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Spin dephasing in the dipole field around capillaries and cells: Numerical solution
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We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using
finite differences. The differential equation is either solved directly in time domain as initial-value problem or
in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and
suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the
frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The
solution is compared with the commonly used Gaussian approximation and the strong-collision approximation.
While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly
deviate from the numerical solution for intermediate values of the diffusion coefficient.
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I. INTRODUCTION

In magnetic resonance imaging, cross sections of the ana-
lyzed tissue can be obtained by applying an external mag-
netic field and a radio frequency pulse. The radio frequency
pulse excites the spins in the tissue and the relaxation into
the equilibrium can be measured in an experiment. The re-
laxation process is mainly determined by the dephasing of
the spins in the analyzed tissue. Microscopic magnetized ob-
jects which are embedded in the tissue influence the dephas-
ing and consequently the measured signal. Such objects
which are smaller than the resolution of the obtained image
are, for example, a blood filled capillary or a cell labeled
with magnetic nanoparticles. In the commonly used Krogh
model [1], these capillaries and cells are idealized as cylin-
ders and spheres with reflecting boundary conditions.

The dephasing in a local inhomogeneous field is described
by the Bloch-Torrey equation [2]. This equation is a partial
differential equation with one time and up to three space
variables. As the differential operator for the spatial direc-
tions in nonhermitian, expansion into eigenfunctions is of
limited value and it is hopeless to find an exact solution for
the general case [3]. Analytical solutions have been pre-
sented only for very special cases which are mainly of aca-
demic interest: the Bloch-Torrey equation has been solved
analytically for linear and parabolic field gradients [4,5] and
this solution can be generalized to the case that the field
gradient is time-dependent [6]. However, for the important
cases of dipole fields from cylinders and spheres mentioned
above, no analytical solution is available.

As an exact solution is not possible in most relevant
cases, approximate methods have been developed for the de-
scription of the magnetization decay. Most of theses approxi-
mations focus on a special diffusion regime. In the motional-
narrowing regime the relaxation effect due to the diffusion of
spins is much greater than that due to the susceptibility effect
of the field inhomogeneities [7]. The opposite limit is the
static dephasing regime in which the diffusion of the spins
around the magnetized object is neglected [8]. However, in
many applications of magnetic resonance imaging the under-
lying diffusion regime is neither the motional-narrowing
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regime nor the static dephasing regime but an intermediate
regime. Therefore it was necessary the develop models
which include both diffusion regimes and which describe the
whole dynamic range. Kennan er al. used the Gaussian ap-
proximation to analyze susceptibility contrast mechanisms in
tissues [9]. Another approximation to describe the whole dy-
namic range is the strong-collision approximation which was
used (see Bauer et al. [10,11]) to describe the dephasing in
the capillary network of the myocardium. With this approxi-
mation it was possible to describe the signal decay of the
transverse magnetization by a simple exponential decay
exp(—t/T,), where the transverse relaxation time 75 could be
given in dependence of the properties of the tissue. Later on,
the Gaussian approximation and the strong-collision approxi-
mation were applied to study the nonexponential character of
the signal decay. Sukstanskii and Yablonskiy used the Gauss-
ian approximation to describe the signal formation in the
local magnetic field around cylinders and spheres [12,13].
However, it could be shown that the dephasing exhibits a
non-Gaussian character [3,14]. The strong-collision approach
was used to develop the formalism of the density of states to
describe the effects of diffusion around field inhomogeneities
[15] and to develop generally valid scaling laws for the
transverse relaxation times [16]. Hiirlimann focuses on scal-
ing laws and nondimensional solutions to describe suscepti-
bility effects in porous media in terms of effective gradients
[17,18]. What is missing is a numerical method to solve the
Bloch-Torrey equation which does not rely on simplifications
or idealized assumptions and is not restricted to limiting
cases.

In this paper, we present numerical method that allows
to accurately solve the Bloch-Torrey equation for arbitrary
domains, dimensions, and potentials. The method is applied
to cylinders and spheres, and the results are compared with
the Gaussian approximation and the strong-collision approxi-
mation for various values of the diffusion coefficient. In
Sec. II, we recover the general theory of spin dephasing in
magnetic resonance with particular emphasis on the Krogh
model for cylinders and spheres and briefly introduce the
Gaussian approximation and the strong-collision approxima-
tion. In Sec. III, we describe the discretization of the differ-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.046701

ZIENER et al.

ential operators in real space by finite differences and the
solution of the Bloch-Torrey equation in time and frequency
domain. In Sec. IV, the method is applied to cylinders and
spheres and a comparison is made to the Gaussian and the
strong-collision approximation. Summary and conclusions
are given in Sec. V.

II. GENERAL THEORY

In this section, we introduce the Bloch-Torrey equation
and give explicit expressions for the Krogh model in two and
three dimensions. Furthermore, we briefly review the Gauss-
ian approximation and the strong-collision approximation.

