations and increasing fluc-
tuations as the scale of observation decreases. This originates
from the similar behavior of the density which, in turn, is
determined by the fact that fibers with relatively large per-
sistence length span a finite domain mediating nonlocal in-
teractions between neighboring regions of the network.

The adequacy of considering a local isotropic model for
the network was investigated, and it was concluded that the
approximation holds as long as the probing length scale �res-
olution� is larger than a threshold on the order of �but larger
than� the mean segment length lc. This condition is also suf-
ficient to ensure that the local version of elasticity can be
used on the respective scales and higher-order models are not
required.

The fact that the equivalent continuum map of the random
network is characterized by power-law spatial correlations
implies that no scale decoupling exists in the range of scales
over which self-similarity is observed. Homogenization and
the solution of boundary value problems defined on such
domains cannot be performed using standard system reduc-
tion �multiscale� techniques. A procedure based on the sto-
chastic finite elements method is proposed and several ex-
amples are given to demonstrate its effectiveness. The
method is much faster than replica averaging and is expected
to be most useful in applications requiring the solution of
boundary value problems defined on very large fiber net-
works with stiff, long fibers in presence of uncertainty.

The method discussed here is particularly useful in situ in
which the scale of interest �the desired resolution� is smaller
than the fiber length and when lc�L0 �dense networks of
relatively long fibers�, case in which a significant scaling
range exists. An example of such system is the cytoskeleton
of eukaryotic cells which is a composite fiber network con-
taining F-actin fibers and microtubules. The microtubules are
stiff and span the entire problem domain. Hence all scales of
interest are smaller than the upper limit of the expected scal-
ing range. When L0 is small and/or the scale of interest is
much larger than the fiber length, no spatial correlations are
present and the system can be homogenization using classi-
cal homogenization methods.

APPENDIX A: COMPARISON OF METHODS USED
TO INFER LOCAL STRAINS FROM NETWORK

NODAL DISPLACEMENTS

An additional consistency check is required relative to the
evaluation of the effective �mean� strain on scale �. In Ref.
�21� a procedure inspired by the tensometric method was
used to compute the effective strain on scale � from the
displacements of the network nodes. In this method �denoted
here as the T method�, the strain is evaluated by selecting
three points of the network at which displacements are
known. Theses points should form an approximately equilat-
eral triangle. The probing length scale � is taken equal to the
square root of the area of the triangle. As in tensometry, the
strain is computed directly from the geometry and the rela-
tive displacements of the triangle vertices. To test the consis-

FIG. 6. �a� Schematic representation of the second boundary
value problem considered: a random fiber network subjected to
nonuniform uniaxial tension p�x2�= p0 sin��x2 /L� applied at x1=L.
Variation in the �b� normalized mean horizontal nodal displacement,
ū1�n /2+1, j� / ū1�n /2+1,n /2+1�, and �c� of the normalized stan-
dard deviation of the horizontal nodal displacement,
�u1�n/2+1,j� / ū1�n /2+1,n /2+1�, along the vertical line x1=L /2. The
normalization is performed with the maximum horizontal displace-
ment at x1=x2=L /2. Data obtained by continuum replica averaging
�C averaging� and network replica averaging �N averaging� are pre-
sented along with data from the SFEM model with various number
of terms in the Karhunen-Loeve decomposition �M =2 and 4� and
chaos polynomials of different orders �np=2 and 4�.
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tency between the results presented in �21� and those dis-
cussed here, let Z1 denote the variance of the nonaffine strain
�normal strain in the loading direction�:

Z1 = �1 −
�11

�11
af f�2

. �A1�

Figure 7 shows Z1 evaluated with the method discussed in
the main text �F method� and with that used in Ref. �21�
�T method� for a network of density N=400 fibers per unit
area probed at length scale � / lc=2.28 and subjected to uni-
form uniaxial tension in the x1 direction �Fig. 1�. The two
methods predict the same level of nonaffine strain fluctua-
tions. We performed this comparison at various probing
length scales and for networks of different fiber densities and
similar behavior is observed in all cases.

