
Bulk and surface magnetoinductive breathers in binary metamaterials

M. I. Molina,1 N. Lazarides,2,3 and G. P. Tsironis2,3

1Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
2Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

3Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 2208, 71003 Heraklion, Greece
�Received 27 May 2009; revised manuscript received 24 July 2009; published 15 October 2009�

We investigate theoretically the existence of bulk and surface discrete breathers in a one-dimensional mag-
netic metamaterial comprised of a periodic binary array of split-ring resonators; the two types of resonators
used have different resonant frequencies caused by unequal slit sizes. We use the rotating-wave approximation
and construct several types of breather excitations both for the energy-conserving as well as dissipative-driven
case; we corroborate these approximate results trough numerically exact computations. We demonstrate that
discrete breathers can appear spontaneously in the dissipative-driven system as a result of a fundamental
instability.
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I. INTRODUCTION

Discrete breathers �DBs� or intrinsic localized modes, are
time-periodic and spatially localized excitations that may be
produced generically in discrete arrays of weakly coupled
nonlinear elements �1,2�. A large body of theoretical work
has produced means of precise numerical analysis of coupled
oscillator systems with breathers both in the Hamiltonian as
well as dissipative regimes �3–7�. Breathers have been ex-
perimentally observed in several diverse systems, including
optical waveguides �8�, solid-state systems �9,10�, antiferro-
magnetic chains �11�, Josephson-junction arrays �12�, and
micromechanical oscillators �13,14�. Discrete breathers can
be generated spontaneously in a lattice either through sto-
chastic �15,16� or by purely deterministic mechanisms
�17–20� in a process by which energy, initially evenly dis-
tributed in a nonlinear lattice, can be localized into large
amplitude nonlinear excitations. Indeed, it has been demon-
strated experimentally �13,20� that the standard modulational
instability �MI� mechanism in dissipative systems driven by
an alternating term can initiate that process through the for-
mation of low-amplitude breathers. The energy exchange be-
tween low-amplitude DBs favors the higher-amplitude ones,
resulting eventually in the formation of a few high-amplitude
DBs.

Recently, a new class of artificially structured materials,
referred to as metamaterials, was discovered; the latter is
comprised of discrete elements and exhibit electromagnetic
properties not available in naturally occurring materials. A
subclass of those metamaterials, the magnetic metamaterials
�MMs�, exhibit significant magnetic properties and negative
magnetic response up to terahertz �THz� and optical frequen-
cies �21,22�. The most common realization of a MM is com-
posed of periodically arranged electrically small subwave-
length particles, referred to as split-ring resonators �SRRs�
�23,24�. In its simplest form, each of the resonators is a
highly conducting metallic ring with a slit. The MM thus
built can become nonlinear either by the insertion of a non-
linear dielectric �25� or by connecting a nonlinear electronic
component �e.g., a varactor diode� �26,27� across the gap of
each SRR, resulting in voltage-dependent SRR capacitance.

In microwave frequencies, such a MM has been realized �28�
and is dynamically tunable by varying the input power. In a
metamaterial where discreteness and nonlinearity are
present, excitations of the type of discrete breather may
form. Recent work in one and two-dimensional metamaterial
lattices has shown existence and stability of DBs in nonlinear
SRR-based MM models; the latter my be localized either in
the bulk �29,30� or at the surface �31� of the MM. Addition-
ally, domain walls �32� as well as envelope solitons �33� may
be excited in these systems. We note that surface DBs in
MMs are similar to surface modes observed in discrete
waveguide arrays �34,35�.

The focus of the present work is in binary MMs consti-
tuted of two types of nonlinear SRRs, each with different
electrical properties, that interact inductively and form a one-
dimensional �1D� lattice. We investigate units with cubic
nonlinearity, although the results do not change qualitatively
for other types of nonlinearity. A binary nonlinear SRR lat-
tice may lead to the observation of phase-matched paramet-
ric interaction and enhanced second-harmonic generation
�36�. In practice, a binary MM can be constructed in many
different ways, by changing for example one or more of the
material and/or the geometrical parameters of the SRRs be-
longing to one type �say type a�, with respect to the same
parameters of the SRRs belonging to the other type �say type
b�. Here we allow for different slit widths in the two SRRs
leading to resonance frequency mismatch �RFM�. The con-
sidered binary MM is formed by type a SRRs at the even-
numbered sites and type b SRRs at the odd-numbered sites
of a periodic 1D array. In the next section we give the model
equations that describe the dynamics of the binary MM and
we obtain the corresponding linear dispersion relation for
magnetoinductive waves in that medium �37,38�. In Secs. III
and IV we use the rotating-wave approximation �RWA� and
construct several types of Hamiltonian as well as dissipative
breathers �DDBs�. The linear stability of the DBs is dis-
cussed in Sec. V where the full model equations are inte-
grated numerically. In most of the investigated cases the nu-
merics confirm the quality of the RWA results. We also
demonstrate the possibility of spontaneous generation of
DDBs induced through MI by using frequency chirping of
the driving field. This is the same procedure used for the
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experimental generation of high-amplitude DDBs in micro-
mechanical cantilever oscillator arrays �13� and thus may be
also used in experiments involving nonlinear binary MMs.
Finally, in Sec. VI we conclude.