A. Bloch-Torrey equation

We consider a single object in a homogeneous external
magnetic field Bo=Bge.. The susceptibility difference Ay be-
tween the object and the surrounding medium causes a mag-
netization inside the object which gives rise to a local mag-
netic field B(r). The surrounding protons (g=5.585,
g=+1.6022x 107" As, and m=1.6726 X 10727 kg) gyrate
with the local Larmor frequency w(r)=1vyB.(r), where 7y
=gq/2m=2.675x10"% s7! T~! is the gyromagnetic ratio of
a proton. It is customary to decompose the local Larmor
frequency as

o(r) = wW(r). (1)

The frequency shift dw is proportional to yB, and depends
on the susceptibility difference, whereas the dimensionless
potential W(r) is on the order of unity and is solely deter-
mined by the geometry of the magnetized object.

The time evolution of the transverse magnetization of
spins is governed by the Bloch-Torrey equation [2]

%m(r,t) = [DA +i8oW(r)m(r,1), (2)

which describes diffusion with diffusion coefficient D=0
and, at the same time, accumulation of a phase angle due to
gyration. In magnetic resonance imaging the measured signal
is given by averaging over the dephasing volume [8]

M(r) = éf dvm(r,1). (3)
G

The distribution of spins is homogeneous and immediately
after the 90° high-frequency pulse at =0, the phase angle of
each spin is zero. Thus we have the initial condition

m(r,0) =1 4)

and it holds that M(0)=1. In addition, reflecting boundary
conditions apply for the Krogh model, which will be dis-
cussed in the next subsection.

It is convenient, also in view of numerical calculations, to
use the Dirac notation with

(rley=@(r); (r[Wir'y= W(r)or —r");
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(ely= f dv @ (r)i(r). )
G

Then the Bloch-Torrey equation (2) writes as
d L.
d—t|m(t)) =[DA +idwW]|m(1)). (6)

Instead of Egs. (3) and (4), we incorporate the factor 1/G in
the initial condition,

1

m(r,0) =(r|0) = Nk

™)

so that the average magnetization (3) has a symmetric ap-
pearance

M(1) = (m(0)|m(1)). (8)

Importantly, for reflecting boundary conditions (see Sec.
11 B), the operator —A is hermitian and positive semidefinite.
The nondegenerate ground state is given by the expression
(7), and the corresponding eigenvalue is zero.

Mathematically, the Bloch-Torrey equation is an initial-
value problem (or initial-boundary-value problem) of a par-
tial differential operator. The difficulty, analytically and nu-
merically, lies in the fact that the operator is neither
hermitian, as for a Schrédinger equation, nor antihermitian,
as for a diffusion equation.

The Fourier transform of the average magnetization is
defined as

+%0

plw) = %T dte '"M(7), 9)

-0

where the continuation of the signal for negative time argu-
ments is explained as M(—t)=M"(¢). The function p is nec-
essary to describe more sophisticated pulse sequences
[19-22]. To derive a compact expression for p(w), we con-
sider |m*(¢))=0(t)|m(¢)) which obeys the inhomogeneous
differential equation,

d A
() = [DA +is0W]m* (1)) = &0)]0).
that can be solved by Fourier transform,
7t : N+ T . P 1
|7t (w)) = [i(w—10*) = DA — i 6w W] 2—|0>’
w

where 1 is the identity operator and 0* denotes a positive
infinitesimal to ensure analyticity on the lower complex half
plane. As p(w)=2 Re(0|m*(w)), we obtain

p(w) = }TRe(0|[i(w —i0")] = DA —i8wW]'|0).  (10)

In order to numerically calculate p(w) from the above for-
mula, a boundary-value problem has to be solved for each w.
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FIG. 1. Cross-sectional view of a set of parallel capillaries and
sample trajectories of nuclear spins that leave one supply area and
enter the neighboring supply area. The original trajectory is re-
placed by a trajectory that is reflected at the boundary.

Besides
+00
j dop(w)=M(0)=1, (11)
the function p has the important property
p(w) =0. (12)

This can be seen from rewriting Eq. (10) as

() = ~(o(w)[- DA + 0Tl (),

where
lo(w)) =[i(w—i0")] = DA - i6oW]™'|0),

and the positive semidefiniteness of the operator —A. There-
fore, p(w) can be looked upon as probability density of the
frequency distribution. In the static case, when D=0, by vir-
tue of the Dirac identity, expression (10) goes over into

po(w) == j dv S SoW(r)], (13)
G

which is the classical density of states.

B. Krogh model

Krogh’s capillary model [1] is commonly used in medi-
cine to describe physiological effects in the myocardium.
The myocardium of the heart consists of blood-filled capil-
laries with radius R; which are arranged in parallel and form
an almost regular structure, see Fig. 1. It is reasonable to
assign to each capillary an area of tissue that is predomi-
nantly supplied by this capillary. The outer radius is deter-

mined such that
R, )2
=\=, 14
7 ( R, (14)
where 7 is the volume fraction of the blood-filled capillaries.
A diffusing particle, which leaves the supply volume of one
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capillary, enters the supply volume of the neighboring capil-
lary. Exactly the same contribution to the signal would be
produced by a particle that is reflected at the outer boundary
of the supply volume. During the time period of the dephas-
ing process, exchange of water molecules between the cap-
illary and the surrounding tissue is negligible. Therefore, the
diffusion of spins can be modeled by considering coaxial
cylinders with radii R;<R, and reflecting boundaries on
both surfaces.