APPENDIX B: THE ISOTROPY ASSUMPTION AND THE
MICROPOLARITY OF THE HOMOGENIZED

EQUIVALENT CONTINUUM

Replacing the discrete material with “an equivalent” con-
tinuum rises questions regarding the nature of the constitu-
tive model to be used. At large length scales �large ��, the
homogenized continuum is expected to be isotropic. How-
ever, as � decreases, anisotropy becomes important. The an-
isotropy is related, for example, to local fluctuations of fiber
orientation in the given subdomain. Furthermore, although
the element must be in equilibrium, the moments acting
along each of its edges may not vanish. In this case the usual
local formulation of elasticity must be replaced with a mi-
cropolar version. Therefore, determining the scale � at which
a local isotropic assumption becomes acceptable is impor-
tant.

Let us consider first the issue of anisotropy. If c11, c12, c66
denote the elastic constants of a homogenous continuum
with cubic symmetry, the degree of anisotropy may be rep-
resented by the parameter �33�

A =
c11 − c12

2c66
. �B1�

Let Ā denote the average of this dimensionless quantity

over all elements of size � / lc. Figure 8 shows Ā as a function
of the probing length scale for networks with N=400 and
800 fibers per unit area and lb /L0=0.01. It is seen that the
approximation made by modeling the elasticity of patches of
size � / lc with a homogenous isotropic elastic model im-
proves as � increases, the error is always smaller than 20%
as long as � / lc�1. For � / lc=22 used in the numerical ex-
amples of Sec. VI, the error is negligible.

To investigate the degree of micropolarity, it is necessary
to evaluate the moments resulting from the action of axial
forces and bending moments in each fiber that intersects a
given element edge. To use a local form of elasticity for the
equivalent continuum, the sum of these moments along each
element edge must be relatively small. To quantify their
magnitude, the dimensionless quantity,

B =
SM

SF�
, �B2�

is computed, where SF and SM are the absolute values of the
force and bending moment acting along given element edge

of size � / lc, respectively. The average of B, B̄ for networks
with N=400 and 800 fibers per unit area and lb /L0=0.01 is
shown in Fig. 9 as a function of the probing length scale

� / lc. It is observed that the error associated with B̄ is smaller

FIG. 7. Nonaffine strain variance computed with the method
discussed in Sec. IV, Z1

F method, and that used in Ref. �21�, Z1
T method,

for a network of density N=400 fibers per unit area probed on scale
� / lc=2.28.

FIG. 8. Average degree of anisotropy, Ā, of equivalent homoge-
neous continuum versus the probing length scale, � / lc, for systems
with N=400 and 800 fibers per unit area and lb /L0=0.01.

FIG. 9. Average of the dimensionless measure of the degree of

micropolarity, B̄, of equivalent homogeneous continuum versus the
normalized probing length scale, � / lc for systems with N=400 and
800 fibers per unit area and lb /L0=0.01.
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than that for Ā at the same � / lc, which indicates that the
probing length scale can be selected exclusively based on the
tolerance imposed for the departure from isotropy.

APPENDIX C: ALTERNATIVE APPROACH TO EVALUATE
THE ELASTICITY OF THE HOMOGENEOUS

CONTINUUM

An alternative method �FEM method� for finding the elas-
tic constants in each element of size � / lc is discussed in this
Appendix. In this method, the entire overlay mesh is consid-
ered as a finite element mesh which is subjected to the same
boundary conditions as the actual network. The elastic con-
stants of each finite element and its nodal displacements are
considered unknown.

Let uk
FE be the unknown nodal displacements of the con-

tinuum mesh. The displacement at the location of network
nodes, x�i�, can be expressed in terms of uk

FE as

uCont�x�i�� = �
k=1

Nnode
FE

Nk�x�i��uk
FE. �C1�

Nk�x�i�� represents the interpolation function corresponding
to node k of the mesh evaluated at the location of the ith
network node, and the sum is performed over all Nnode

FE nodes
of the FE model. The unknown FE nodal displacements, uk

FE,
are obtained by minimizing the norm of the difference be-
tween the actual displacements u�x�i�� of the network nodes
and their corresponding FE estimates uCont�x�i��, subjected to
the constraint that the continuum elastic strain energy of each
square element l, Ul

Cont, is equal to the corresponding dis-
crete strain energy Ul, which is the sum of the strain energy
of all fibers in the domain covered by element l. Once the
nodal displacements uk

FE have been obtained �and therefore
the strain�, the Young’s modulus of each element results sim-
ply from the respective energy Ul

Cont.
Figure 10 demonstrates the equivalence of this method

and that described in the main text, Sec. IV �F method�. It
shows the PDF of the ratio between the Young’s modulus
computed with the two methods element by element
�EF meth /EFEM meth�, for a network with N=400 fibers per
unit area probed on scale � / lc=4.56. The distribution is nar-

row and centered on 1. Likewise, the ACF function C̄E�
�r�

computed with the two sets of moduli, found with the F
method and with the FEM method, are identical �inset to Fig.
10�.