II. MODEL BINARY METAMATERIAL AND LINEAR
DISPERSION

Consider a 1D SRR-based MM comprised of nonlinear
units shown schematically in Fig. 1. Each nonlinear SRR in
the array can be mapped to a nonlinear resistor-inductor-
capacitor �RLC� circuit featuring self-inductance L, Ohmic
resistance R, and nonlinear �voltage-dependent� capacitance
C��E�2�����Eg�2�, where � is the field-dependent permittivity
of the infilling dielectric, E is the electric field, and Eg is the
electric field induced along the SRR slit. We assume that the
latter originates from an alternating magnetic field that is
applied to the MM perpendicularly to the SRR planes, and it
is proportional to the voltage U across the slit.

Let us for the moment ignore the nonlinearity and set C
=Cl, with Cl is the linear capacitance that is built up across
the slit. Just like an RLC resonator, the SRRs exhibit an
inductive-capacitive resonance at frequency �R�1 /�LCl
�for R�0, implying low Ohmic losses�. For a circular SRR
with circular cross section, the parameters L, R, and Cl of the
equivalent RLC circuit can be estimated from the relations
�21�

L = �0r�log	16r

h

 − 1.75�, Cl = �0�l

�h2

4d
, R =

8�r

h2

�1�

where �0 and �0 are the permittivity and permeability in
vacuum, respectively, �l is the linear relative dielectric per-
mittivity of the infilling dielectric, r is the average SRR ra-
dius, h is the diameter of the metal wire, d is the slit width of
the SRR, and � the �material-dependent� SRR resistivity.
Neighboring SRRs in an array are magnetically coupled
through their mutual inductance M, which is approximately
given by

M �
�0�ra

2rb
2

4D3 �2�

where D is their center-to-center distance, and ra ,rb are their
average radii. In order to construct a binary array, we have to
change one or more of the material and/or geometrical pa-
rameters of the SRRs that are going to be of one type, with
respect to the same parameters of the SRRs that are going to
be of the other type. As it can be observed from Eqs. �1� and
�2�:

�i� a change in the SRR radius r affects L, M, and R;
�ii� a change in h affects L, Cl, and R;

�iii� a change in �l affects Cl which in turn, implies a
change in the nonlinear response;

�iv� a change in d affects Cl and slightly R and L; and
�v� A change in resistivity � affects R.
Obviously there many possibilities for constructing two

types of SRRs and consequently a binary array. Here we
make the relatively simple choice to create two types of
SRRs by considering different slit widths, i.e., da for type a
and db for type b. Thus, the linear capacitances of type a and
b SRRs become respectively Ca and Cb, resulting in different
resonance frequencies �a=1 /�LCa and �b=1 /�LCb.

Now let us return to the nonlinear problem, and assume
that the slits of all the SRRs in the array are filled with a
Kerr-type dielectric. Then, the charge Qn accumulated in the
capacitor of the nth SRR is �39�

Qn = Cn	1 + �
Un

2

Uc
2
Un �3�

where Cn=Ca �Cn=Cb� for SRRs at even- �odd-�numbered
sites of the array, and �=� / �3�l� is the dimensionless non-
linearity coefficient, with �=+1 ��=−1� for a self-focusing
�self-defocusing� dielectric. The above equation leads to the
following approximate form for the voltage Un across the slit
of the nth SRR,

Un �
Qn

Cn
�1 − �

1

Uc
2	Qn

Cn

2� �4�

where Uc is a characteristic �large� voltage. Then, the
coupled equations describing the charge dynamics in the
nonlinear MM that is placed in an alternating magnetic field
are generally written as

d2

dt2 �MQ2n−1 + L2nQ2n + MQ2n+1� + R2n
d

dt
Q2n +

1

C2n
Q2n

− �
1

Uc
2	Q2n

C2n

3

= F�t� �5�

d2

dt2 �MQ2n + L2n+1Q2n+1 + MQ2n+2�

+ R2n+1
d

dt
Q2n+1

1

C2n+1
Q2n+1 − �

1

Uc
2	Q2n+1

C2n+1

3

= F�t� ,

�6�

where we assume that Rm=R, Lm=L, and

F�t� = E0 sin��t� . �7�

The above equation gives the electromotive force �emf� of
amplitude E0 and frequency � that is excited in each SRR
due to the action of the field. Let us define the quantities

Qc = �CaCbUc, qn = Qn/Qc,

	 = ��a�bt 
 �0t, 
 = R��CaCb

L
. �8�

With the above definitions, Eqs. �5� and �6� can be written in
normalized form as