We shall now specify the terms of the Bloch-Torrey equa-
tion for coaxial cylinders with reflecting boundary condi-
tions. It is useful to employ cylinder coordinates p, ¢, {. Be-
cause of the translational invariance in the axial (¢) direction,
the problem can be reduced to two dimensions. Then the
domain, the volume element, the boundary conditions, and
the Laplacian are given by

Gop={(p.®)IR = p=Ry:0= =27} dv=dddpp

am(p, .t
M:O for p=R, or p=R,
ap
1o o 1 & 1
Az——<p—.>+—2—2=Ap+—2A¢. (15)
pdp\ dp ) p i p

The local magnetic field is derived in [19]. For a tilt angle
U between the cylinders and the external magnetic field, the
frequency shift and potential are

Ax R}
dw= 7780 sin? & Wi(p, ) = ?cos(Zcﬁ). (16)

As W(p,5-¢)=-W(p,¢), it holds that m(p,7—¢)
=m"(p, ¢) and, therefore, M(z) is real.

If the Bloch-Torrey equation is solved on the domain (15),
periodic boundary conditions have to be applied for the co-
ordinate ¢. As the potential is periodic in the argument ¢
with period 7 and symmetric around ¢=0 and ¢=7, the
coordinate ¢ can be restricted to 0=¢=7 with reflecting
boundary conditions on both ends.

Likewise, the spin diffusion around magnetically labeled
cells can be described by a concentric spherically dephasing
volume with reflecting boundary conditions. The relation be-
tween the radii and the volume fraction is

_(R:Y
”‘(Rz) ' (a7

In the case of spheres, spherical coordinates r,&
=cos 0, ¢ are suitable for the problem. Because the system
possesses rotational symmetry around the magnetic field (z)
axis, there is no dependence on the angle ¢ and, mathemati-
cally, the problem is only two-dimensional. The domain, the
volume element, the boundary conditions, and the Laplacian
are given by

G,={re)[Ry=r=Ry;—-1=e=+1}; dv=dedrr’
om(r,e,t)
0"—:0 for r=R, or r=R,
,
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J 19 1% 1
l— )+ S5—|(0-5)—.|=A,+5A,.
(r &r) rz&s[( 8)&8:| TR

(18)

ol =
Sy

The frequency shift and potential for a magnetic sphere are
[19]
3

.
bo=y; By Wre)=3(sl-1).  (19)

3+x
This time, the potential is not an odd function of & and M(z)
is complex. As (1-g&2)dm/de vanishes at = = 1, reflecting
boundary conditions apply also for the coordinate & (cf. Sec.
III). Because W(r,—g)=W(r,¢), the coordinate & can be re-
stricted to 0=e=1 with reflecting boundary conditions on
both ends.

C. Gaussian approximation
An equivalent formulation for the average magnetization
(8) is [23]
M(ty = 1)) = (W7 (1) V(1))

V(1) = exp{i&oftdt’ﬂ(t’)] . (20)

0

Here, ({---)) denotes the statistical average and
Q1) = o[R(1)] (21

is a stochastic process, where R(r) is the realization of a
random walk with diffusion coefficient D in the domain G
subjected to reflecting boundary conditions.

If the stochastic process is assumed to be Gaussian which
is adequate in the motional-narrowing regime and for short
times [24], then, as shown by Anderson and Weiss [25], M is
entirely determined by the two-point correlation function and

it holds that
t 4
M(1) =exp —J dt’J dr'K(") |;
0 0

K(ty — 1) = ({Q() Q1)) (22)

The Gaussian approximation considerably simplifies the
calculation, as the two-point correlation function follows
from a diffusion equation [26,27]

K(1) = (8w)*L(|1))

L) =wO)w) for 1=20: L)=L(r)
& (o) = DAW): <r|w(o>>=%, (23)

with reflecting boundary conditions for w(r, ) which is much
easier to solve than the original Bloch-Torrey equation. Im-
portantly, as L(z) is real, the average magnetization in Gauss-
ian approximation is always real.

Instead of solving a diffusion equation in time domain, L
can be expressed by the eigenvalues kﬁ and eigenstates |n) of
the operator —A according to
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2 0=k<k=- =k

n

L(t) = X e P (nlw(0))
n=0

(24)

For cylinders and spheres, the calculation of L reduces to an
eigenvalue problem of an ordinary differential operator [28].
Because of (0|w(0))=0, the term with n=0 does not contrib-
ute to the sum. Therefore, it holds that L(r) —0 as D|t|—
and for large values of D|z|, the average magnetization shows
a linear exponential decay.

The solution in Gaussian approximation could be simpli-
fied further by changing to the variable u=Dt. Then, after L
as function of u# was calculated once for a geometry under
consideration, M () would be known for each D and dw.

For D=0 it holds that L(f)=L(0)={w(0)|w(0)) and the
average magnetization and frequency distribution are known
analytically:

M(t) = o 1/2(50)°L(0)

w2
) 2(50)’L(0)
pole)= V2m(80)?L(0) 25

Thus, for D=0, the frequency distribution is always a Gauss-
ian, independent of the particular form of the potential W,
and the width of the distribution, characterized by the second
moment, is the same as for the classical density of states
(13). This shows a principal limitation of the Gaussian ap-
proximation.

From the explicit expressions (16) and (19) it follows
that:

LRz L
L(O)‘2<R2> =7 (26)

in the case of cylinders and

3
w5 e
2

in the case of spheres.