APPENDIX D: OVERVIEW OF THE STOCHASTIC FINITE
ELEMENT METHOD

The Stochastic Finite Element formulation is reviewed in
this Appendix. For a comprehensive overview of the meth-
odology, the reader is referred to the book of Ghanem and
Spanos �32�. Let us consider a two-dimensional domain dis-
cretized into finite elements having the elastic constants in
each element described by a stochastic variable. The strain
energy Ue stored in each element of area Ae can be expressed
as

Ue =
1

2
�

Ae
��x,��T��x,��dAe. �D1�

Here, ��x ,��= ��11 �22 �12�T and ��x ,��= ��11 �22 2�12�T

are the 2D stress and strain vectors, respectively, which are
related through

��x,�� = D�x,����x,�� , �D2�

where

D�x,�� =
E�x,��
1 − v2 �1 v 0

v 1 0

0 0 �1 − v�/2
� �D3�

is the stiffness matrix. For simplicity and compatibility with
the case discussed in the main text, we choose the Poisson’s
ratio v to be a deterministic variable �e.g., a constant� and the
Young’s modulus E�x ,�� to depend on position �a determin-
istic variable� x and a stochastic variable, �. The strain tensor
is related to the displacement field, u�x ,�� through the rela-
tion

��x,�� = ��/�x 0

0 �/�y

�/�y �/�x
�u�x,�� = �u�x,�� . �D4�

and the 2D displacement field can be expressed in terms of
the two-dimensional deterministic finite element shape func-
tions N�x� and unknown nodal displacements d��� as

u�x,�� = N�x�d��� . �D5�

It is noted that the dependence of all fields on the stochastic
variable � follows from their dependence on the stiffness
tensor which is the input stochastic quantity of the problem.

FIG. 10. Probability distribution function of the ratio of element
Young’s modulus EF meth /EFEM meth computed with the fitting
method described in Sec. IV and with the FEM-based method de-
scribed in Appendix C for a network with N=400 fibers per unit
area probed on scale � / lc=4.56. The inset shows the autocorrelation
function of the Young’s modulus evaluated using moduli deter-
mined by the FEM method for the same network. The two sets of
data are spatially correlated in a similar way.
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Let us consider that traction-imposed boundary conditions
are specified deterministically, in the form of tractions T�x�.
The work performed is then written as

W = �
eb

Web = �
eb
�

�eb
T�x�u�x,��d�eb, �D6�

where �eb denotes the portion of the problem domain bound-
ary � corresponding to the boundary element “eb.” Minimiz-
ing the potential energy, �=�eU

e−W, with respect to the
nodal displacements yields the system of equations,

Kd = f , �D7�

where

K = �
e
�

Ae
��x�TD�x,����x�dAe,

��x� = HN�x� ,

f = �
e
�

�e
N�x�TT�x�d�e. �D8�

The Karhunen-Loeve decomposition of D�x ,�� is written
as

D�x,�� = D�x� + �
i=1

��i�i���a�i��x� . �D9�

Substituting Eq. �D9� into Eq. �D8�, one obtains

�
i=0

��i�i���K�i�d = f , �D10�

where

K�i� = ��
e
�

Ae
��x�Ta�i��x���x�dAe, i � 0

�
e
�

Ae
D�x���x�T��x�dAe, i = 0,� �D11�

and �0���=�0=1. Equation �D10� can be rewritten as

�I + �
i=1

��i�i���Q�i��d = g , �D12�

where

Q�i� = K�0�−1
K�i�,

g = K�0�−1
f . �D13�

The vector of unknowns d is sought in the form of a series
of orthonormal chaos polynomials � j������ �32�:

d = �
j

c�j�� j������ . �D14�

A complete discussion of chaos polynomials is given in
�32�. For example,

�1 = 1, �2 = �1, �3 = �1
2 − 1, �4 = �1

3 − 3�1

�D15a�

are among one-dimensional chaos polynomials and

�1 = 1, �2 = �1, �3 = �2, �4 = �1
2 − 1,

�5 = �1�2, �6 = �2
2 − 1 �D15b�

are some two-dimensional chaos polynomials.
Substituting Eq. �D14� into Eq. �D12� and forming the