FIG. 1. �Color online� One-dimensional binary array of split-
ring resonators.
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d2

d	2 ��q2n−1 + q2n + �q2n+1� + �q2n − ��3q2n
3

= − 

dq2n

d	
+ �0 sin�
	� , �9�

d2

d	2 ��q2n + q2n+1 + �q2n+2� +
q2n+1

�
− �

q2n+1
3

�3

= − 

dq2n+1

d	
+ �0 sin�
	� , �10�

where �
M /L is the dimensionless coupling parameter, 

=� /�0 is the dimensionless driving frequency, �
�a /�b is
the RFM ratio, �0=E0 /Uc, and n is an integer. From Eqs. �9�
and �10� we can see that the change in the linear capacitances
also affects the nonlinear terms, and that, actually, the latter
are affected much more than the linear ones. The changes
that are caused to the terms proportional to R and L are of
higher order and thus they are neglected. As the RFM �
increases, the resonance frequency as well as the nonlinear
term of the even-numbered site SRRs increase, while at the
same time the resonance frequency and the nonlinear term of
the odd-numbered site SRRs decrease. The inductive cou-
pling parameter � can be either positive or negative depend-
ing on whether the array geometry is of the “axial” or “pla-
nar” type �30�.

Such MMs and other systems with magnetically coupled
elements, support in the low-amplitude �linear� limit a new
kind of waves, the magnetoinductive waves �37,38�. In the
present case, the frequency dispersion for linear magnetoin-
ductive waves is obtained by substituting

q2n = aei�2n�−
	�, q2n+1 = bei��2n+1��−
	�, �11�

where � is the normalized wavenumber, into linearized Eqs.
�9� and �10�, without the dissipative and the external driving
terms �
=0 and �0=0�,


�
2 =

�� + �1/��� � ��� + �1/���2 − 4�1 − 4�2 cos2 ��
2�1 − 4�2 cos2 ��

.

�12�

The dispersion curves for a particular choice of RFM � and
coupling parameter � are shown in Fig. 2. Even though we
can think of each linear SRR as an RLC circuit, i.e., an
electromagnetic oscillator, we notice that the dispersion
curves for the coupled array do not contain any acousticlike
branch; rather both curves are of the “optical” type:
limk→0 
�k��0. This is due to the particular �inductive� na-
ture of the coupling between the SRRs. There are now three
regions where we can look for breathers in the nonlinear
case: Above and below the bands, and in the Bragg gap �BG�
in between. In the absence of RFM ��=1� we recover the
single band for the “monoatomic” MM �30�. As � diverges
from unity the BG increases, pushing the 
+ branch upwards
and the 
− branch downwards.

Equations �9� and �10� can be written conveniently in the
compact form,

d2

d	2 ��qn−1 + qn + �qn+1� + �n
2qn − ��n

6qn
3

= − 

dqn

d	
+ �0 sin�
	� , �13�

where �n
2=� ��n

2=1 /�� for even �odd� n. Without dissipation
and external driving, Eq. �13� can be obtained from the
Hamiltonian H=�nHn, where the discrete Hamiltonian den-
sity Hn is given by

Hn =
1

2
�q̇n

2 + �q̇n�q̇n−1 + q̇n+1�� + Vn. �14�

The last term on the right-hand side of the earlier equation is
the nonlinear on-site potential which is given by

Vn 
 V�qn� =
1

2
��nqn�2�1 −

1

2
��n

2��nqn�2� . �15�

The Hamiltonian H is actually the conserved energy of the
lossless system in the absence of any driving terms system.
For the dissipative system, H is also useful since its time-
average per period gives correctly the average energy per
period for that system.

III. HAMILTONIAN BREATHERS IN THE ROTATING-
WAVE APPROXIMATION

A standard method of DB construction in Hamiltonian
systems, that gives numerically exact results up to arbitrary
precision, uses the Newton’s method �4,5�, which has been
applied successfully for DB generation in MMs �29,30�. In
this Section, we use the RWA method that keeps a simple
physical picture and moreover can produce quite accurate
results. According to the simplest version of that method, one
looks for stationary solutions of the system that are separable
with an assumed time dependence �e.g., sinusoidal� of the
form qn�	�=qn sin�
	�. Direct substitution of qn�	� into Eq.
�13� with the approximation sin�x�3��3 /4�sin�x� gives an
algebraic system of nonlinear equations for the qns that reads
as

Π�2 0 Π�2

0.8

1.2

1.6

k

�2

FIG. 2. �Color online� Linear dispersion relation for the binary
SRR array, for �=0.8 and �=−0.2.

BULK AND SURFACE MAGNETOINDUCTIVE BREATHERS … PHYSICAL REVIEW E 80, 046605 �2009�

046605-3



− 
2��qn+1 + qn + �qn−1� + �n
2qn − �3/4���n

6qn
3 = 0.