In the representation (20), the magnetization fulfills
M(0)=1 and, by virtue of the Wiener-Khintchine theorem,
its Fourier transform which is the spectral function of the
stochastic process is nonnegative. In the Gaussian approxi-
mation, an assumption is made only on the stochastic process
(21), while the general representation (20) remains un-
changed. In fact, as already noticed by Anderson and Weiss
[25], it is possible to generate a Gaussian stochastic process
for a given autocorrelation function, e.g., for expression (24).
Therefore, also in the Gaussian approximation p(w) has the
properties of a probability density.

D. Strong-collision approximation

In the strong-collision approximation, the frequency dis-
tribution is approximated as [15]
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1 1 dv B
p(w)=—Re| | = e
™ G

GJol +i[w— SwW(r)]

(28)
where the correlation time is given by [29]
T= <<:}||—::>> (29)
and u(r) is the solution of the boundary-value problem
— DAlu) = |w) (30)

with reflecting boundary conditions. The approximate result
(28) is equivalent to replacing the operator —DA in Eq. (10)
by (1-]0)(0|)/ 7. Therefore, the relations (11-12) are also ful-
filled in the strong-collision approximation. In essence, the
function (28) equals the density of states (13), subjected to a
lifetime broadening of width 1/7.

In a recent work [15], we evaluated Eq. (28) for cylinders

and spheres yielding
<1+i7'w> <1+i7'w)
H - nH
NToW TOW

) l+itw l+itw)’
(1-n+itw)-H + nH
NToéW TOW

(31)

plw) = IRe

with the correlation time

R}
=—k(n).
=7 (m)

The functions H and k take the form

1 1 In 7y
Ho)=\1+; kip=-
W=+ 5 Km=3 7]

for cylinders and

1 2 1—ix 21 1—ix
Hx)==—+~— 1 — — ]arccoth :
3 3 3 X 3

! [1 s A=) +92n- 7" - 7]1/3)]
-n"+
2(1-m) 7 36(7°3 - 1)
for spheres.

k(n) =

III. NUMERICAL SOLUTION

In this section we derive discretization schemes in space
and time for the numerical solution of the diffusion equation
(23), the Bloch-Torrey equation in time domain (6), and in
frequency domain (10) for the geometries introduced in Sec.
I B.

We mention that the numerical method is not restricted to
these particular cases; numerical solutions can be obtained
for arbitrary domains and boundary conditions. For example,
one could study the validity of the Krogh model by solving
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the Bloch-Torrey equation for a periodic array of cylinders
or spheres. Furthermore, other kinds of boundary conditions,
e.g., relaxing or permeable boundary conditions, discussed
in the context of the Bloch-Torrey equation [3], can be
incorporated.

The discretization of the Laplacian in Cartesian coordi-
nates is straightforward, and recipes can be found in the lit-
erature (see, e.g., [30,31]). This would be the method of
choice for irregular domains. However, for the domains un-
der consideration (15, 18), it is favorable to employ plane
polar or spherical coordinates, respectively, which is more
efficient, but also more theoretically demanding.

For the numerical solution, it is convenient to change to
dimensionless quantities. We set R1=D+R%5w=1, ie.,
lengths and times are given in units of R; and R%/
(D+R%5w), respectively. This choice is preferable over R,
=D=1 or Ry=dw=1 which are not applicable in both limits
D=0 and 6w=0.

A. Discretization in real space

In order to numerically solve the initial-value problems
(23,6) or the boundary-value problem (10), the Dirac vectors
and operators are converted into vectors and matrices. A ma-
jor advantage of the discretization in real space is the fact
that local potentials and differential operators result in sparse
matrices where the number of nonzero matrix elements
scales linearly with the matrix dimension. The method of
finite differences is explained in a number of textbooks, e.g.,
[32,33].

A state | ) is represented by an n-dimensional vector ¢ of
function values at discrete points r;

e=(@i=1,. s =y k=1,....n. (32
Here, we shall only give explicit expressions for cylinder
coordinates; the derivation for spherical coordinates is com-
pletely analogous.

To preserve the rectangular structure of the domain and
the orthogonality of the curvilinear coordinates, we define a
grid as a product of equally spaced one-dimensional grids
according to

R,-R
=R+ (= Dhy i=1ny hy=—r—t
p
. ; /2
¢j=(]_l)h¢; ]=1,...,}’l¢; ]’l¢—
l’l¢,—1
ri=(ppd); k=(i-Dng+j; k=1,....n; n=nyng.

(33)

Here, hp and h, are the mesh sizes and n, and n, are the
number of mesh points for the p and ¢ direction, respec-
tively. We already took into account the symmetry condition
at ¢p=17/2 and restricted the ¢ interval to [0, 7/2].

The scalar product (5) with the volume element (15) [or
Eq. (18), respectively] is approximated as
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(¢|) = ¢"hGp, (34)

where the superscript { denotes the hermitian conjugate,
h=h,hy, and the diagonal matrix G contains the weights for
the numerical integration by the trapezoidal rule

Ekk' = 5ii'5jj'gp,ig¢,j

p; for i=2,...,np—l
gp,i= 1 f =1
5 Pi or 1= ,np

G = (g )kx=1...n5

1 forj=2,...,n¢—1
= 35
L {% for j=1,n4. (35)

Importantly, the weights are products of weights for the in-
dividual directions.