inner product of the result with � j������ yields

c�m� + �
j

�
i

�ijmQ�i�c�j� = 	g�m������
�, �D16�

where

�ijm = 	�i� j����m���
�. �D17�

The right-hand side and the quantity � can be computed in
closed form, and hence Eq. �D16� is a deterministic system
of equations for c. Its solution, together with Eq. �D14�, pro-
vides the stochastic displacement field which can be used to
derive the first two moments of the solution field throughout
the problem domain. It should be mentioned that, in addition
to the factors affecting the accuracy of the deterministic
FEM solutions, the accuracy of the SFEM solution depends
on the order of chaos polynomials and the number of terms
used in KL decomposition of the problem stiffness matrix
�Figs. 5 and 6�.

�1� P. L. Chandran and V. H. Barocas, J. Biomech. Eng. 128, 259
�2006�.

�2� A. Zoumi et al., Biophys. J. 87, 2778 �2004�.
�3� C. Wang et al., ASME J. Eng. Mater. Technol. 121, 503

�1999�.
�4� A. Zoumi, A. Yeh, and B. J. Tromberg, Proc. Natl. Acad. Sci.

U.S.A. 99, 11014 �2002�.
�5� H. Lodish et al., Molecular Cell Biology �Freeman, New York,

2000�.
�6� T. P. Stossel, Sci. Am. 271, 54 �1994�.
�7� O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, Nature �Lon-

don� 445, 295 �2007�.
�8� P. A. Janmey et al., Nature Mater. 6, 48 �2007�.
�9� C. Storm et al., Nature �London� 435, 191 �2005�.

�10� F. C. Mackintosh, J. Kas, and P. A. Janmey, Phys. Rev. Lett.
75, 4425 �1995�.

�11� H. L. Cox, Br. J. Appl. Phys. 3, 72 �1952�.
�12� J. A. Astrom et al., Phys. Rev. E 61, 5550 �2000�.
�13� X. F. Wu and Y. A. Dzenis, J. Appl. Phys. 98, 093501 �2005�.
�14� F. Leonforte et al., Phys. Rev. B 70, 014203 �2004�.
�15� A. Tanguy et al., Phys. Rev. B 66, 174205 �2002�.
�16� H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.

H. HATAMI-MARBINI AND R. C. PICU PHYSICAL REVIEW E 80, 046703 �2009�

046703-10



Phys. 68, 1259 �1996�.
�17� H. Hatami-Marbini and R. C. Picu, Eur. J. Mech. A/Solids 28,

305 �2009�.
�18� J. Wilhelm and E. Frey, Phys. Rev. Lett. 91, 108103 �2003�.
�19� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev.

Lett. 91, 108102 �2003�.
�20� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E

68, 061907 �2003�.
�21� H. Hatami-Marbini and R. C. Picu, Phys. Rev. E 77, 062103

�2008�.
�22� J. Liu et al., Phys. Rev. Lett. 98, 198304 �2007�.
�23� C. Heussinger and E. Frey, Phys. Rev. Lett. 96, 017802

�2006�.
�24� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E

72, 061914 �2005�.
�25� H. Hatami-Marbini and R. C. Picu, Acta Mech. 205, 77

�2009�.
�26� M. L. Gardel et al., Science 304, 1301 �2004�.
�27� B. Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 103, 13974

�2006�.
�28� K. Falconer, Fractal Geometry: Mathematical Foundations

and Applications �Wiley & Sons, New York, 1990�.
�29� In the “box-counting” method, one considers the object em-

bedded in the n-dimensional space and plots the number of
n-dimensional cubes of side � required to cover the entire ob-
ject versus �. If the object has fractal scaling properties, the
total number N� is a power law of �, i.e., N���−D�, with D�,
the box-counting dimension of the structure, being noninteger.

�30� B. H. Kaye, A Random Walk Through Fractal Dimensions
�VCH Publishers, New York, 1989�.

�31� M. A. Soare and R. C. Picu, Int. J. Numer. Methods Eng. 74,
668 �2008�.

�32� R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A
Spectral Approach �Springer-Verlag, New York, 1991�.

�33� C. Zener, Elasticity and An Elasticity of Metals �University of
Chicago Press, Chicago, 1948�.

HETEROGENEOUS LONG-RANGE CORRELATED … PHYSICAL REVIEW E 80, 046703 �2009�

046703-11