�16�

In the anticontinuous limit ��→0� the earlier equation has
solutions

qn = 0 or qn
2 =

�n
2 − 
2

�3/4���n
6 . �17�

According to Eq. �17�, we have the following interesting
possible scenarios:

�i� ��0. Then, qn
2�0 for all n, if 
2�Min�� ,1 /��;

�ii� ��0. Then qn
2�0 for all n provided 
2

�Max�� ,1 /��; and
�iii� in the intermediate case where Min�� ,1 /���
2

�Max�� ,1 /��, what happens is that q2n�0 and q2n+1=0, or
the converse, depending upon the sign of �.

The RWA method can be used for the construction of DBs
both on the “surface” and the bulk of the energy-conserved
binary MM. For a 1D MM, a surface-localized DB obviously
corresponds to an edge state, i.e., a state with maximum am-
plitude at either of the two ends of the array. A bulk DB, on
the other hand, is meant to be a DB whose maximum ampli-
tude is far from the endpoints of the array. However, the
procedure of obtaining DBs by the RWA method, both at the
surface or in the bulk, proceeds in the same way. The first
step is to set up a trivial DB. We first choose its central site,
i.e., the site where the DB shall have its maximum ampli-
tude. Suppose that the central site is taken at n=nB where the
“coordinate” qn=qnB

and set all the qn for n�nB equal to
zero. The value of qnB

is calculated from Eq. �17�, with an
appropriately chosen 
. That solution is subsequently con-
tinued for finite couplings up to a maximum value �=�max
where DBs cease to exist. Usually we consider a DB to be
localized around the site where it exhibits its maximum am-
plitude. For a finite array, the boundary conditions that
should be imposed to the dynamic equations resulting from
Hamiltonian �14� should be specified. For DBs excited in the
bulk one may use either periodic or open-ended boundary
conditions, since DBs are highly localized entities and are
not affected by the boundaries. However, for surface DBs the
termination of the structure should be taken into account, and
for that purpose we should use open-ended boundary condi-
tions. In the following, we always use that type of boundary
conditions, i.e., q0=0 , qN+1=0, where N is the total number
of SRRs in the binary array.

Surface breathers. Typical surface-localized single-site

DBs that are generally very similar to the ones examined for
a discrete nonlinear Schrödinger model for a semi-infinite
binary waveguide array �40�, are displayed in Fig. 3. The
unstaggered modes shown there originate in the lower gap
region 0�
�Min�� ,1 /��. There are also staggered modes
�not shown� originating from the Bragg gap region that con-
stitute magnetoinductive Tamm states �30,31�. From the sur-
face DBs shown in Fig. 3, only one of them �Fig. 3�a�� cor-
responds to a truly surface state, since it is localized exactly
at the left end of the array �n=1�. The next two �Figs. 3�b�
and 3�c�� can also be characterized as surface DBs since they
are localized very close to the surface �n=2 and n=3, respec-
tively�, but actually they are crossover states between surface
and bulk DBs. Since the DBs shown here are highly local-
ized, they obtain their bulk form within a distance of only a
few sites from the surface, so that the DB shown in Fig. 3�d�
�localized at n=4� can be considered as a bulk DB. With the
appropriate choice of the initial conditions we may also con-
struct multisite surface DBs such as those shown in Fig. 4
that remind four-site antisymmetric DB excitations. Of
course, close to the surface, we cannot obtain exact antisym-
metric DBs.

Bulk breathers. Typical bulk Hamiltonian DB profiles ob-
tained with the RWA method are shown in Figs. 5 and 6. In
Fig. 5, the two single-site symmetric DBs differ in that the
first one �Fig. 5�a�� is staggered, while the other one �Fig.
5�b�� is unstaggered. The staggered/unstaggered character of
those Hamiltonian DBs depends on the sign of the product of
the coupling parameter and the nonlinearity parameter, �
=sgn����. For ��0, which implies either �=+1 and ��0
or �=−1 and ��0, the excited DBs are unstaggered. On the
other hand, for ��0, that implies either �=+1 and ��0 or
�=−1 and ��0, the excited DBs are staggered. In that fig-
ure the DB frequency 
B=2� /TB, with TB the DB period,
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FIG. 3. �Color online� Typical Hamiltonian surface breather pro-
files centered at �a� surface, �b� one layer away from surface, �c�
two layers away from surface, and �d� three layers away from sur-
face in a magnetoinductive binary chain for �=0.9, �=0.1, 

=0.77, and �=1 /6 obtained by the RWA.
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FIG. 4. �Color online� Typical Hamiltonian surface multisite
breather profiles in a magnetoinductive binary chain for �=0.9, �
=−0.1, 
2=0.77, and �=1 /6 obtained by the RWA.