In the formalism introduced, the equation |)=A|¢) trans-
lates into y¥y=A ¢, where A is the matrix representation of the

operator A. The conversion of the local potential W into a
matrix is straightforward and leads to a diagonal matrix

W=Wudiw=t,.ns Wi = G Wiry). (36)
The matrix representation of the Laplacian (15) [or Eq. (18),
respectively] can be decomposed as

A= (Akk')k,k'=1,...,n§ Ay =A

1
p,ii’ 5”/ + @Z’EA‘AU’ .

l

(37)

The remaining task is to find the discretization of the one-
dimensional Laplacians A, and Ay (15) [ or A, and A, (18),
respectively |. For this purpose, we consider a scalar variable
\ in a one-dimensional domain [A,,A,] with a scalar prod-
uct

Ay
(elpy=|  dgMe"MgN); g >0
Ay
for
N e [ALAL] (38)
a general Laplacian of the form
1 d d
A=———|k(N)—.|; k(\)>0 for N e (A},A,),
g()\)d)\{()d)\] (N) or Ne(ALAy
(39)
and reflecting boundary conditions
kN’ (N)=0 for A=A, or A=A, (40)

for the functions under consideration. It is important to note
that a reflecting boundary condition can also mean that
k(N\)=0 as for spherical coordinates (18) at e=* 1.
The general Laplacian with reflecting boundary condi-
tions has the important properties
Ay
(gl=Ag)y=[ Ak Ny’ (N)

Ay

= (- Ag|4h);
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Ay
f dhg(N)Ap(N) =0. (41)
Al

The first line is known as hermiticity and the second line can
be interpreted as conservation of the number of particles.
Furthermore, it holds that

Ay
(gl-2@)= | @k’ M =0
Ay
Ap(N\)=0 if and only if ¢(\)=const. (42)

This means that —A is positive semidefinite and that the
ground state is nondegenerate and given by a constant func-
tion.

Suppose the interval [A,A,] is represented by a uniform
mesh

A=A
N=Aj+G-Dh; i=1,....n; h=—"21 (43)
and the scalar product and the particle number are approxi-
mated by the trapezoidal rule

(el =h2 gio;
i=1

Ay n
f dhgN)e(\) =h2 gig;

A i=1

(44)

i

%g()\i) for i=1,n
g\,) for i=2,...

Then the properties (41) and (42) of the general Laplacian
translate to

n—1.

giAij: ;igj
2 giAij: 0 (45)
and
-2 i Ay =0
L]
ZAij¢j=0 if and only if ¢;=--=¢, (46)
J

for the matrix representation A=(A;); ;o1 -
To determine the matrix elements A;; we use a second-
order difference scheme, which yields

L ki1p@ (Niv12) = ki@ (Nizy )

A =
(Ag); 200 P
Nt) = o ) = o0\
®'(Nip1p) = w; ®'(Ni_1p) = %QD(I)
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Lkipeii - (kiciip + kis12) @i+ kiv1p®Pist
8 K

1

(Ag);=

for the inner points i=2,...,n—1. Here, k;~,=k(\;=;») and
the \;+,, are defined in the same way as the \;. As result, the
one-dimensional Laplacian is represented by a tridiagonal
Matrix A whose nonvanishing elements in the rows 2 to
n—1 are given as

i=2,...,n—1 (47)

Now we employ the conditions (45) to determine the remain-
ing matrix elements leading to

Ap=-—B Ap=—-b
11 : ]’l2 12 g hz
1 kn—1/2
An,n—l = h2 >
1k
A, =-—-212 (48)

Formally, the expressions are the same as for the inner points
(47) if we define k_;;p=k,,1,,=0.

The resulting difference scheme is consistent, i.e., in the
limit 2 — 0, the approximation (A¢); approaches the exact
value Ap(\;). Furthermore, the conditions (45) and (46) are
fulfilled also for finite step size. This can be seen from the
explicit expressions of the A;; and from

2
Pi— Pi-1
h

n
- gipi A= > ki
i i=2

Even though the ground state of the matrix —A is known
analytically, it is a good idea to numerically verify that the
lowest eigenvalue is zero with sufficient accuracy in order to
prevent numerical instabilities or spurious solutions. The ei-
genvalue problem

=EgmD
(49)

A =EVGD: =0, n-1; EO= ...

for the nonsymmetric matrix —A is not ideally suited for
numerical computation. Multiplication from the left with G
leads to the generalized eigenvalue problem
—GAP =EVGe?; VG = &,

with —GA symmetric and G symmetric and positive definite,
for which standard procedures are readily available. As G
is diagonal, the problem can be simplified further by intro-
ducing G*"?=diag(g;"?,...,g,; ") and substituting o
=G"?¢". Then the equation
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_GHPAGT 20 = EVyD: gty = 5, (50)

is an ordinary eigenvalue problem for the symmetric tridi-
agonal matrix —~G*>2AG~""2, perfectly suited for numerical
computation.

B. Solution of the diffusion equation

In the Gaussian approximation, the diffusion equation
(23) has to be solved numerically. The solution of the diffu-
sion equation (or, equivalently, the heat-flow equation) is
quite simple and is described in a number of textbooks, e.g.,
in [32,33].