�a�

15 25 35

0

1

2

n

q n

�b�

15 25 35

0

1

2

n

q n

(b)(a)

FIG. 5. �Color online� Typical Hamiltonian bulk symmetric
breather profiles in a magnetoinductive binary chain for �=0.8, �
=−1 /6, 
2=1.5, and �a� Staggered mode with �=+0.1; �b� unstag-
gered mode with �=−0.1. These profiles are also obtained by the
RWA.
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was chosen to ensure that the DB amplitude at all sites is
nonzero in the anticontinuous limit. In Fig. 6, that shows
two-site antisymmetric bulk DBs, the nonlinearity parameter
is negative ��=−1� and Min�� ,1 /���
2�Max�� ,1 /��,
implying that in the anticontinuous limit, only the even sites
of the array can have a nonzero amplitude. Again, with ap-
propriate choice of the initial conditions and by changing the
sign of the coupling parameter � and/or the nonlinearity pa-
rameter � we may also construct multisite bulk DBs with
different symmetry. It should be also possible to generate a
large variety of surface and bulk Hamiltonian DBs in two-
dimensional binary arrays, just like in planar arrays of iden-
tical SRRs �30�. Increased dimensionality offers more possi-
bilities for generating different DB types.

IV. DISSIPATIVE BREATHERS IN THE ROTATING-WAVE
APPROXIMATION

We consider now the more realistic case of DDBs that can
be excited either on the “surface” or the bulk of a 1D binary
MM. In typical experiments that involve MMs, the metama-
terial is driven by an applied electromagnetic field of appro-
priate polarization. In 1D there are two possible geometries
for the arrangement of the SRRs �30�; the planar geometry
�as shown in Fig. 1�, for which the coupling parameter is
negative, and the axial geometry for which the coupling pa-
rameter is positive. That polarization can be chosen such
that, for example, the magnetic component of the field is
perpendicular to the SRR planes, while there is no electric-
field component across the SRR gap. This choice simplifies
physically the situation since only the magnetic field excites
an emf in the SRRs. Thus, in the equivalent circuit picture, a
binary SRR-based MM in an electromagnetic field can be
described by an array of nonlinear RLC circuits driven by an
alternating emf that are coupled through their mutual induc-
tances. The losses of the SRRs can be described in this pic-
ture by an equivalent resistance. That effective resistance R
may actually describe both Ohmic losses of the SRR as well
as radiative losses, if these are relatively low �33�. Under
those assumptions, the dynamics of the charges qn�	�, n
=1,2 , . . . . ,N, is given by Eq. �13�. In the framework of the
RWA method, we look for stationary solutions of that equa-
tion in the form qn�	�=qn sin�
	+�n�. By direct substitution
of qn�	� into Eq. �13� and by making the RWA replacement
sin�
	+�n�3��3 /4�sin�
	+�n�, where qn thereafter de-
notes the time-independent DB amplitude at the nth site and

�n its phase, we find that the DB amplitudes and phases at
each site n satisfy the relations

�− 
2��qn+1 + qn + �qn−1� + �n
2qn −

3

4
��n

6qn
3�2

+ 
2
2qn
2 = �0

2

�18�

�n = tan−1� − 

qn

�n
2qn − 
2��qn+1 + qn + �qn−1� −

3�

4
�n

6qn
3�

�19�

where n=1,2 , . . . ,N and q0=qN+1=0. The inclusion of dissi-
pation and external driving alters significatively the possible
DB modes that the binary SRR system can support. The
dissipative DBs possess the character of an attractor for ini-
tial conditions in the corresponding basin of attraction, and
they may appear as a result of power balance between the
incoming power and the intrinsic power loss �6,7�. Dissipa-
tive DB excitations in SRR-based MMs are of great impor-
tance since they alter locally the magnetic response of the
system from diamagnetic to paramagnetic or vice versa
�29–31�.

In the anticontinuous limit Eqs. �18� and �19� become

P�qn� 
 qn
2���n

2 − 
2 −
3

4
��n

6qn
2�2

+ 
2
2� = �0
2, �20�

�n = tan−1� − 



��n
2 − 
2� −

3

4
��n

6qn
2� , �21�

where we kept the subscript n to distinguish between oscil-
lators located either at an odd-numbered site �n=odd integer�
or even-numbered site �n=even integer�. The polynomial
P�qn� is cubic in qn

2 for general values of the parameters �, �,

, and 
, with P�0�=0.

Thus, there can be at most three real roots that correspond
to attractors of the SRR oscillator �see Fig. 7� from which
two are stable and one is unstable. However, by varying a
parameter in that four-dimensional parameter space, two of
these solutions may disappear through a pitchfork bifurca-
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q n

(b)(a)

FIG. 6. �Color online� Typical Hamiltonian bulk antisymmetric
breather profiles in a magnetoinductive binary chain for �=0.5, �
=−1 /6, 
2=0.8, and �a� �=−0.2; �b� �=+0.2. These profiles are
also obtained by the RWA.

0 0.5 1
q

0

0.005

0.01

P
�q
�

FIG. 7. �Color online� The intersection of P�qn� �solid line� and
�0

2 �dashed line� provides the nonlinear attractor�s� for a single SRR.
Case displayed here corresponds to �=1, �=1 /6, 
=0.02, 

=0.92, �0=0.04. The black �gray �red online�� circle represents a
stable �unstable� attractor.
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tion, leaving behind only a single attractor. The boundary in
parameter space that separates those two cases can be found
implicitly by computing the values of qn denoted by qn

�, for
which dP�qn� /dqn=0 �i.e., the values of qn that correspond
to the local extrema of P�qn��. Clearly, if qn=qn

� corresponds
to a local minimum �maximum� then for P�qn

����0
2 �P�qn

��
��0

2� there is only one attractor left. Thus, the earlier in-
equalities determine different regions in the parameter space
where, depending on the values of the parameters, we may
have either one or three attractors. Thus, we may distinguish
in such a diagram two different “phases” that correspond to
either three or one real solutions. A typical example is shown
in the reduced �0−
 parameter space in Fig. 8, for �=1 �no
RFM� and opposite values of �, while the values of the driv-
ing field strength �0 and the driving frequency 
 are varying.
There we see clearly the areas where there are either three
�inside colored area� or one �outside colored area� attrac-
tor�s�. Another example, where the RFM changes from �
=0.5–1.5 is shown in Fig. 9 for 
=0.1 and positive �. There
we observe that the colored area, corresponding to three at-
tractors, expands with increasing �. The values for the stable
attractors predicted by the RWA are in excellent agreement
with those obtained through dynamical evolution of the
charge in a single SRR oscillator. For instance, for the pa-
rameter set �=0.8, 
=0.92, 
=0.01, �0=0.04, �=+1 /6, and
for an even-numbered site n, Eq. �20� predicts a single at-
tractor at q1

e = �0.5821 63, while for an odd-numbered site it
predicts three attractors at q1

o= �1.235 31, q2
o= �1.330 55

and q3
o= �0.099 681 1, of which the latter two are stable.

The unstable attractor at q1
o is not reachable through simple

numerical integration of the dynamical equation. For the
stable attractors, we have checked with direct numerical in-
tegration that their values are practically the same with those
obtained from the RWA approach. In general, the presence of

dissipation and driving severely limit the possible spatial
profile of the breathers. The structures tend now to be either
strongly localized ones, or rather extended, like domain
walls �27,29�. The situation is similar for DDBs in the bulk
�Figs. 10 and 11�. As soon as � deviates from unity, that is,
when we are dealing with a bona fide binary chain, the area
in phase space with two stable attractors reduce �increase� as
� decreases �increases� from unity, if the site chosen is an
even-numbered one, as can be seen in Fig. 9. The opposite
behavior occurs for an odd-numbered site.

In order to illustrate how the RWA method works in this
case, we calculate some of typical surface DDBs. The calcu-
lation of bulk DDBs proceeds in the same way, by simply
choosing the central site of the corresponding trivial DB that
is located at n=nB somewhere in the bulk. For a given value
of the RFM, we first determine the attractors available for
each single SRR oscillator located either at odd- or even-
numbered site. Then, we set up a trivial surface DB which is
subsequently continued for finite values of �. The continua-
tion procedure proceeds in exactly the same way as that for
Hamiltonian DBs except that the relevant equations are now
Eqs. �18� and �19�. We thus can obtain several types of sur-
face DDBs for an interval of � up to a maximum, i.e., up to
�=�max. For example, for the parameter set �=+1 /6, 

=0.01, 
=0.5, �=2, and �0=0.04, we have stable attractors
q1

o= �4.067 19 and q2
o= �0.160 225 at odd-numbered sites,

and q1
e = �1.334 and q= �0.022 863 9 at even-numbered

sites. We can set up a trivial surface DB localized at nB=1 as
q1=4.067 19, q2n=0.022 863 9 and q2n−1=0.160 225 �n�1�.
For a trivial surface DB localized at nB=2 we may choose
q2=1.334. q2n−1=−0.160 225 and q2n=−0.022 863 9 �n�1�.
Or, for a trivial surface DB localized at nB=3 we may choose
q2n=−0.160 225, q2n−1=−0.160 225 �n�2�, and q3
=4.06719. Continuation of those trivial DDBs up to �
=0.025 gives the surface DDB profiles shown in Fig. 10. Of
course there also other trivial DDB profiles that we could
choose. Similar bulk DDBs can be obtained from the trivial
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FIG. 8. �Color online� “Phase diagram” in the reduced param-
eter space �0−
 for a single driven-damped SRR oscillator show-
ing the regions with different number of attractors, for �=1, 