According to the results from the last Subsection, Eq. (23)
goes over into

%w(t) =DAw(t) (51)

and the solution is easily performed using the explicit Euler
scheme,

w(t+h)=w(t) + hb,DAw(z). (52)
As the matrix A is sparse, only O(n) floating-point opera-
tions are required per time step.
The propagation scheme (52) is stable if the stability
criterion

h, (53)

S —

DijA]
is fulfilled. The spectral norm of A which is the largest ei-
genvalue in magnitude is given by

1
A= [lall+ ;%IIAgbII (54)

and [|A || and [|A 4] can be evaluated numerically solving Eq.
(50). To be on the safe side, we choose

2
h,=0.9 X —/—.

=0 Dlal o
Consistency of the difference scheme and stability entails
that the numerical solution approaches the exact solution as
the mesh size in space goes to zero. Thus, besides a suffi-
ciently fine mesh, no further care is necessary to ensure
accuracy of the solution.

From the solution w(z) it is straightforward to calculate
the two-point correlation function by L()=w(1)hGw(?). In
order to reduce errors induced by the numerical integration,
instead of Eq. (23), we choose the initial condition

Wk(()) =const X Wkk?
where the constant is chosen such that
w'(0)hGw(0) = L(0)

with the exact values of L(0) from Eq. (26) [or Eq. (27),
respectively]. For spheres, (0|w(0))=0 is not strictly fulfilled
when the integral is calculated by the trapezoidal rule. There-
fore, we replace the potential (19) by
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TABLE I. Physical and numerical parameters. For cylinders,
(ny,ny)=(n,,ny); for spheres, (ny,ny)=(n,,n,).

R, R, D Sw
Dim. (um) (um) (um?/ms) (1/s) n; ny
2 5 11.18 0 1000 1281 1601
2 5 11.18 1 1000 41 51
2 5 11.18 2 1000 41 51
2 5 11.18 5 1000 41 51
2 5 11.18 10 1000 41 51
3 5 8.55 0 1000 1281 1601
3 5 8.55 1 1000 41 51
3 5 8.55 2 1000 41 51
3 5 8.55 5 1000 41 51
3 5 8.55 10 1000 41 51

R3
Wkk = r_;(C?)sz - 1),

where ¢ is close to unity, and is adjusted such that
u'hGw(0)=0 with u,=1 for each k.

C. Solution of the Bloch-Torrey equation in time domain

The Bloch-Torrey equation (6) corresponds to the matrix-
vector equation

d

Zm(t) = (DA +i6wW)m(r). (56)
To obtain an explicit scheme, we modify the Euler step (52)
as follows:

m(t+ ht) - el/2ih,§wW(I+ thA)el/2ih’5me(l‘), (57)

where I denotes the identity matrix. As the matrix W is di-
agonal [see Eq. (36)], its exponential is also diagonal and
only O(n) floating-point operations are required per time
step.

This time, stability alone is not sufficient, as numerical
errors also result from the noncommutativity of the matrices
W and A. Therefore, instead of Eq. (55), we use a smaller

time step
1
DA]  Swl|W

09 x2 €

ht= ’ (58)

where ||W||=max;/Wy| and the small positive dimensionless
parameter € is determined experimentally.

From the solution m the average magnetization is calcu-
lated as M(f)=m"(0)hGm(r). To reduce errors from the nu-
merical integration, instead of directly discretizing the initial
state (7), we assign

my(0) = const
and the constant is chosen such that

m'(0)hGm(0) = M(0) = 1.
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FIG. 2. Average magnetization M(¢) in the case of cylinders for
R,=5 um, R,=11.18 um, Sw=1000 s~!, and various values of
the diffusion coefficient D=0, 1, 2, 5, and 10 ,umz/ ms (from bot-
tom to top). Solid line: full numerical solution, dashed line: Gauss-
ian approximation, and dotted line: strong-collision approximation.

D. Solution of the Bloch-Torrey equation
in frequency domain

In the finite-difference scheme the expression for the fre-
quency distribution (10) translates into

p(w)= iRe{hm*(O)G[i(w —i0Y)I — DA —i6wW] 'm(0)}.

(59)

The application of an inverse matrix is equivalent to solving
a set of linear equations, which has to be performed for each
frequency w. As the matrix has a finite bandwidth, 2n4+1 for
the arrangement of indices (33), solution by direct methods
for matrices with limited bandwidth is feasible. Iterative
methods for irregularly sparse matrices, commonly used in
the solution of partial differential equations, could be more
efficient, but are much more difficult to use.

For D> 0, the matrix iwl — DA—-idwW is regular for each
o and the positive infinitesimal is dropped. For D=0, the
positive infinitesimal 0" has to be replaced by a finite value
y>0 which plays the role of the inverse lifetime and results
in a Lorentzian broadening of the density of states. In this
case, the coefficient matrix is diagonal and the finite-
difference solution is known explicitly and given by a sum of
Lorentzians. The numerical solution for D=0 is not of much
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FIG. 3. Frequency distribution p(w) in the case of cylinders for
Ry=5 um, R,=11.18 um, Sw=1000 s~!, and various values of
the diffusion coefficient D=0, 1, 2, 5, and 10 ,u,mz/ ms (from bot-
tom to top). Solid line: full numerical solution, dashed line: Gauss-
ian approximation, and dotted line: strong-collision approximation.

practical interest. However, comparing the numerical solu-
tion for D=0 with an analytical solution or a solution from a
different numerical method is helpful for checking for con-
vergence with respect to the mesh size.