=0.1, and �=+1 /6 �left�; �=−1 /6 �right�. Inside �outside� the col-
ored region we have three �one� attractors.
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FIG. 9. �Color online� Same as in Fig. 8 for a single driven-damped SRR oscillator with 
=0.1, �=+1 /6, and �from left to right� �
=0.5; �=0.75; �=1; and �=1.5.
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FIG. 10. �Color online� Dissipative surface breather profiles for
�=2, 
=0.5, �=0.025, �=+1 /6, 
=0.01, and �0=0.04, which are
localized at �a� n=1, �b� n=2, and �c� n=3.
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DDBs given above only by changing nB to a value relatively
far from the endpoints. An illustrative example of a bulk
DDB localized at an odd-numbered site is shown on Fig.
11�a�, while Figs. 11�b� and 11�c� show multisite DDBs also
localized at odd-numbered sites. The latter two DDBs have
been obtained with an appropriate choice of a trivial DDB
profile.

V. NUMERICALLY EXACT CALCULATIONS

In this section we construct several types of both energy-
conserved and dissipative DBs, which are localized either in
the bulk or at the surface, using standard numerical algo-
rithms �4,5�. Moreover, in the case of a dissipative binary
MM we also generate DDB excitations through a procedure
that can be used for parameter values where the homoge-
neous solution is modulationally unstable �13�. In other
words, we exploit MI to initiate spontaneous localization of
energy in the binary array �17�.

Hamiltonian breathers. For the Hamiltonian binary MM,
DBs can be constructed from the anticontinuous limit of Eq.
�13� with �0=0 and 
=0 where all the SRRs are decoupled
�29,30�. Using Newton’s method we have constructed sev-
eral types of Hamiltonian, numerically exact DBs for the 1D
binary MM, for different parameter sets. The obtained
Hamiltonian DB profiles are in excellent agreement with
those obtained with the RWA method.

Dissipative Breathers. In order to generate DDBs we start
from the anticontinuous limit of Eq. �13�, where dissipation
and driving are included. We identify stable attractors of
each SRR oscillator, that is either located at odd- or even-
numbered sites. For constructing a trivial DDB profile we
need to find, for at least one of the two types of oscillators,
two different amplitude stable attractors. For example, for
the parameter set �=2.0, 
=0.5, 
=0.01, �0=0.04, and �
=+1 /6, we obtain stable attractors q1

o= �4.067 19 and q2
o

= �0.160 225 at odd-numbered sites, and q1
e = �1.334 and

qe= �0.022 863 9 at even-numbered sites. Those values are
practically the same with those obtained with the RWA
method. We set up a trivial surface DB localized at nB=1 as
q1=4.067 19, q2n=0.022 863 9, and q2n−1=0.160 225 �n
�1�. For a trivial surface DB localized at nB=3 we
may choose q3=4.067 19, q2n=0.022 863 9, and q2n−1
=−0.160 225 �n�2�. Continuation of those trivial DDBs
gives surface DDB profiles up to �max�0.19. Typical pro-
files for several values of �, both for DDBs localized at n
=1 and n=3, are shown in Fig. 12.

Another example is given for the parameter set �=0.8,

=0.92, 
=0.01, �0=0.04, and �=+1 /6, where the RWA
method predicts a single attractor at q1

e = �0.582163 at even-
numbered site oscillators, while it predicts three attractors at
q1

o= �1.235 31, q2
o= �1.330 55, and q3

o= �0.099 681 1, of
which the latter two are stable, for an odd-numbered site
oscillators. These values are also in agreement with those
obtained by direct integration of the single SRR oscillators.
We set up a trivial surface DDB localized at nB=1 as q1
=1.330 55, q2n=0.582 163, and q2n−1=0.099 681 1 �n�1�,
and continue it up to �max�0.07 where DDBs cease to exist.
Typical DDB profiles are shown in Fig. 13 for several values
of � shown on the figure. A profile for �=0.072 which is
greater that �max, where the homogeneous solution is re-
stored, is also shown in Fig. 13. The frequency of the DDBs
shown here is the same with that of the driver, i.e., 
B

2� /TB=
. However, the phase differences of the SRR
oscillators in the array with respect to the driving field are
generally different for each oscillator, as can be observed in
Fig. 14, where the time evolution of q1−q4 is followed for
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FIG. 11. �Color online� �a� Single-site, �b� two-site, and �c�
three-site dissipative bulk breather profiles localized at odd-
numbered sites for �=2, 
=0.5, �=0.025, �=+1 /6, 
=0.01, and
�0=0.04.
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FIG. 12. �Color online� Dissipative breather profiles at maxi-
mum amplitude for several values of the coupling parameter as
shown on the figure which are localized at n=1 and n=3. The
parameters are 
=0.5, �=+1 /6, 
=0.01, �0=0.04, and �=2.
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FIG. 13. Dissipative breather profiles at maximum amplitude for
several values of the coupling parameter as shown on the figure
which are localized at the surface �at n=1�, along with an almost
uniform solution for �=0.072 just above the value of �max for this
particular parameter set. The parameters are 
=0.92, �=+1 /6, 

=0.01, �0=0.04, and �=0.8.
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approximately two periods TB of the DDB oscillation. Note
also that even though the time evolution seems practically
sinusoidal �harmonic�, that may not be necessarily true for
DDBs obtained with some other parameter set.

Dissipative breathers by frequency chirping. For a fre-
quency gapped linear spectrum, some of the linear modes
become unstable at large amplitude. If the curvature of the
dispersion curve in the region of that mode is negative and
the lattice potential is hard then, the large amplitude mode
becomes unstable with respect to formation of a DB in the
gap above the linear spectrum �13,20�. Below we exploit MI
in order to generate spontaneously DDBs in the binary array.
The procedure that is followed is shortly described below
�13,20�. For the parameters in the captions of Figs. 15 and
16, the top of the upper linear band is located at 
�1.42
where the curvature is negative. Moreover, the SRRs are
subjected to on-site potentials that are hard �for ��0�. The
�large amplitude� driver is initiated with its frequency just
below 
 and is then chirped with time to produce enough
vibrational amplitude to induce MI of the uniform mode,
which then leads to spontaneous DDB generation. At the end
of the frequency chirping phase, the driver frequency is well
above 
, and only supplies energy into the formed DDB�s�.
During that phase, a large number of DDBs may be gener-
ated, which can move and collide and eventually coalesce
into a small number of high-amplitude DDBs that are fre-
quency locked to the driver and, because of that, they are
trapped at particular SRRs. After that, the driver frequency is
kept constant and the high-amplitude DDBs �and even some
low-amplitude ones� continue to receive energy falling into a

stationary state. When the driver is switched off all DDBs die
out in a short-time interval.

In Figs. 15 and 16, the contours of the energy density Hn
on the 	−n plane identify the evolution of the DDBs formed
by that procedure. The chirping phase lasts for 2000T0 time
units �T0=2� /
�, where the frequency varies linearly from

i=0.997 
 to 
 f =1.020 
. The driver is subsequently
kept at constant frequency 
 f until it is switched off after
another 2000 T0 time units. Figures 15 and 16 correspond to
the regions of the binary MMs where several DDBs have
survived after the chirping phase. In Fig. 15 we clearly ob-
serve a high-amplitude DDB at n=251, along with some
other DDBs of considerably lower amplitude, that survive
until the end of the constant frequency phase. In Fig. 16,
where the binary MM is driven not as strongly as that in Fig.
15, we observe one relatively low-amplitude DDB which
however survives until the end of the constant frequency
phase. It is possible that the procedure described above,
which relies on the MI of the large amplitude linear modes,
can be used for the generation of DDBs in other magnetoin-
ductive systems as well as �41,42� in their binary versions.

VI. CONCLUSION

We presented detailed analysis for induced nonlinear lo-
calization in binary nonlinear magnetic metamaterials. The
systems we analyzed are one dimensional and consist of two
types of SRRs; this configuration leads to a linearized mag-
netoinductive system with two optical bands separated by a
gap. When nonlinearity is also taken into account nonlinear
localized modes of discrete breather type may be generated
in the gaps. We focused on both the Hamiltonian as well as
the dissipative case; the latter case is the most interesting
physically since it corresponds to true propagation of waves
in the medium. We used two approaches, one based on the
rotating-wave approximation and the other on exact numer-
ics using the breather analysis from the anticontinuous limit.
The comparison of the two shows that the RWA is in most
cases a good approximation for a relatively accurate breather
construction.

In the Hamiltonian case we found two types of breathers
with even or odd local symmetry depending on the sign of
the product of the coupling parameter and the nonlinearity
parameter. Both types may exist in the bulk but also in the
boundary of the chain; the latter form surface breathers. A
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FIG. 14. �Color online� Time dependence of q1 �black solid
curve�, q2 �red dotted curves�, q3 �green short-dashed curve�, and q4

�blue dashed curves�, for a surface breather localized at n=1 and
�=0.03. The other parameters are the same with those in the cap-
tion of Fig. 13.
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similar situation occurs also in the dissipative case where
depending on the number of attractors of the single driven
nonlinear oscillator system we have different type of dissi-
pative breathers. Both bulk and surface breathers appear with
corresponding symmetries.

The binary structure of the lattice allows for generation of
breathers through direct external induction. This is accom-
plished through frequency chirping to the desired frequency.
In the process of frequency modulation induction, plane-
wave instability occurs that leads to breather generation.

These induced breathers move around in the lattice, collide,
some decay and eventually a single breather of much larger
size is left in the metamaterial. This method of breather gen-
eration is direct and may be used for experimental breather
investigation in metamaterials.
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