IV. RESULTS

The average magnetization and the frequency distribution
were calculated numerically for cylinders and spheres by
solving the Bloch-Torrey equation both in time domain and
in frequency domain as explained in Secs. III C and III D,
respectively. We numerically verified that the solutions of the
initial-value problem and the boundary-value problem are
equivalent by Fourier transform. For D >0, solution in time
domain was generally faster. As no field indices have to be
reordered, it is also much easier to use and, therefore, the
preferred method. A numerical solution of the Bloch-Torrey
equation for D=0 is not of practical interest, but was
performed to make a comparison to the exact solution.

The average magnetization and the frequency distribution
were also calculated in the Gaussian approximation. The nu-
merical solution of the diffusion equation according to Sec.
III B was much faster than of the original Bloch-Torrey
equation, as no Schrodinger term was involved and the time
step could be chosen as the maximum possible value allowed
by the stability criterion (55). For D=0, there is nothing to
do, as w(r,1) =w(r,0) and the solution is known analytically

PHYSICAL REVIEW E 80, 046701 (2009)

5
D:1Oum2/ms
4
2
D =5 um“/ms
3 _—e ...
— D =2um“ms
s u
= S
2 N —— T
2
e D =1pum“ms
N
N
N T
1 ~—— e T
\
N\ D=0
\
N
\\
0 — T T 1
0.00 0.01 0.02

t[s]

FIG. 4. Average magnetization |M ()| in the case of spheres for
R;=5 um, R,=8.55 um, Sw=1000 s~!, and various values of the
diffusion coefficient D=0, 1, 2, 5, and 10 ,u,mz/ms (from bottom to
top). Solid line: full numerical solution, dashed line: Gaussian ap-
proximation, and dotted line: strong-collision approximation.

[see Eq. (25)]. Nevertheless, we performed a full numerical
solution also for this case to check the accuracy of the nu-
merical time integration in Eq. (22). Furthermore, we make a
comparison to the strong-collision approximation, where the
solution is given by Eq. (31).

In the myocardium of the heart the volume fraction 7
corresponds to the so-called regional blood volume (RBV
~10+20%). The capillaries have a diameter of about
10 wm and the surrounding tissue has a diffusion coefficient
of about 1 wm?/ms [11]. The frequency shift dw is propor-
tional to the susceptibility difference Ay which is influenced
by the blood oxygenation level or the concentration of the
intravasal contrast agent and takes values in the order of
Ax=1077+107% [11]. To compare the results for cylinders
and spheres we choose the same parameters for the case of
spheres, since typical parameters of magnetically labeled
cells are in the same range [15,34].

Table I shows the geometrical and physical parameters,
for which calculations have been performed numerically, to-
gether with the number of mesh points, for which conver-
gence was verified. The values for the inner and outer radii
were chosen such that the volume fraction 7 (14, 17) is equal
to 0.2, both for cylinders and spheres. In the solution of the
boundary-value problem for D=0, a finite line broadening
y=1 s7! was introduced both for cylinders and spheres. In
the solution of the initial-value problem of the Bloch-Torrey
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FIG. 5. Frequency distribution p(w) in the case of spheres for
Ry=5 um, R,=8.55 um, Sw=1000 s~!, and various values of the
diffusion coefficient D=0, 1, 2, 5, and 10 ,u,mz/ms (from bottom to
top). Solid line: full numerical solution, dashed line: Gaussian
approximation, and dotted line: strong-collision approximation.

equation, sufficient accuracy was achieved when the param-
eter € in Eq. (58) was chosen to be 1073. All calculations
were performed with double precision. For the initial-value
problem we verified that the lowest eigenvalue E© of the
matrix —A in Eq. (50) fulfills |[E©|z,,, <1, where f,,, is the
time span for which the solution was calculated.

With increasing values of D, the line broadening in-
creases, the mesh can be made coarser, and the computing
time is significantly reduced, as not only the matrix dimen-
sion becomes smaller, but the step size (58) can also be made
larger as ||A| becomes smaller. For D=1 um?/ms, the solu-
tion of the initial-value problem was done within minutes, so
for larger D we did not try to find the minimum number of
mesh points. Actually, for matrix dimensions (41X51)
X (41X 51) one could even employ methods for full
matrices.

In Fig. 2, the average magnetization M is shown as func-
tion of time ¢ in the case of cylinders for the parameters
specified in Table I. The full numerical solution (solid line) is
compared with the solution in the Gaussian approximation
(dashed line) and the strong-collision approximation (dotted
line).

The Bloch-Torrey equation and the diffusion equation
were solved in time domain. For the strong-collision ap-
proximation, the expression (31) was Fourier-transformed
numerically.

For D=0, the average magnetization exhibits a square-
exponential decay in the short-time limit. However, the func-
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tion becomes negative for intermediate times. In the long-
time limit, the average magnetization shows an oscillatory
behavior with slowly decaying amplitude. In contrast, the
Gaussian approximation shows a square exponential decay in
the whole time range, as seen from the analytical expression
(25). As expected, the Gaussian approximation is accurate in
the short-time limit, but totally fails for intermediate and
large times. The strong-collision approximation becomes ex-
act for D=0, as p(w) goes over into the classical density of
states (13). There is no visible difference between the full
numerical solution and the solution in the strong-collision
approximation which means that the numerical accuracy is
sufficient.

With increasing values of the diffusion coefficient, up to
about D=2 ,u,mz/ms, the minimum of the exact solution be-
comes sharper and occurs at shorter times. For larger values
of D the minimum becomes less pronounced, it shifts to the
right. Eventually, for large values of the diffusion coefficient,
the minimum completely disappears and M(r) decreases
monotonously.

In the Gaussian approximation, the average magnetization
is always positive, as can be seen from expression (22). The
decay becomes slower with increasing values of D and goes
over from square exponential to linear exponential. Only in
the limit of large D, there is reasonable agreement between
Gaussian approximation and exact solution in the whole time
range. The strong-collision approximation qualitatively be-
haves like the exact solution, but the minimum of the signals
for intermediate D is much less pronounced. In fact, starting
from D=1 um?/ms, the strong-collision approximation is
closer to the Gaussian approximation than to the exact solu-
tion and lies between the exact solution and the Gaussian
approximation for intermediate D. For large D, starting
somewhat below D=5 um?/ms, the Gaussian approxima-
tion is closer to the exact solution than is the strong-collision
approximation.

The corresponding frequency distribution is shown in Fig.
3. Here, the Bloch-Torrey equation was solved in frequency
domain and we verified that the solution is equivalent to that
of Fig. 2 by Fourier transform. For the diffusion equation,
the solution has been calculated in time domain and then
Fourier-transformed numerically. The solution in the strong-
collision approximation is given by the analytical expres-
sions (31).

As M(¢) is real and symmetric, the function p(w) is sym-
metric. For D=0, the full numerical solution and the strong-
collision approximation coincide, except for the very neigh-
borhood of a maximum. The reason is that for the strong-
collision approximation which becomes exact for D=0 no
numerical lifetime broadening y was introduced. These
peaks are not at all found in the Gaussian approximation,
where the frequency distribution is a Gaussian (25).

For intermediate values of the diffusion coefficient, D
=1...2 ,umz/ ms, the exact solution still exhibits two pro-
nounced maxima. These maxima are somewhat flattened, but
their distance is larger than for D=0. Thus, in contrast to the
strong-collision approximation, the behavior of the exact so-
lution cannot be explained by a mere increase of the damp-
ing rate. For the strong-collision approximation, the mini-
mum disappears much faster than for the exact solution;
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starting at about D=2 um?/ms, the two peaks have mold to
a single maximum and the strong-collision much closer re-
sembles the Gaussian approximation than the exact solution.

For large D, the minimum also disappears for the exact
solution, and both the Gaussian approximation and the
strong-collision approximation slowly converge towards the
exact solution. In the limit D — o, the frequency distribution
goes over into a Lorentzian.

The functions |M(#)| and p(w) in the case of spheres are
shown in Figs. 4 and 5, respectively. For the exact solution
and the strong-collision approximation, the average magne-
tization is complex and, therefore, the frequency distribution
is not symmetric, in contrast to the Gaussian approximation.
Otherwise, the same phenomena are observed as for cylin-
ders. In the Gaussian approximation, the density of states for
D=0 is a Gaussian and goes over into a Lorentzian in the
limit D — . The Gaussian approximation becomes exact for
D — o, but totally fails for D—0. The strong-collision ap-
proximation is exact in both limits, but for D — o0, the con-
vergence is slower than for the Gaussian approximation. For
intermediate values of the diffusion coefficient, none of the
approximations closely resemble the exact solution.

The results in this section where obtained using specific
lengths, frequency shifts, and diffusion coefficients. It is also
interesting to look for non-dimensional solutions of the
Bloch-Torrey equation, as was done by Hiirlimann in another
context [17]. As the geometry (radii R, and R,) is basically
fixed, the free parameters which can be changed in an ex-
periment are dw and D (by variation of the field strength or
the temperature). As discussed at the beginning of Sec. III,
there are two choices for introducing dimensionless quanti-
ties. A time scale can either be defined by the characteristic
dephasing time 7;=1/dw or by the characteristic diffusion
time 72=R%/ D. Then, for a given geometry, a catalog of so-
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lutions can be produced depending only on the dimension-
less time t/7; (or t/7,) and the dimensionless parameter
7'2/ ’TI=R%5(1)/D.

V. SUMMARY AND CONCLUSIONS

In this paper, we developed a numerical method to solve
the Bloch-Torrey equation in time and frequency domain us-
ing finite differences. Especially the solution in time domain
is highly efficient, flexible, and easy to use.

As an example, we considered the important cases of cyl-
inders and spheres, commonly used as idealizations for
blood-filled capillaries and magnetically labeled cells. The
results were compared with the Gaussian approximation and
the strong-collision approximation. The Gaussian approxi-
mation becomes exact in the short-time limit and in the limit
of large diffusion coefficients; otherwise it leads the wrong
results, even qualitatively. The strong-collision approxima-
tion becomes exact both in the limit of small and large dif-
fusion coefficients, but in the latter case the convergence is
slower than for the Gaussian approximation. For intermedi-
ate values of the diffusion coefficient, the strong-collision
only qualitatively resembles the exact solution. Thus a full
numerical solution is the only way to study the magnetiza-
tion decay in the intermediate regime.
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